Yıl 2019, Cilt 4 , Sayı 2, Sayfalar 95 - 103 2019-08-31

Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting

Tuba Yener [1] , Şuayb Çağrı Yener [2] , Reşat Mutlu [3]


The convection coefficient is an important thermal property. In this study, using an infrared thermometer, the convection coefficient of still air is estimated. First, the sample is heated in a sintering oven, then placed on a wood table for obtaining an almost adiabatic boundary, finally its temperature is recorded with respect to time using an infrared thermometer. The data is curve-fitted to find the sample temperature as a function of time. Using the sample’s physical dimensions, the specific heat capacity and the mass of the sample, the convection coefficient of still air is estimated.
Thermal analysis, convection coefficient measurement, thermal models, curve-fitting
  • [1] Doebelin, E.O., “System dynamics: modeling and response”, Merrill (1972).
  • [2] Çengel, Y.A., Ghajar, A.J., “Heat and mass transfer : fundamentals & applications”, McGraw-Hill Education, 5 edition (2014).
  • [3] Vollmer, M., “Newton’s law of cooling revisited”, Eur. J. Phys. 30 (5) (2009) : 1063-1084.
  • [4] Hireholi, S., Shashishekhar, K.S., Milton, G.S., “Experimental and theoretical study of heat transfer by natural convection of a heat sink used for cooling of electronic chip”, (2013).
  • [5] Himrane, N., Ameziani, D.E., Bennacer, R., “Effect of the weather conditions on natural convection in storage silo”, in 3rd International Symposium on Environmental Friendly Energies and Applications (EFEA) (2014) : 1-6.
  • [6] Bagnall, K.R., Muzychka, Y.S, Wang, E.N., “Application of the kirchhoff transform to thermal spreading problems with convection boundary conditions”, IEEE Trans. Components, Packag. Manuf. Technol. 4 (3) (2014) : 408-420.
  • [7] Yu, L., Liu, D., “Study of the thermal effectiveness of laminar forced convection of nanofluids for liquid cooling applications”, IEEE Trans. Components, Packag. Manuf. Technol. 3 (10) (2013) : 1693-1704.
  • [8] Farahmand, F., Dawson, F.P., Lavers, J.D., “Temperature rise and free-convection heat-transfer coefficient for two-dimensional pot-core inductors and transformers”, IEEE Trans. Ind. Appl. 45 (6) (2009) : 2080-2089.
  • [9] Chang, S.W., “Forced heat convection in a reciprocating duct fitted with 45 degree crossed ribs”, Int. J. Therm. Sci., 41 (3) (2002) : 229-240.
  • [10] Moraga, N.O., Marambio, M.A., Cabrales, R.C., “Geometric multigrid technique for solving heat convection-diffusion and phase change problems”, Int. Commun. Heat Mass Transf. 88 (2017) : 108-119.
  • [11] Wang, C., Qiu, Z., Yang, Y., “Collocation methods for uncertain heat convection-diffusion problem with interval input parameters”, Int. J. Therm. Sci. 107 (2016) : 230-236.
  • [12] Gong, X., Yang, X., Luo, Q., Tang, L., “Effects of convective heat transport in modelling the early evolution of conduits in limestone aquifers”, Geothermics 77 (2019) : 383-394.
  • [13] Castanet, G., Frackowiak, B., Tropea, C., Lemoine, F., “Heat convection within evaporating droplets in strong aerodynamic interactions”, Int. J. Heat Mass Transf. 54 (15-16) (2011) : 3267-3276.
  • [14] Natale, M.F., Santillan Marcus, E.A., “The effect of heat convection on drying of porous semi-infinite space with a heat flux condition on the fixed face x=0”, Appl. Math. Comput. 137 (1) (2003) : 109-129.
  • [15] Belhocine, A., Wan Omar, W.Z., “Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature” , Case Stud. Therm. Eng. 6 (2015) : 116-127.
  • [16] (Tim) Shih, T.-M., Thamire, C., Zhang, Y., “Heat convection length for boundary-layer flows”, Int. Commun. Heat Mass Transf. 38(4) (2011) : 405-409.
  • [17] Yener, S. C., Yener, T., Mutlu, R., “A process control method for the electric current-activated/assisted sintering system based on the container-consumed power and temperature estimation”, J. Therm. Anal. Calorim. 134 (2) (2018) : 1243-1252.
  • [18] Thellier, F., Monchoux, F., Spagnol, S., Bonnis-Sassi, M., “Measurement of ambient air temperature for evaluation of human heat convective losses”, Measurement 42 (1) (2009) : 62-70.
  • [19] Faraji, M., El Qarnia, H., “Numerical study of free convection dominated melting in an isolated cavity heated by three protruding electronic components”, IEEE Trans. Components Packag. Technol. 33 (1) (2010) : 167-177.
  • [20] Yaacob, Z., Hasan, M.K., “Nonstandard finite difference schemes for natural convection in an inclined porous rectangular cavity”, International Conference on Electrical Engineering and Informatics (ICEEI) (2015) : 665-669.
  • [21] Yang, X., Mao, Z., Wu, Y., Liang, L., Bi, Y., “Numerical simulation on convection heat transfer of pulsating flow in corrugated tube”, International Conference on Materials for Renewable Energy & Environment (2011) : 1882-1884.
  • [22] Shafiq, F., Ullah, A., Chughtai, I., Hamid, A., Nadeem, M., “CFD study of natural convection heat transfer from an enclosed assembly of vertical cylinders”, 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (2017) : 519-522.
  • [23] Cardarelli, F., “Materials handbook : a concise desktop reference”, Springer (2008).
  • [24] Wujek, S.S., Staats, W.L., Elbel, S.W., Koplow, J.P., Kariya, H.A., Hrnjak, P.S., “Method for determining air side convective heat transfer coefficient using infrared thermography method for determining air side convective heat transfer coefficient using infrared thermography”, Purdue e-pubs 2587 (2016).
  • [25] Conti, R., Gallitto, A.A., Fiordilino, E., “Measurement of the convective heat-transfer coefficient” arXiv:1401.0270v1 (2014).
  • [26] Garnier, B., Lanzetta, F., Lemasson, P., Virgone, J., “Lecture 5A: Measurements with contact in heat transfer: Principles, implementation and pitfalls”, Eurotherm Seminar 94 Advanced Spring School: Thermal measurements & inverse techniques 5th edition-Station Biologique de Roscoff (13–18 June, 2011).
  • [27] Nakamura, H., “Spatio-temporal measurement of convective heat transfer using infrared thermography”, in Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems InTech (2011).
Birincil Dil en
Konular Mühendislik
Bölüm Research Article
Yazarlar

Orcid: 0000-0002-2908-8507
Yazar: Tuba Yener
Ülke: Turkey


Orcid: 0000-0002-6211-3751
Yazar: Şuayb Çağrı Yener (Sorumlu Yazar)
Ülke: Turkey


Orcid: 0000-0003-0030-7136
Yazar: Reşat Mutlu

Tarihler

Yayımlanma Tarihi : 31 Ağustos 2019

Bibtex @araştırma makalesi { jetas598862, journal = {Journal of Engineering Technology and Applied Sciences}, issn = {}, eissn = {2548-0391}, address = {Yıldız Teknik Üniversitesi, Kimya Metalurji Fakültesi, Mathematik Mühendisliği, oda no:A235}, publisher = {Muhammet KURULAY}, year = {2019}, volume = {4}, pages = {95 - 103}, doi = {10.30931/jetas.598862}, title = {Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting}, key = {cite}, author = {Yener, Tuba and Yener, Şuayb Çağrı and Mutlu, Reşat} }
APA Yener, T , Yener, Ş , Mutlu, R . (2019). Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting. Journal of Engineering Technology and Applied Sciences , 4 (2) , 95-103 . DOI: 10.30931/jetas.598862
MLA Yener, T , Yener, Ş , Mutlu, R . "Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting". Journal of Engineering Technology and Applied Sciences 4 (2019 ): 95-103 <https://dergipark.org.tr/tr/pub/jetas/issue/48804/598862>
Chicago Yener, T , Yener, Ş , Mutlu, R . "Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting". Journal of Engineering Technology and Applied Sciences 4 (2019 ): 95-103
RIS TY - JOUR T1 - Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting AU - Tuba Yener , Şuayb Çağrı Yener , Reşat Mutlu Y1 - 2019 PY - 2019 N1 - doi: 10.30931/jetas.598862 DO - 10.30931/jetas.598862 T2 - Journal of Engineering Technology and Applied Sciences JF - Journal JO - JOR SP - 95 EP - 103 VL - 4 IS - 2 SN - -2548-0391 M3 - doi: 10.30931/jetas.598862 UR - https://doi.org/10.30931/jetas.598862 Y2 - 2019 ER -
EndNote %0 Journal of Engineering Technology and Applied Sciences Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting %A Tuba Yener , Şuayb Çağrı Yener , Reşat Mutlu %T Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting %D 2019 %J Journal of Engineering Technology and Applied Sciences %P -2548-0391 %V 4 %N 2 %R doi: 10.30931/jetas.598862 %U 10.30931/jetas.598862
ISNAD Yener, Tuba , Yener, Şuayb Çağrı , Mutlu, Reşat . "Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting". Journal of Engineering Technology and Applied Sciences 4 / 2 (Ağustos 2019): 95-103 . https://doi.org/10.30931/jetas.598862
AMA Yener T , Yener Ş , Mutlu R . Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting. jetas. 2019; 4(2): 95-103.
Vancouver Yener T , Yener Ş , Mutlu R . Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting. Journal of Engineering Technology and Applied Sciences. 2019; 4(2): 103-95.