Araştırma Makalesi
BibTex RIS Kaynak Göster

Special Real and Dual Matrices with Hadamard Product

Yıl 2021, Cilt: 6 Sayı: 2, 127 - 134, 31.08.2021
https://doi.org/10.30931/jetas.979932

Öz

In this paper, firstly we will present basic properties of Hadamard matrix product and Dual matrices to built necessary background. Then we will define special real and dual matrices under this matrix product. Finally, some theorems regarding this matrix product will be given.

Kaynakça

  • [1] Million, E., “The Hadamard product”, Course Notes 3.6 (2007).
  • [2] Horn, R. A., Zai Y., “Rank of a Hadamard product”, Linear Algebra and its Applications 591 (2020) : 87-98.
  • [3] Styan, G. P. H., “Hadamard products and öultivariate statistical analysis”, Linear Algebra Appl. 6 (1973) : 217-240.
  • [4] Horn, R. A., Johnson C. R., “Topics in matrix analysis”, Cambridge University Press, (1994).
  • [5] Bernstein, D. S., “Matrix mathematics”, Princeton University Press, (2009).
  • [6] Liu, S., Gotz T., “Hadamard, Khatri-Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences 4(1) (2008) : 160-177.
  • [7] Veldkamp G. R., “On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics”, Mechanism and Machine Theory 11 (1976) : 141-156.
  • [8] Pennestrì, E., Stefanelli R., “Linear algebra and numerical algorithms using dual numbers”, Multibody System Dynamics 18(3) (2007) : 323-344.
  • [9] Fischer, I. S., “Dual-number methods in kinematics, statics and dynamics”, Routledge, (2017).
  • [10] Dagdeviren, A., “Lorentz matris carpimi ve dual matrislerin ozellikleri”, Master’s Thesis, Yildiz Technical University, (2013).
Yıl 2021, Cilt: 6 Sayı: 2, 127 - 134, 31.08.2021
https://doi.org/10.30931/jetas.979932

Öz

Kaynakça

  • [1] Million, E., “The Hadamard product”, Course Notes 3.6 (2007).
  • [2] Horn, R. A., Zai Y., “Rank of a Hadamard product”, Linear Algebra and its Applications 591 (2020) : 87-98.
  • [3] Styan, G. P. H., “Hadamard products and öultivariate statistical analysis”, Linear Algebra Appl. 6 (1973) : 217-240.
  • [4] Horn, R. A., Johnson C. R., “Topics in matrix analysis”, Cambridge University Press, (1994).
  • [5] Bernstein, D. S., “Matrix mathematics”, Princeton University Press, (2009).
  • [6] Liu, S., Gotz T., “Hadamard, Khatri-Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences 4(1) (2008) : 160-177.
  • [7] Veldkamp G. R., “On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics”, Mechanism and Machine Theory 11 (1976) : 141-156.
  • [8] Pennestrì, E., Stefanelli R., “Linear algebra and numerical algorithms using dual numbers”, Multibody System Dynamics 18(3) (2007) : 323-344.
  • [9] Fischer, I. S., “Dual-number methods in kinematics, statics and dynamics”, Routledge, (2017).
  • [10] Dagdeviren, A., “Lorentz matris carpimi ve dual matrislerin ozellikleri”, Master’s Thesis, Yildiz Technical University, (2013).
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Ali Dağdeviren 0000-0003-4887-405X

Ferhat Kürüz 0000-0001-6197-4958

Yayımlanma Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 2

Kaynak Göster

APA Dağdeviren, A., & Kürüz, F. (2021). Special Real and Dual Matrices with Hadamard Product. Journal of Engineering Technology and Applied Sciences, 6(2), 127-134. https://doi.org/10.30931/jetas.979932
AMA Dağdeviren A, Kürüz F. Special Real and Dual Matrices with Hadamard Product. JETAS. Ağustos 2021;6(2):127-134. doi:10.30931/jetas.979932
Chicago Dağdeviren, Ali, ve Ferhat Kürüz. “Special Real and Dual Matrices With Hadamard Product”. Journal of Engineering Technology and Applied Sciences 6, sy. 2 (Ağustos 2021): 127-34. https://doi.org/10.30931/jetas.979932.
EndNote Dağdeviren A, Kürüz F (01 Ağustos 2021) Special Real and Dual Matrices with Hadamard Product. Journal of Engineering Technology and Applied Sciences 6 2 127–134.
IEEE A. Dağdeviren ve F. Kürüz, “Special Real and Dual Matrices with Hadamard Product”, JETAS, c. 6, sy. 2, ss. 127–134, 2021, doi: 10.30931/jetas.979932.
ISNAD Dağdeviren, Ali - Kürüz, Ferhat. “Special Real and Dual Matrices With Hadamard Product”. Journal of Engineering Technology and Applied Sciences 6/2 (Ağustos 2021), 127-134. https://doi.org/10.30931/jetas.979932.
JAMA Dağdeviren A, Kürüz F. Special Real and Dual Matrices with Hadamard Product. JETAS. 2021;6:127–134.
MLA Dağdeviren, Ali ve Ferhat Kürüz. “Special Real and Dual Matrices With Hadamard Product”. Journal of Engineering Technology and Applied Sciences, c. 6, sy. 2, 2021, ss. 127-34, doi:10.30931/jetas.979932.
Vancouver Dağdeviren A, Kürüz F. Special Real and Dual Matrices with Hadamard Product. JETAS. 2021;6(2):127-34.