Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 5 Sayı: 1, 33 - 49, 27.04.2020
https://doi.org/10.30931/jetas.680416

Öz

Kaynakça

  • [1] Adhikari, B., Adhikari, N., Aryal, B., Chapagain, N.P., Horvath, I., “Impacts on Proton Fluxes Observed During Different Interplanetary Conditions”, Solar Physics 294 (2019) : 61.
  • [2] Agopyan, H., “Istanbul iyonoküresinde ölçülen şiddetli manyetik fırtına etkilerine jeofizikten bir örnek”, Tubav Bilim Dergisi 3 (4) (2010) 315-322 (in Turkish).
  • [3] Akasofu, S.I., “The development of the auroral substorm”, Planet. Space Sci., 12 (4) (1964) : 273-282.
  • [4] Ayush, S., Adhikari, B., Mishra, R.K., “Variation of Solar Wind Parameters During Intense Geomagnetic Storms”, Himalayan Physics 6-7 (2017) : 80-85.
  • [5] Borovsky, J.E., “The velocity and magnetic field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties”, Journal of Geophysical Research: Space Physics 117 (A5) (2012) : A05104.
  • [6] Borovsky, J.E. and Yakymenko, K., “Systems science of the magnetosphere: Creating indices of substorm activity, of the substorm‐injected electron population, and of the electron radiation belt”, Journal of Geophysical Research: Space Physics 122 (10) (2017) : 10012-10035, doi:10.1002/2017JA024250.
  • [7] Burton R. K., McPherron R. L., Russell C. T., “An empirical relationship between interplanetary conditions and Dst”, Journal of Geophysical Research 80 (31) (1975) : 4204-4214.
  • [8] Elliott, H.A., Jahn, J.M, David, J.M.C., “The Kp index and solar wind speed relationship: Insights for improving space weather forecasts”, Space Weather 11 (6) (2013) : 339.
  • [9] Eroglu, E., “Dalga kılavuzları boyunca geçici sinyallerin transferi”, Ph.D. Thesis, Gebze High Technology Institute, 2011.
  • [10] Eroglu, E., Aksoy, S., Tretyakov, O.A., “Surplus of energy for time-domain waveguide modes”, Energy Educ. Sci. Tech. 29 (1) (2012) : 495.
  • [11] Eroglu, E., Ak, N., Koklu, K., Ozdemir, Z., Celik, N., Eren, N., “Special functions in transferring of energy; a special case: “Airy function””, Energy Educ. Sci. Tech 30 (1) (2012) : 719.
  • [12] Eroglu, E., “Mathematical modeling of the moderate storm on 28 February 2008”, New Astronomy 60 (2018) : 33-41.
  • [13] Eroglu, E., “Modeling the superstorm in the 24th solar cycle”, Earth Planets Spaces 71 26 (2019), doi: https://doi.org/10.1186/s40623-019-1002-1.
  • [14] Fu, H.S., Tu, J., Song, P., Cao, B. Reinisch, B.W., Yang, B., “The nightside‐to‐dayside evolution of the inner magnetosphere: Imager for Magnetopause‐to‐Aurora Global Exploration Radio Plasma Imager observations”, Journal of Geophysical Research 115 (2010) : A04213.
  • [15] Fu, H.S., Cao, J.B., Cully, C.M., Khotyaintsev, Y.V., Vaivads, A., Angelopoulos, V., Zong, Q.G, Santolík, O., Macúšová, E., André, M., Liu, W.L., Lu, H.Y., Zhou, M., Huang, S.Y., Zhima, Z., “Whistler-mode waves inside flux pileup region: Structured or unstructured?”, Journal of Geophysical Research 119 (2014) : 9089.
  • [16] Gilmour, M., Yu, C.X., Rhodes, T.L., Peebles, W.A., “Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence”, Physics of Plasmas 9 (4) (2002) : 1312.
  • [17] Gonzalez W.D., Tsurutani, B.T., “Criteria of interplanetary parameters causing intense magnetic storms (Dst of less than −100 nT)”, Planet Space Science 35 (9) (1987) : 1101-1109.
  • [18] Gonzalez, W.D. Tsurutani, B.T., Gonzalez, A.L.C., Smith, E.J., Tang, F., Akasofu, S.I., “Solar wind‐magnetosphere coupling during intense magnetic storms (1978‐1979)”, Journal of Geophysical Research 94 (A7) (1989) : 8835.
  • [19] Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L, “Interplanetary origin of geomagnetic storms”, Space Science Reviews 88 (1999) : 529-562.
  • [20] Inyurt, S., and Sekertekin, A., “Modeling and predicting seasonal ionospheric variations in Turkey using artificial neural network (ANN)”, Astrophysics and Space Science 364 (4) (2019) : 62.
  • [21] Inyurt, S. Peker, S. and Mekik, C., “Monitoring potential ionospheric changes caused by the Van earthquake (Mw7:2)” Annales Geophysicae, 37 (2) (2019) : 143-151.
  • [22] Inyurt, S., “Modeling and comparison of two geomagnetic storms” Advances in Space Research 65 (3) (2020) : 1-15.
  • [23] Joshi, N.C., Bankoti, N.S., Pande, S., Pande, B., Pandey, K., “Relationship between interplanetary field/plasma parameters with geomagnetic indices and their behavior during intense geomagnetic storms”, New Astronomy 16 (6) (2011) : 366-385.
  • [24] Kamide, Y., Baumjohann, W., Daglis, L.A., Gonzalez, W.D., Grande, M., Joselyn, J.A., McPherron, R.L., Phillips, J.L., Reeves, G.D., Rostoker, G., Shanna, A.S., Singer, H.J., Tsurutani, B.T., Vasyliuna V.M., “Current understanding of magnetic storms' Storm-substorm relationships”, Journal of Geophysical Research 103 (A8) (1998) : 17705.
  • [25] Loewe C.A., Prölss, G.W., “Classification and mean behavior of magnetic storms”, Journal of Geophysical Research 102 (A7) (1997) : 14209.
  • [26] Manoharan, P.K., Subrahmanya, C.R., Chengalur, J.N., “Space weather and solar wind studies with OWFA”, Journal of Astrophysics and Astronomy 38 (2017) : doi:10.1007/s12036-017-9435-z.
  • [27] Mayaud, P.N., “Derivation, meaning, and use of geomagnetic indices”, Geophys. Monogr. Ser. 22 (1980) : 154.
  • [28] Ogilvie, K.W. and Burlaga, L.F., “Hydromagnetic shocks in the solar wind”, Solar Physics 8 (2) (1969) : 422-434.
  • [29] Parker, E.N., “Dynamics of the interplanetary gas and magnetic fields”, Astrophysical Journal 128 (1958) : 664.
  • [30] Subrahmanya, C.R., Prasad, P., Girish, B.S., Somashekar, R., Manoharan, P.K., Mittal A.K., “The receiver system for the ooty wide field array”, Journal of Astrophysics and Astronomy 38 (2017) : https://doi.org/10.1007/s12036-017-9434-0.
  • [31] Temerin, M. and Li, X., “Dst model for 1995–2002”, Journal of Geophysical Research 111 (A4) (2006) : doi:10.1029/2005ja011257.
  • [32] Tsurutani B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V., “Corotating solar wind streams and recurrent geomagnetic activity: A review”, Journal of Geophysical Research: Space Physics 111 (A7) (2006) : https://doi.org/10.1029/2005JA011273.
  • [33] Yildirim, O., Inyurt, S. Mekik, C., “Review of variations in Mw<7 earthquake motions on position and TEC (Mw=6.5 Aegean Sea earthquake sample)”, Natural Hazards Earth System Science 16 (2016) : 543, doi:10.5194/nhess-16-543-2016.
  • [34] Zic., T., Vrsnak, B., Temmer, M., “Heliospheric propagation of coronal mass ejections drag-based model fitting”, The Astrophysical Journal Supplement Series 218 (2) (2015): doi:10.1088/0067-0049/218/2/32.
  • [35] Zhu, F., Wu, Y., Zhou, Y., Gao, Y., “Temporal and spatial distribution of GPS-TEC anomalies prior to the strong earthquakes”, Astrophysics and Space Science 345 (2) (2013) : 239.

Modelıng of 21 July 2017 Geomagnetıc Storm

Yıl 2020, Cilt: 5 Sayı: 1, 33 - 49, 27.04.2020
https://doi.org/10.30931/jetas.680416

Öz

This essay involves mathematical analyzes of 21 July 21, 2017, geomagnetic storm in the 24th solar cycle. It focuses on solar wind parameters (Bz, E, P, N, v, T), zonal geomagnetic indices (Dst, ap, AE, Kp) obtained from NASA and discusses the July storm by strictly obeying the cause-effect relationship. The paper examines the phenomenon carefully and tries to reveal properties of the storm with the models governing by the causality principle. In this study, values interval and deviations of the variables are defined via descriptive analysis, binary relationships of the data are displayed with the covariance matrix and the cluster of the data are introduced by the dendrogram. Factor analysis is conducted with the help of normal distributions of the data and the phenomenon is tried to discuss with linear and nonlinear models. The study, without detachment from the context of the discussion, also detects anomalies of total electron content (TEC) data obtained from CODE (GIM).

Kaynakça

  • [1] Adhikari, B., Adhikari, N., Aryal, B., Chapagain, N.P., Horvath, I., “Impacts on Proton Fluxes Observed During Different Interplanetary Conditions”, Solar Physics 294 (2019) : 61.
  • [2] Agopyan, H., “Istanbul iyonoküresinde ölçülen şiddetli manyetik fırtına etkilerine jeofizikten bir örnek”, Tubav Bilim Dergisi 3 (4) (2010) 315-322 (in Turkish).
  • [3] Akasofu, S.I., “The development of the auroral substorm”, Planet. Space Sci., 12 (4) (1964) : 273-282.
  • [4] Ayush, S., Adhikari, B., Mishra, R.K., “Variation of Solar Wind Parameters During Intense Geomagnetic Storms”, Himalayan Physics 6-7 (2017) : 80-85.
  • [5] Borovsky, J.E., “The velocity and magnetic field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties”, Journal of Geophysical Research: Space Physics 117 (A5) (2012) : A05104.
  • [6] Borovsky, J.E. and Yakymenko, K., “Systems science of the magnetosphere: Creating indices of substorm activity, of the substorm‐injected electron population, and of the electron radiation belt”, Journal of Geophysical Research: Space Physics 122 (10) (2017) : 10012-10035, doi:10.1002/2017JA024250.
  • [7] Burton R. K., McPherron R. L., Russell C. T., “An empirical relationship between interplanetary conditions and Dst”, Journal of Geophysical Research 80 (31) (1975) : 4204-4214.
  • [8] Elliott, H.A., Jahn, J.M, David, J.M.C., “The Kp index and solar wind speed relationship: Insights for improving space weather forecasts”, Space Weather 11 (6) (2013) : 339.
  • [9] Eroglu, E., “Dalga kılavuzları boyunca geçici sinyallerin transferi”, Ph.D. Thesis, Gebze High Technology Institute, 2011.
  • [10] Eroglu, E., Aksoy, S., Tretyakov, O.A., “Surplus of energy for time-domain waveguide modes”, Energy Educ. Sci. Tech. 29 (1) (2012) : 495.
  • [11] Eroglu, E., Ak, N., Koklu, K., Ozdemir, Z., Celik, N., Eren, N., “Special functions in transferring of energy; a special case: “Airy function””, Energy Educ. Sci. Tech 30 (1) (2012) : 719.
  • [12] Eroglu, E., “Mathematical modeling of the moderate storm on 28 February 2008”, New Astronomy 60 (2018) : 33-41.
  • [13] Eroglu, E., “Modeling the superstorm in the 24th solar cycle”, Earth Planets Spaces 71 26 (2019), doi: https://doi.org/10.1186/s40623-019-1002-1.
  • [14] Fu, H.S., Tu, J., Song, P., Cao, B. Reinisch, B.W., Yang, B., “The nightside‐to‐dayside evolution of the inner magnetosphere: Imager for Magnetopause‐to‐Aurora Global Exploration Radio Plasma Imager observations”, Journal of Geophysical Research 115 (2010) : A04213.
  • [15] Fu, H.S., Cao, J.B., Cully, C.M., Khotyaintsev, Y.V., Vaivads, A., Angelopoulos, V., Zong, Q.G, Santolík, O., Macúšová, E., André, M., Liu, W.L., Lu, H.Y., Zhou, M., Huang, S.Y., Zhima, Z., “Whistler-mode waves inside flux pileup region: Structured or unstructured?”, Journal of Geophysical Research 119 (2014) : 9089.
  • [16] Gilmour, M., Yu, C.X., Rhodes, T.L., Peebles, W.A., “Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence”, Physics of Plasmas 9 (4) (2002) : 1312.
  • [17] Gonzalez W.D., Tsurutani, B.T., “Criteria of interplanetary parameters causing intense magnetic storms (Dst of less than −100 nT)”, Planet Space Science 35 (9) (1987) : 1101-1109.
  • [18] Gonzalez, W.D. Tsurutani, B.T., Gonzalez, A.L.C., Smith, E.J., Tang, F., Akasofu, S.I., “Solar wind‐magnetosphere coupling during intense magnetic storms (1978‐1979)”, Journal of Geophysical Research 94 (A7) (1989) : 8835.
  • [19] Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L, “Interplanetary origin of geomagnetic storms”, Space Science Reviews 88 (1999) : 529-562.
  • [20] Inyurt, S., and Sekertekin, A., “Modeling and predicting seasonal ionospheric variations in Turkey using artificial neural network (ANN)”, Astrophysics and Space Science 364 (4) (2019) : 62.
  • [21] Inyurt, S. Peker, S. and Mekik, C., “Monitoring potential ionospheric changes caused by the Van earthquake (Mw7:2)” Annales Geophysicae, 37 (2) (2019) : 143-151.
  • [22] Inyurt, S., “Modeling and comparison of two geomagnetic storms” Advances in Space Research 65 (3) (2020) : 1-15.
  • [23] Joshi, N.C., Bankoti, N.S., Pande, S., Pande, B., Pandey, K., “Relationship between interplanetary field/plasma parameters with geomagnetic indices and their behavior during intense geomagnetic storms”, New Astronomy 16 (6) (2011) : 366-385.
  • [24] Kamide, Y., Baumjohann, W., Daglis, L.A., Gonzalez, W.D., Grande, M., Joselyn, J.A., McPherron, R.L., Phillips, J.L., Reeves, G.D., Rostoker, G., Shanna, A.S., Singer, H.J., Tsurutani, B.T., Vasyliuna V.M., “Current understanding of magnetic storms' Storm-substorm relationships”, Journal of Geophysical Research 103 (A8) (1998) : 17705.
  • [25] Loewe C.A., Prölss, G.W., “Classification and mean behavior of magnetic storms”, Journal of Geophysical Research 102 (A7) (1997) : 14209.
  • [26] Manoharan, P.K., Subrahmanya, C.R., Chengalur, J.N., “Space weather and solar wind studies with OWFA”, Journal of Astrophysics and Astronomy 38 (2017) : doi:10.1007/s12036-017-9435-z.
  • [27] Mayaud, P.N., “Derivation, meaning, and use of geomagnetic indices”, Geophys. Monogr. Ser. 22 (1980) : 154.
  • [28] Ogilvie, K.W. and Burlaga, L.F., “Hydromagnetic shocks in the solar wind”, Solar Physics 8 (2) (1969) : 422-434.
  • [29] Parker, E.N., “Dynamics of the interplanetary gas and magnetic fields”, Astrophysical Journal 128 (1958) : 664.
  • [30] Subrahmanya, C.R., Prasad, P., Girish, B.S., Somashekar, R., Manoharan, P.K., Mittal A.K., “The receiver system for the ooty wide field array”, Journal of Astrophysics and Astronomy 38 (2017) : https://doi.org/10.1007/s12036-017-9434-0.
  • [31] Temerin, M. and Li, X., “Dst model for 1995–2002”, Journal of Geophysical Research 111 (A4) (2006) : doi:10.1029/2005ja011257.
  • [32] Tsurutani B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V., “Corotating solar wind streams and recurrent geomagnetic activity: A review”, Journal of Geophysical Research: Space Physics 111 (A7) (2006) : https://doi.org/10.1029/2005JA011273.
  • [33] Yildirim, O., Inyurt, S. Mekik, C., “Review of variations in Mw<7 earthquake motions on position and TEC (Mw=6.5 Aegean Sea earthquake sample)”, Natural Hazards Earth System Science 16 (2016) : 543, doi:10.5194/nhess-16-543-2016.
  • [34] Zic., T., Vrsnak, B., Temmer, M., “Heliospheric propagation of coronal mass ejections drag-based model fitting”, The Astrophysical Journal Supplement Series 218 (2) (2015): doi:10.1088/0067-0049/218/2/32.
  • [35] Zhu, F., Wu, Y., Zhou, Y., Gao, Y., “Temporal and spatial distribution of GPS-TEC anomalies prior to the strong earthquakes”, Astrophysics and Space Science 345 (2) (2013) : 239.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Emre Eroglu

Yayımlanma Tarihi 27 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 1

Kaynak Göster

APA Eroglu, E. (2020). Modelıng of 21 July 2017 Geomagnetıc Storm. Journal of Engineering Technology and Applied Sciences, 5(1), 33-49. https://doi.org/10.30931/jetas.680416
AMA Eroglu E. Modelıng of 21 July 2017 Geomagnetıc Storm. JETAS. Nisan 2020;5(1):33-49. doi:10.30931/jetas.680416
Chicago Eroglu, Emre. “Modelıng of 21 July 2017 Geomagnetıc Storm”. Journal of Engineering Technology and Applied Sciences 5, sy. 1 (Nisan 2020): 33-49. https://doi.org/10.30931/jetas.680416.
EndNote Eroglu E (01 Nisan 2020) Modelıng of 21 July 2017 Geomagnetıc Storm. Journal of Engineering Technology and Applied Sciences 5 1 33–49.
IEEE E. Eroglu, “Modelıng of 21 July 2017 Geomagnetıc Storm”, JETAS, c. 5, sy. 1, ss. 33–49, 2020, doi: 10.30931/jetas.680416.
ISNAD Eroglu, Emre. “Modelıng of 21 July 2017 Geomagnetıc Storm”. Journal of Engineering Technology and Applied Sciences 5/1 (Nisan 2020), 33-49. https://doi.org/10.30931/jetas.680416.
JAMA Eroglu E. Modelıng of 21 July 2017 Geomagnetıc Storm. JETAS. 2020;5:33–49.
MLA Eroglu, Emre. “Modelıng of 21 July 2017 Geomagnetıc Storm”. Journal of Engineering Technology and Applied Sciences, c. 5, sy. 1, 2020, ss. 33-49, doi:10.30931/jetas.680416.
Vancouver Eroglu E. Modelıng of 21 July 2017 Geomagnetıc Storm. JETAS. 2020;5(1):33-49.