BibTex RIS Kaynak Göster

Remote sensing and GIS applications for suitable afforestation area selection in Turkey

Yıl 2015, Cilt: 65 Sayı: 1, 53 - 59, 01.01.2015
https://doi.org/10.17099/jffiu.00032

Öz

Remote sensing and GIS applications for suitable afforestation area selection in Turkey

Abstract: The aim of the study, the potential afforestation areas locate using remote sensing data and geographic information system. In this study, Arit and Esme-Gure forest district areas that have different site conditions, vegetation and topographic conditions was chosen. Landsat TM image was used do pixel based supervised classification and maximum likelihood classification strategy were applied. At first, the criteria that will be potential afforestation area were determined, then the training areas selected on the remote sensing images using on maps to the best classification of potential afforestation areas. Accuracy assessment was evaluated of supervised classification and the result images generated vector. The study revealed that 2032 ha is total potential afforestation forest area for Arit Forest district (overall accuracy; 81%) and 38447 ha is total potential afforestation forest area for Esme-Gure Forest district (overall accuracy; 89%). The study has demonstrated a method that can be used due to the fact that higher accuracy.

Keywords: Afforestation, classification, remote sensing, Turkey

Türkiye'de uygun ağaçlandırma alanlarının belirlenmesinde uzaktan algılama ve CBS uygulamaları

Özet: Bu çalışmanın amacı, uzaktan algılama verileri yardımıyla coğrafi bilgi sistemlerini kullanarak potansiyel ağaçlandırma alanlarını tespit etmektir. Çalışmada, topografik, bitki ve arazi kullanım durumları farklı olan Arıt ve Eşme-Güre orman işletme şefliği sınırları seçilmiştir. Her iki alana ait Landsat TM uydu görüntü verilerine kontrollü sınıflandırma metodu maksimum benzerlik algoritması uygulanmıştır. Öncelikle potansiyel olan ağaçlandırma alanlarına ilişkin kriterler belirlenerek uzaktan algılama yazılı ile kontrollü sınıflandırma metodu için bu alanlardan kontrol alanları seçilmiştir. Kontrollü sınıflandırmaya ilişkin her iki alan için doğruluk değerlendirmeleri yapılmıştır. 2032 ha toplam alanı bulunan Arıt Orman İşletme Şefliğine ilişkin genel doğruluk %81, 38447 ha Eşme –Güre Orman İşletme Şefliğine ilişkin genel doğruluk % 89 oranında gerçekleşmiştir. Bu çalışma uzaktan algılama sınıflandırma yöntemleriyle potansiyel ağaçlandırma alanlarının tespit edilebilirliğini ispatlamıştır.

Anahtar Kelimeler: Ağaçlandırma, sınıflandırma, uzaktan algılama, Türkiye

 

Received: 15 August 2014 - Accepted: 11 September 2014

 

To cite this article: Ateşoğlu, A., 2015. Remote sensing and GIS applications for suitable afforestation area selection in Turkey. Journal of the Faculty of Forestry Istanbul University 65(1): 53-59. DOI: 10.17099/jffiu.00032

Kaynakça

  • Atalay, I., 2002. Ecoregions of Turkey. T.C. Ministry of Forestry Publications, No:163, Meta Press, Izmir.
  • Atalay, I., 2008. Ecosystem Ecology and Geography. Meta Press, Izmir. Atesoglu, A., Tunay, M., 2010. Spatial and temporal analysis of forest cover changes in the Bartin region of Northwestern Turkey, African Journal of Biotechnology 9 (35): 5676-5685.
  • Chaudhary, B.S., Beniwal A., Arya V.S., 2003. Remote sensing applications in mapping of forest cover and potential afforestation sites for sustainable forest management. A case study of rewari district, haryana, india. XII. World Forestry Congress.
  • Diker, M., Inal, S., 1945. Afforestation that the case of the Turkey forestry. Ankara Faculty of Agriculture Journal 5(1): 47-54.
  • Dilek, E. F., Şahin S., Yilmazer İ., 2008. Afforestation areas defined by GIS in Gölbaşı especially protected area Ankara/Turkey. Environmental Monitoring and Assessment 144: 251–259, doi: 10.1007/s10661-007-9985-7
  • EEC, 1995. CORINE land cover. European Environment Agency, Commission of the European Communities.
  • Elhag, M., 2010. Land suitability for afforestation and nature conservation practices using remote sensing & GIS techniques. Catrina Journal 6(1): 11-17.
  • Emberger, L., 1952. Sur le quotient pluviothermique. C.R. Academic Science 234: 2508-2510.
  • FAO, 2010. Global forest resources assessment 2010, main report, Roma. http://www.fao.org/docrep/013/i1757e/i1757e.pdf (accessed on 21.Oct.2012).
  • FRA, 2001. Global forest fire assessment 1990-2000, Forestry Department Food and Agriculture Organization of the United Nations, Roma http://www.fao.org/docrep/006/ad653e/ad653e00.htm.
  • Gaussen, H., 1954. Theories et classification des climate et microclimates. VIII Congress. Intern. Bot., Paris-France. Proocedings. pp. 125-130.
  • Hossain S., Lin C.K., Hussain M.Z., 2008. Remote Sensing and GIS applications for suitable mangrove afforestation area selection in the coastal zone of Bangladesh. Geocarto International 18(1): 61-65, doi: 10.1080/10106040308542264.
  • Ivanov E., Manakos I., Rey Benayas J.M., 2007. Remote sensing evaluation of afforestation versus naturalrevegetation on abandoned croplands in central Spain. GeoInformation in Europe, M.A. Gomarsca (ed.), Millpress, Netherlands.
  • Jones, B., Ritters, K., Wıckham, J., Tankersley R., O’Neill, R., Chaloud, D., Smith, E. Neale, A., 1997. An ecological assessment of the United States Mid- Atlantic Region: A Landscape Atlas, U.S. environmental protection agency, No. EPA/600/R-97/130, U.S. Printing Office, Washington, DC.
  • Kanowski, P. J., 1997. Afforestation and plantation forestry, Resource Management in Asia-Pacific, Working Paper No. 6, Special Paper for XI World Forestry Congress, Antalya-Turkey. Proocedings 13 p.
  • Kantarcı, M.D., 2005. The Knowledge of Forest Ecosystems. Istanbul University Faculty of Forestry Publications, 4594 (488) Istanbul University Press, Istanbul.
  • Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2004. Remote Sensing and Image Interpretation. John Wiley & Sons Inc., New York.
  • Saatçioğlu, F., 1956. Importance of afforestation and economic necessity in terms of Turkey. Journal of the Faculty of Forestry Istanbul University 6B(2): 11-18.
  • Ürgenç, S.I., 1998. Afforestation Techniques. Istanbul University Faculty of Forestry Publications, 3994 (441) Istanbul University Press, Istanbul

Türkiye'de uygun ağaçlandırma alanlarının belirlenmesinde uzaktan algılama ve CBS uygulamaları

Yıl 2015, Cilt: 65 Sayı: 1, 53 - 59, 01.01.2015
https://doi.org/10.17099/jffiu.00032

Öz

Bu çalışmanın amacı, uzaktan algılama verileri yardımıyla coğrafi bilgi sistemlerini kullanarak potansiyel
ağaçlandırma alanlarını tespit etmektir. Çalışmada, topografik, bitki ve arazi kullanım durumları farklı olan Arıt ve
Eşme-Güre orman işletme şefliği sınırları seçilmiştir. Her iki alana ait Landsat TM uydu görüntü verilerine kontrollü
sınıflandırma metodu maksimum benzerlik algoritması uygulanmıştır. Öncelikle potansiyel olan ağaçlandırma
alanlarına ilişkin kriterler belirlenerek uzaktan algılama yazılı ile kontrollü sınıflandırma metodu için bu alanlardan
kontrol alanları seçilmiştir. Kontrollü sınıflandırmaya ilişkin her iki alan için doğruluk değerlendirmeleri yapılmıştır.
2032 ha toplam alanı bulunan Arıt Orman İşletme Şefliğine ilişkin genel doğruluk %81, 38447 ha Eşme –Güre
Orman İşletme Şefliğine ilişkin genel doğruluk % 89 oranında gerçekleşmiştir. Bu çalışma uzaktan algılama
sınıflandırma yöntemleriyle potansiyel ağaçlandırma alanlarının tespit edilebilirliğini ispatlamıştır.

Kaynakça

  • Atalay, I., 2002. Ecoregions of Turkey. T.C. Ministry of Forestry Publications, No:163, Meta Press, Izmir.
  • Atalay, I., 2008. Ecosystem Ecology and Geography. Meta Press, Izmir. Atesoglu, A., Tunay, M., 2010. Spatial and temporal analysis of forest cover changes in the Bartin region of Northwestern Turkey, African Journal of Biotechnology 9 (35): 5676-5685.
  • Chaudhary, B.S., Beniwal A., Arya V.S., 2003. Remote sensing applications in mapping of forest cover and potential afforestation sites for sustainable forest management. A case study of rewari district, haryana, india. XII. World Forestry Congress.
  • Diker, M., Inal, S., 1945. Afforestation that the case of the Turkey forestry. Ankara Faculty of Agriculture Journal 5(1): 47-54.
  • Dilek, E. F., Şahin S., Yilmazer İ., 2008. Afforestation areas defined by GIS in Gölbaşı especially protected area Ankara/Turkey. Environmental Monitoring and Assessment 144: 251–259, doi: 10.1007/s10661-007-9985-7
  • EEC, 1995. CORINE land cover. European Environment Agency, Commission of the European Communities.
  • Elhag, M., 2010. Land suitability for afforestation and nature conservation practices using remote sensing & GIS techniques. Catrina Journal 6(1): 11-17.
  • Emberger, L., 1952. Sur le quotient pluviothermique. C.R. Academic Science 234: 2508-2510.
  • FAO, 2010. Global forest resources assessment 2010, main report, Roma. http://www.fao.org/docrep/013/i1757e/i1757e.pdf (accessed on 21.Oct.2012).
  • FRA, 2001. Global forest fire assessment 1990-2000, Forestry Department Food and Agriculture Organization of the United Nations, Roma http://www.fao.org/docrep/006/ad653e/ad653e00.htm.
  • Gaussen, H., 1954. Theories et classification des climate et microclimates. VIII Congress. Intern. Bot., Paris-France. Proocedings. pp. 125-130.
  • Hossain S., Lin C.K., Hussain M.Z., 2008. Remote Sensing and GIS applications for suitable mangrove afforestation area selection in the coastal zone of Bangladesh. Geocarto International 18(1): 61-65, doi: 10.1080/10106040308542264.
  • Ivanov E., Manakos I., Rey Benayas J.M., 2007. Remote sensing evaluation of afforestation versus naturalrevegetation on abandoned croplands in central Spain. GeoInformation in Europe, M.A. Gomarsca (ed.), Millpress, Netherlands.
  • Jones, B., Ritters, K., Wıckham, J., Tankersley R., O’Neill, R., Chaloud, D., Smith, E. Neale, A., 1997. An ecological assessment of the United States Mid- Atlantic Region: A Landscape Atlas, U.S. environmental protection agency, No. EPA/600/R-97/130, U.S. Printing Office, Washington, DC.
  • Kanowski, P. J., 1997. Afforestation and plantation forestry, Resource Management in Asia-Pacific, Working Paper No. 6, Special Paper for XI World Forestry Congress, Antalya-Turkey. Proocedings 13 p.
  • Kantarcı, M.D., 2005. The Knowledge of Forest Ecosystems. Istanbul University Faculty of Forestry Publications, 4594 (488) Istanbul University Press, Istanbul.
  • Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2004. Remote Sensing and Image Interpretation. John Wiley & Sons Inc., New York.
  • Saatçioğlu, F., 1956. Importance of afforestation and economic necessity in terms of Turkey. Journal of the Faculty of Forestry Istanbul University 6B(2): 11-18.
  • Ürgenç, S.I., 1998. Afforestation Techniques. Istanbul University Faculty of Forestry Publications, 3994 (441) Istanbul University Press, Istanbul
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi (Research Article)
Yazarlar

Ayhan Ateşoğlu

Yayımlanma Tarihi 1 Ocak 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 65 Sayı: 1

Kaynak Göster

APA Ateşoğlu, A. (2015). Remote sensing and GIS applications for suitable afforestation area selection in Turkey. Journal of the Faculty of Forestry Istanbul University, 65(1), 53-59. https://doi.org/10.17099/jffiu.00032
AMA Ateşoğlu A. Remote sensing and GIS applications for suitable afforestation area selection in Turkey. J FAC FOR ISTANBUL U. Ocak 2015;65(1):53-59. doi:10.17099/jffiu.00032
Chicago Ateşoğlu, Ayhan. “Remote Sensing and GIS Applications for Suitable Afforestation Area Selection in Turkey”. Journal of the Faculty of Forestry Istanbul University 65, sy. 1 (Ocak 2015): 53-59. https://doi.org/10.17099/jffiu.00032.
EndNote Ateşoğlu A (01 Ocak 2015) Remote sensing and GIS applications for suitable afforestation area selection in Turkey. Journal of the Faculty of Forestry Istanbul University 65 1 53–59.
IEEE A. Ateşoğlu, “Remote sensing and GIS applications for suitable afforestation area selection in Turkey”, J FAC FOR ISTANBUL U, c. 65, sy. 1, ss. 53–59, 2015, doi: 10.17099/jffiu.00032.
ISNAD Ateşoğlu, Ayhan. “Remote Sensing and GIS Applications for Suitable Afforestation Area Selection in Turkey”. Journal of the Faculty of Forestry Istanbul University 65/1 (Ocak 2015), 53-59. https://doi.org/10.17099/jffiu.00032.
JAMA Ateşoğlu A. Remote sensing and GIS applications for suitable afforestation area selection in Turkey. J FAC FOR ISTANBUL U. 2015;65:53–59.
MLA Ateşoğlu, Ayhan. “Remote Sensing and GIS Applications for Suitable Afforestation Area Selection in Turkey”. Journal of the Faculty of Forestry Istanbul University, c. 65, sy. 1, 2015, ss. 53-59, doi:10.17099/jffiu.00032.
Vancouver Ateşoğlu A. Remote sensing and GIS applications for suitable afforestation area selection in Turkey. J FAC FOR ISTANBUL U. 2015;65(1):53-9.