BibTex RIS Kaynak Göster

Toprak Faunası: Sınıflandırılması ve Besin Ağındaki Yeri

Yıl 2011, Cilt: 61 Sayı: 2, 139 - 152, 01.07.2011

Öz

Toprak ekolojisi; toprak içerisindeki primer üretim, toprak flora ve faunası, ölüörtü ayrışması,
besin döngüsü, toprak besin ağı, toprak biyoçeşitliliği ve bunların toprak süreçleriyle arasındaki ilişkileri
araştırmaktadır. Toprak içerisinde yaşayan canlılar bu süreçlerde hayati rol oynarlar, ancak bu
canlıların tek başlarına etkilerinin hesaplanması çok zordur. Bu süreçleri çalışan toprak ekologları,
canlıları birlik ve fonksiyonel grup olarak iki basit birime ayırmaktadır. Toprak canlılarının oluşturduğu
birlikler birimlere bölünür. Bu birimler beslenme kaynakları, beslenme şekilleri, üreme oranları, avcılara
karşı savunma yöntemleri veya toprak profilindeki dağılımları gibi ekosistem süreçlerindeki rollerine
göre fonksiyonel gruplara ayrılırlar. Fonksiyonel gruplar içerisindeki komüniteler rekabet ve avlanma
gibi ilişkiler ile birbirlerine bağlıdır. Toprak besin ağı çalışmaları birbirine bağlı olan bu fonksiyonel
gruplar arasındaki ilişkileri ortaya koymaya çalışmaktadır.

Kaynakça

  • André, H. M., Ducarme, X., and Lebrun, P., 2002. Soil biodiversity: myth, reality or conning? Oikos. 96: 3-24.
  • Ashwini, K.M. and K.R. Sridhar, 2005. Leaf litter preference and conversion by a saprophagous tropical pill millipede, Arthrosphaera magna Attems. Pedobiologia. 49: 307-316.
  • Bardgett, R.D., 2005. The Biology of Soils: A Community and Ecosystem Approach. Oxford University Press, Oxford.
  • Bardgett, R.D., W.D. Bowman, R. Kaufmann, and S.K. Schmidt, 2005. A temporal approach to linking aboveground and belowground ecology. TRENDS in Ecology and Evolution. 20: 634-641.
  • Barros, E., P. Curmi, V. Hallaire, A. Chauvel, and P. Lavelle, 2001. The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma. 100: 193-213.
  • Berg, B. and R. Laskowski, 2006. Litter Decomposition: a Guide to Carbon and Nutrient Turnover. Academic Press, USA.
  • Berg, B. and McClaugherty, 2008. Plant Litter, Decomposition, Humus Formation, Carbon Sequestration. 2.ed. Springer. Berlin.
  • Bird, S.B., R.N. Coulson, and R.F. Fisher, 2004. Changes in soil and litter arthropod abundance following tree harvesting and site preparation in a loblolly pine (Pinus taeda L.) plantation.Forest Ecology and Management. 202: 195-208.
  • Blomqvist, M.M., H. Olff, M.B. Blaauw, T. Bongers, and W.H. van der Putten, 2000. Interactions between above- and belowground biota: importance for smallscale vegetation mosaics in a grassland ecosystem. Oikos. 90: 582-598.
  • Brussaard, L., M.M. Pulleman, E. Ouedraogo, A. Mando and J. Six, 2007. Soil fauna and soil in the fabric of the food web. Pedobiologia. 50: 447-462.
  • Brussaard. L., 1998. Soil fauna, guilds, functional groups and ecosystem precesses. Applied soil Ecology. 9: 123-135.
  • Cardon, Z.G. and J.L. Whitbeck, 2007. The The Rhizosphere An Ecological Perspective, Elsevier Inc., USA.
  • Chamberlain, P.M., N.P. McNamara, J. Chaplow, A.W. Stott and H.IJ. Black, 2006. Translocation of surface litter carbon into soil by Collembola. Soil Biology & Biochemistry. 38: 2655-2664.
  • Chapin, F.S., P.A. Matson and H.A. Mooney, 2002. Principles of Terrestrial Ecosystem Ecology. Springer. New York.
  • Cole, L. and R.D. Bardgett, 2002. Soil animals, microbial interactions and nutrient cycling. In: Lal, R. (Ed.), Encyclopedia of Soil Science. Marcel Dekker, New York, pp. 7275.
  • Cole, L., M.A. Bradford, P.J.A. Shaw and R.D. Bardgett, 2006. The abundance, richness and functional role of soil meso and macrofauna in temperate grassland – A case study. Applied Soil Ecology. 33: 186-198.
  • Coleman, D.C., Jr. Crossley and D.A. Hendrix, P.F., 2004. Fundamentals of Soil Ecology, second ed. Elsevier Academic Press.
  • Cortet J., A. Gomot-De Vauflery, N. PoinsotBalaguera, L. Gomot, C. Texier and D. Cluzeau, 1999. The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology. 35: 115134.
  • Curry, J.P. and O. Schmidt, 2007. The feeding ecology of earthworms – A review. Pedobiologia. 50: 463-477.
  • Curtis, T.P., W.T. Sloan and J.W. Scannell, 2002. Estimating prokaryotic diversity and its limits. PNAS. 99: 10494-10499.
  • Çakır, M and E. Makineci, 2009.Toprak mikroeklembacaklılarının fonksiyonel yapıları ve ölü örtü ayrışmasına etkileri-Belgrad ormanı örneği. Bartın Orman Fakültesi Dergisi. 1: 135-140.
  • Darwin, C., 1881. The formation of vegetable mould, through the action of worms, with observation on their habits. John Murray, London.
  • Dauber, J. and V. Wolters, 2000. Microbial activity and functional diversity in the mounds of the three different ant species. Soil Biology and Biochemistry. 32: 93-99.
  • Dauber, J., D. Schroeter and V. Wolters, 2001. Species specific effects of ants on microbial activity and N-availability in the soil of an old-field. Eur. J. Soil Biol. 37: 259-261.
  • Dittmer, S. and S. Schrader, 2000. Longterm effects of soil compaction and tillage on Collembola and straw decomposition in arable soil. Pedobiologia. 44: 527-538.
  • Doblas-Miranda, E., F. Sanchez-Pinero and A. Gonzales-Megias, 2007. Soil macroinvertabrate fauna of a Mediterranean arid system: composition and temporal changes in the assemblega. Soil Biology and Biochemistry, 39, 1916-1925.
  • Dunxiao, H., H. Chunru, X. Yaling, H. Banwang, H. Liyuan and M.G. Paoletti, 1999. Relationship between soil arthropods and soil properties in a sburb of Qianjiang City, Hubei, China. Critical Reviews in Plant Sciences. 18: 467-473.
  • Eaton, R.J., M. Barbercheck, M. Budorf and W. Smith, 2004. Effects of organic matter removal, soilcompaction, and vegetation control on Collembolan populations. Pedobiologia. 48: 121-128.
  • Endlweber, K. and S. Scheu, 2006. Effects of Collembola on root properties of two competing ruderal plant species. Soil Biology & Biochemistry. 38: 2025-2031.
  • Faber, J.H., 1991. Functional classification of soil fauna: a new approach.Oikos. 62: 110-117.
  • Folgarait, P.J., S. Perelman, N. Gorosito and R. Pizzio, 2002. Effects of Camponotus punctulatus ants on plant community composition and soil properties across landuse histories. Plant Ecol. 163: 1-13.
  • Frey, B., J. Kremer, A. Rüdt, S. Sciacca, D. Matthies and P. Lüscher, 2009. Compaction of forest soils with heavy logging machinery affects soil bacterialcommunity structure. European Journal of Soil Biology. 45: 312320.
  • Hattenschwiler, S. and D. Bretscher, 2001. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Global Cahnge Biology. 7: 565-579.
  • Heneghan, L., D.C. Coleman, X. Zou, Jr, D.A. Crossley and B.L. Haines, 1998. Soil microarthropod community structure and litter decomposition dynamics: A study of tropical and temperate sites. Applied Soil Ecology. 9: 33-38.
  • Hiski, T. and H. Takeda, 2008. Soil microarthropods alter the growth and morphology of fungi and fine roots of Chamaecyparis obtusa. Pedobiologia. 52: 97-110.
  • Hooper, D.U., F.S. Chapin, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. Lawton, D.M. Lodge, M. Loreau, S. Naeem, B. Schmid, Seta¨ la¨, H., A.J. Symstad, J. Vandermeer and D.A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs. 75: 3-35.
  • Hopkin, S.P., 1997. Biology of springtails, Oxford university press, New York.
  • Jones, C.G., J.H. Lawton and M. Shachak, 1994. Organisms as ecosystem engineers. Oikos. 69: 373-386.
  • Jones, C.G., J.H. Lawton and M. Shachak, 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology. 7: 1946-1957.
  • Joo, S.J., M.H. Yim and K. Nakane, 2003. Leaf litter decomposition in relation to dynamics of soil mesofauna in litter boxes with different mesh sizes in a Quercus serrata forest. Appl. For. Sci. 12: 109-116.
  • Joo, S.J., M.H. Yim and K. Nakane, 2006. Contribution of microarthropods to the decomposition of needle litter in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Forest Ecology and Management. 234: 192-198.
  • Jouquet, P., N. Boulain, J. Gignoux and M. Lepage, 2004. Association between subterranean termites and grasses in a West African savanna: spatial pattern analysis shows a significant role for Odontotermes n. pauperans. Applied Soil Ecology. 97: 99-107.
  • Jouquet, P., J. Dauber, J. Lagerlöf, P. Lavelle and M. Lepage, 2006. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology. 32: 153-164.
  • Kampichler, C., J. Rolschewski, D.P. Donnelly and L. Boddy, 2004. Collembolan grazing affects the growth strategy of the cordforming fungus Hypholoma fasciculare. Soil Biology & Biochemistry. 36: 591-599.
  • Kaneko, N., M.A. McLean and D. Parkinson, 1998. Do mites and Collembola affect pine litter fungal biomass and microbial respiration?. Applied Soil Ecology. 9: 209213.
  • Kreuzer, K., M. Bonkowski, R. Langel and S. Scheu, 2004. Decomposer animals (Lumbricidae, Collembola) and organic matter distribution affect the performance of Lolium perenne (Poaceae) and Trifolium repens (Fabaceae). Soil Biology & Biochemistry. 36: 2005-2011.
  • Kristiansen, S.M., W. Amelung and W. Zech, 2001. Phosphorus forms as affected by abandoned anthills (Formica polyctena Fo¨rster) in forest soils: sequential extraction and liquid-state 31P-NMR spectroscopy. J. Plant Nutr. Soil Sc. 164: 49-55.
  • Kühnelt, W., 1961. Soil Biology. Faber and faber limited, London.
  • Lavelle, P. and A.V. Spain, 2001. Soil Ecology. Kluwer Academic Publishers, Netherlands.
  • Lavelle, P., D. Bignell, M. Lepage, V. Wolters, P. Roger, P. Ineson, O.W. Heal and S. Dhillion, 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Biology. 33: 159-193.
  • Lavelle, P., T. Decaens, M. Aubert, S. Barot, M. Blouin, F. Bureau, P. Margerie, P. Mora, and J.P. Rossi, 2006. Soil invertebrates and ecosystem services. European Journal of Biology. 42: 3-15.
  • Longcore T., 2003. Terrestrial arthropods as indicators of ecological restoration success in coastal sage scrub (California, U.S.A.). Restoration Ecology. 11: 397-409.
  • Mittelbach, G.G., C.F. Steiner, S.M. Scheiner, K.L. Gross, H.L. Reynolds and R.B. Waide, 2001. What is the observed relationship between species richness and productivity? Ecology. 82: 2381-2396.
  • Moore, J.C., D.E. Walter and H.W. Hunt, 1988. Arthropod regulation of micro and mesobiota in below-ground detrital food webs. Ann. Rev. Entomol. 33: 419-439.
  • Nakamura A., H. Proctor and C.P. Catterall 2003. Using soil and litter arthropods to assess the state of rainforest restoration. Ecological Management & Restoration. 4: 20-28.
  • Pieper, S. and G. Weigmann, 2008. Interactions between isopod and collembolans modulate the mobilization and transport of nutrient from urban soils. Applied Soil Ecology. 39: 109-126.
  • Ponsard, S. and R. Arditi, 2000. What can stable isotopes (δ 15N and δ 13C) tell about the food web of soil macro-invertebrates? Ecology. 81: 852-864.
  • Quadros, A.F., Y. Caubet and P.B. Araujo, 2009. Life history comparison of two terrestrial isopods in relation to habitat specialization. Acta Oecologica. 35: 243-249.
  • Reynolds, B.C., J. Hamel, J. Isbanioly, L. Klausman and K.K. Moorhead, 2007. From forest to fen: Microarthropod abundance and litter decomposition in a southern Appalachian floodplain/fen complex. Pedobilogia. 51: 273280.
  • Root, R.B., 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecol. Mon. 37: 317-350.
  • Römbke J., J.-P. Sousa, T. Schouten and F. Riepertd, 2006. Monitoring of soil organisms: a set of standardized field methods proposed by ISO. European Journal of Soil Biology. 42: 61-64.
  • Ruiter, P.C.de. and J.C. Moore, 2004. Food-Web Interactions. Encyclopedia of soils in environment. (Hiller, D., Rosenzweig, C., Powlson, D., Scow, K., Singer, M. ve Sparks, ed.), 59-67. Academic Press, Volume 2, USA.
  • Rusek, J., 1998. Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity and Conservation. 7: 1207-1219.
  • Scheu, S. and M. Falca, 2000. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of macro- and a mesofauna dominated community. Oecologia. 123: 285296.
  • Scheu, S., 2002. The soil food web: structure and persvectives. European Journal of Soil Biology. 38: 11-20.
  • Schlesinger, W.H. and J.A. Andrews, 2000. Soil respiration and the global carbon cycle. Biogeochemistry. 48: 7-20.
  • Seeber, J., S. Scheu and M. Meyer, 2006. Effects of macro-decomposers on litter decomposition and soil properties in alpine pastureland: A mesocosm experiment. Applied Soil Ecology. 34: 168-175.
  • Setälä, H. and V. Huhta, 1990. Evaluation of the soil fauna impact on decomposition in a simulated coniferous forest soil. Biology and Fertility of Soil. 10: 163-169.
  • Smith, V.C. and M.A. Bradford, 2003. Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time. Applied Soil Ecology. 24: 197-203.
  • Swift, M.J., O.W. Heal and J.M. Anderson, 1979. Decomposition in terrestrial ecosystems. Blackwell, Oxford. 372 pp.
  • Taylor, A.R., A. Pflug, D. Schröter and V. Wolters, 2010. Impact of microarthropod biomass on the composition of the soil fauna community and ecosystem processes. European Journal of Soil Biology. 46: 80-86.
  • Torsvik, V., L. Ovreas and T.F. Thingstad, 2002. Prokaryotic Diversity—Magnitude, Dynamics, and Controlling Factors. Science. 296: 1064-1066.
  • Toyota, A., N. Kaneko and M.T. Ito, 2006. Soil ecosystem engineering by the train millipede Parafontaria laminata in a Japanese larch forest. Soil Biology & Biochemistry. 38: 1840-1850.
  • Uchida, T., N. Kaneko, M.T. Ito, K. Futagami, T. Sasaki and A. Sumigoto, 2004. Analysis of the feding ecology of earthworms (Megascolecidae) in Japanese forests using gut content fractionation and δ15N and δ13C stable isotope natural abundances. Applied Soil Ecology. 27: 153-163.
  • Van Straalen, N.M., 1997. Community Structure of soil arthropods as a bioindicator of soil health. In: Pankhurst, C.E., Doube, B.M. ve Gupta, V.V.S.R. (Ed), Biological indicators of soil health. Cab International, UK, pp. 235-264.
  • Van Straalen, N.M., 1998. Evaluation of bioindicator systems derived from soil arthropod communities, Applied Soil Ecology. 9: 429-437.
  • Walling, S.Z. and C.A. Zabinski, 2006. Defoliation effects on arbuscular mycorrhizae and plant growth. Applied Soil Ecology. 32: 111-117.
  • Wang, S., H. Ruan and B. Wang. 2009. Effects of soil microarthropods on plant litter decomposition acrossan elevation gradient in the Wuyi Mountains. Soil Biology and Biochemistry. 41: 891-897.
  • Wardle, D.A., 2002. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton University Press, Princeton.
  • Wardle, D.A., R.D. Bardgett, J.N. Klironomos, H. Setala, W.H. Putten and D.H. Wall, 2004. Ecological Linkages Between Aboveground and Belowground Biota. Science. 304: 16291633.
  • Wiwatwitaya, D. and H. Takeda, 2005. Seasonal changes in soil arthropod abundance in the dry evergreen forest of north-east Thailand, with special reference to collembolan communities. Ecological Research. 20: 5970.
  • Wolters, V., 2001. Biodiversity of soil animals and its function. European Journal of Soil Biology. 37: 221-227.
Toplam 82 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makale (Review)
Yazarlar

Meriç Çakır Bu kişi benim

Ender Makineci

Yayımlanma Tarihi 1 Temmuz 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 61 Sayı: 2

Kaynak Göster

APA Çakır, M., & Makineci, E. (2011). Toprak Faunası: Sınıflandırılması ve Besin Ağındaki Yeri. Journal of the Faculty of Forestry Istanbul University, 61(2), 139-152. https://doi.org/10.17099/jffiu.49785
AMA Çakır M, Makineci E. Toprak Faunası: Sınıflandırılması ve Besin Ağındaki Yeri. J FAC FOR ISTANBUL U. Temmuz 2011;61(2):139-152. doi:10.17099/jffiu.49785
Chicago Çakır, Meriç, ve Ender Makineci. “Toprak Faunası: Sınıflandırılması Ve Besin Ağındaki Yeri”. Journal of the Faculty of Forestry Istanbul University 61, sy. 2 (Temmuz 2011): 139-52. https://doi.org/10.17099/jffiu.49785.
EndNote Çakır M, Makineci E (01 Temmuz 2011) Toprak Faunası: Sınıflandırılması ve Besin Ağındaki Yeri. Journal of the Faculty of Forestry Istanbul University 61 2 139–152.
IEEE M. Çakır ve E. Makineci, “Toprak Faunası: Sınıflandırılması ve Besin Ağındaki Yeri”, J FAC FOR ISTANBUL U, c. 61, sy. 2, ss. 139–152, 2011, doi: 10.17099/jffiu.49785.
ISNAD Çakır, Meriç - Makineci, Ender. “Toprak Faunası: Sınıflandırılması Ve Besin Ağındaki Yeri”. Journal of the Faculty of Forestry Istanbul University 61/2 (Temmuz 2011), 139-152. https://doi.org/10.17099/jffiu.49785.
JAMA Çakır M, Makineci E. Toprak Faunası: Sınıflandırılması ve Besin Ağındaki Yeri. J FAC FOR ISTANBUL U. 2011;61:139–152.
MLA Çakır, Meriç ve Ender Makineci. “Toprak Faunası: Sınıflandırılması Ve Besin Ağındaki Yeri”. Journal of the Faculty of Forestry Istanbul University, c. 61, sy. 2, 2011, ss. 139-52, doi:10.17099/jffiu.49785.
Vancouver Çakır M, Makineci E. Toprak Faunası: Sınıflandırılması ve Besin Ağındaki Yeri. J FAC FOR ISTANBUL U. 2011;61(2):139-52.