BibTex RIS Kaynak Göster

Usage opportunities of generating digital elevation model with unmanned aerial vehicles on forestry

Yıl 2016, Cilt: 66 Sayı: 1, 104 - 118, 01.01.2016
https://doi.org/10.17099/jffiu.23976

Öz

İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları

Özet: İnsansız Hava Araçları (İHA), aerodinamik uçuş prensiplerine göre aralıksız olarak otomatik ya da yarı otomatik uçabilme özelliğine sahip içerisinde uçuş ekibi (pilot) olmadan hareket eden araçlardır. Çalışma kapsamında İ.Ü.Eğitim Araştırma ve Uygulama Ormanı araştırma alanı olarak belirlenmiş olup, sayısal yükseklik modeli (SYM) verilerinin üretilmesi ve yüksek hassasiyette görüntü alımında uçabilen taşıyıcı platform olarak Trimble UX5 marka yeni nesil autonom İHA ve tümleşik yer kontrol sistemleri kullanılmıştır. Elde edilen görüntü verileri, Trimble Business Center (TBC) v3.1 fotogrametri yazılımı kullanılarak değerlendirilmiştir. Bu çalışma kapsamında, İHA ile uçuş yüksekliğine bağlı olarak 2,4 cm ile 24 cm arasında görüntü çözünürlüğe sahip hassas veriler elde edilebildiği tespit edilmiştir. Ülkemizdeki ormanlık alanlara ait Lidar verileri gibi daha hassas verilerin henüz elde edilememesi nedeniyle insansız hava araçları ormancılık çalışmaları için yüksek hassasiyette çalışmalarda katkı sağlayacak önemli bir araç olacağı sonucuna varılmıştır. İnsansız hava araçlarının ormancılık çalışmalarında kullanılmasında karşılaşılabilecek mevcut dezavantajlar ise, İHA uçuşları konusunda eğitimli personel eksikliği ile inişte uçak bütünlüğünün korunması olduğu görülmüştür. Bu çalışmada, İHA ve sistemlerinin bütün aşamaları ile değerlendirilmiş ve test edilmiştir. Ormancılık çalışmalarında, ihtiyaç duyulan coğrafi bilgi sistemi verilerinin elde edilmesinde İHA olanakları kullanımının yarar sağlayacağı düşünülmektedir. SYM (Sayısal Yüzey Modeli) verilerinin hassasiyeti bakımından detaylı olarak değerlendirilen görüntü alımlarının LIDAR ve IFSAR verilerinin sahip olduğu hassasiyete nispeten sahip olmadığı, ancak maliyet bakımından karşılaştırıldığında oldukça verimli alternatif fotogrametrik bir araç olduğu sonucuna varılmıştır.

Anahtar Kelimeler: İnsansız hava araçları, sayısal yükseklik modeli, ormancılık

Usage opportunities of generating digital elevation model with unmanned aerial vehicles on forestry

Abstract: Unmanned Aerial Vehicles (UAVs) are sustained in flight by aerodynamic lift and guided without an onboard crew, they may be expandeble or recoverable and can fly autonomously or semiautonomously. Within the scope of study, new generation series autonomous UAV brand which is Trimble UX5 is used for generating high accuracy digital model model and obtaining high accuracy image in Istanbul University research and application forest. These obtained images are evaluated with photogrammetry software Trimble Business Center (TBC) v3.1. In this study it was determined that we can obtan high accuracy data image resolution from 2.4 cm to 24 cm depending on the flight altitude with UAV. It was concluded that UAV systems can contribute in forestry work yo obtain sensitive data because of there is no other high accuracy data such as LIDAR. And lack of trained personnel in UAV flights is disadvantages. In this study, UAV and it’s systems were evaluated and tested in all steps. It was expected that geographic information data which requiered forestry applications, can be easly be obtain with UAV. When Digital surface model (DSM) data was assessed comprehensively, it was concluded that the data which obtained from UAV systems are more cheaper, productive and from LIDAR and IFSAR data. At the same time UAV data are relatively sensitive such LIDAR and IFSAR.

Keywords: Unmanned aerial vehicle,digital elevation model, forestry

Received (Geliş tarihi): 05.02.2015 - Revised (Düzeltme tarihi): 02.03.2015 -   Accepted (Kabul tarihi): 02.03.2015

To cite this article: Akgül, M., Yurtseven, H., Demir, M., Akay, A.E., Gülci, S., Öztürk, T., 2016. İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları. Journal of the Faculty of Forestry Istanbul University 66(1): 104-118. DOI: 10.17099/jffiu.23976

Kaynakça

  • Ambrosia, V.G., Wegener, S.S., Sullivan, D.V., Buechel, S.W., Dunagan, S.E., Brass, J.A., Stoneburner, J., Schoenung, S.M., 2003. Demonstrating UAV-acquire dreal-time thermal data overfires. Photogrammetric Engineering Remote Sensing 69(4): 391-402.
  • Anonim, 2010. Unmanned aircraft systems: Terminology, definitions and classification, Joint doctirin note3/10, United Kingdom Ministry of Defence, May 2010, 21pp, United Kingdom.
  • Berni, J., Zarco-Tejada, P.J., Suárez, L., Fereres, E., 2009. Thermal and narrow band multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 722-738.
  • Ccrs, 2013, Fundamentals of Remote Sensing Tutorial [Online], http://www.nrcan.gc.ca/earthsciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9309, [Ziyaret tarihi: 12.12 2013].
  • Chao, H., Chen, Y.Q., 2012, Remote Sensing and Actuation Using Unmanned Vehicles, Wiley, ISBN: 9781118377185.
  • Chiabrando, F., Nex, F., Piatti, D., Rinaudo, F., 2011. UAV and RPV systems for photogrammetric surveys in archaelogicalareas: twotests in the Piedmont region (Italy). Journal of Archaeologica Science 38 : 697-710.
  • Chang-Chun, L., Guang-sheng, Z., Tian-jie, L., A-du, G., 2011. Quickimage-processing method of UAV without control points data in earthquake disaster area. Transactions of Nonferrous Metals Society of China 21: 523-528.
  • Coifman, B.,McCord, M., Mishalani, R. G., Redmill, K. 2004. Surface transportation surveillance from unmanned aerial vehicles. In Proc. Of the 83rd Annual Meeting of the Transportation Research Board.
  • Everaerts, J., 2008. The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, July 3-11 2008, Beijing, China, 1187-1192.
  • Haser, A.B., 2010. Bu insansız hava aracından daha önce yapmamış mıydık?, Bilim ve Teknik Dergisi, Aralık sayısı.
  • Holmgren, J., Persson, Å., 2004. Identifying species of individual trees using airborne laser scanner, Remote Sensing of Environment 90 (4): 415-423.
  • Horcher, A., Visser, R.J., 2004. Unmanned aerial vehicles: applications for natural resource management and monitoring. Council on Forest Engineering Proceedings 2004: Machines and People, The Interface.
  • Hunt, E.R., Cavigelli, M., Daugherty, C.S.T., McMurtrey III, J., Walthall, C.L., 2005. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture 6: 359–378.
  • Laliberte, A.S., Rango, A., 2009. Textureandscale in object-based analysis of sub-decimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Transactions on Geoscienceand Remote Sensing 47(3):761–770
  • Laliberte, A.S., Herrick, J.E., Rango, A., Winters, C., 2010. Acquisition, ortho rectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogrammetric Engineering Remote Sensing 76(6): 661-672.
  • Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., Lejeune, P., 2013. A Photogrammetricworkflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 4(4): 922-944.
  • Linder, W., 2009, Digital Photogrammetry: A Practical Course, Springer Berlin Heidelberg, ISBN: 9783540927259.
  • Malet, J.P., Bogaard, T.A., 2012. Integration of technologies for landslide monitoring and quantitative hazard assessment. Engineering Geology 128: 1.
  • Marshall, D. M., Barnhart, R. K., Hottman, S. B., Shappee, E. and Most, M. T., 2011, Introduction to Unmanned Aircraft Systems, Taylor & Francis, ISBN: 9781439835203.
  • Mozas-Calvache, A.T., Pérez-García, J.L., Cardenal-Escarcena, F.J., Mata-Castro E., Delgado-García J., 2012. Method for photogrammetric surveying of archaeological sites with light aerial Platforms. Journal of Archaeological Science 39: 521-530.
  • Niethammer, U., James, M.R., Rothmund, S., Travelletti, J., Joswig, M., 2012. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology 128: 2-11.
  • Ollero, A., Martinez-de-Dios, J.R., Merino, L., 2006. Unmanned aerial vehicles as tools for forest-fire fighting. Forest Ecology and Management 234: S263.
  • Okuyama, S., Torii, T., Nawa, Y., Kinoshita, I., Suzuki, A., Shibuya, M., Miyazaki, N., 2011. Development of a remote radiation monitoring system using unmanned helicopter. International Congress Series 1276 (2005): 422–423.
  • Pierzchała, M.,Talbot, B., Astrup, R., 2014. Estimating soil displacement from timber extraction trails in steep terrain: application of an unmanned aircraft for 3D modelling. Forests 5(6): 1212-1223.
  • Przybilla, H., Wester-Ebbinghaus, W., 1979. Bildflugmitferngelenktem Kleinflugzeug, Bildmessung und Luftbildwesen 47(5): 137-142.
  • Pyysalo, U. and Hyyppa, H., 2002. Reconstructing tree crowns from laser scanner data for feature extraction, International Archives Of Photogrammetry Remote Sensing and Spatial Information Sciences 34 (3/B): 218-221.
  • Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D., 2011. UAV photogrammetry for mapping and 3d modeling–current status and future perspectives, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38 (1): C22.
  • Rango, A., Laliberte, A., Herrick, J.E., Winters, C., Havstad, K., Steele, C., Browning, D., 2009. Unmanned aerial vehicle based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing 3(1): 033542-033542.
  • Saripalli, S., Montgomery, J.F., Sukhatme, G.S., 2003. Visually guided landing of an unmanned aerial vehicle. IEEE Transactions on Robotics and Automation 19(3): 371-380.
  • Sheng, Y., Gong, P.,Biging, G., 2001. Model-based conifer-crown surface reconstruction from high-resolution aerial images, Photogrammetric Engineering and Remote Sensing 67(8): 957-966.
  • Xiang, H., Tian, L., 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering 108: 174-190.
  • Xiaofeng, L., Zhongren, P., Liye, Z., Li, L., 2012. Unmanned Aerial Vehicle Route Planning for Traffic Information Collection. Journal of Transportation System Engineering & IT 12(1): 91-97.
  • Yılmaz, V., Akar, A., Akar, Ö., Güngör, O., Karslı, F., Gökalp, E., 2013. İnsansız Hava Aracı İle Üretilen Ortofoto Haritalarda Doğruluk Analizi, Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği VII. Teknik Sempozyumu, KTÜ, Trabzon.
  • Yurtseven, H., 2008. Yazılım Fotogrametrisi İle Orman Alanlarına Yönelik Coğrafi Verilerin Elde Edilmesi, MSc, Master Thesis, Fen BilimleriEnstitüsü, Istanbul University.
  • Zarco-Tejadaa P.J., Diaz-Varelaa R., Angileria C., Loudjania V.P., 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy 55: 89-99.
  • Zhang, C., Elaksher, A., 2012. An Unmanned Aerial Vehicle‐Based Imaging System for 3D Measurement of Unpaved Road Surface Distresses. Computer‐Aided Civil and Infrastructure Engineering 27(2): 118-129.
  • Wing, M. G., Burnett, S., Johnson, S., Akay, A. E., Sessions, J., 2014. A Low-cost unmanned aerial system for remote sensing of forested landscapes. International Journal of Remote Sensing Applications 4(3): 113-120.

İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları

Yıl 2016, Cilt: 66 Sayı: 1, 104 - 118, 01.01.2016
https://doi.org/10.17099/jffiu.23976

Öz

İnsansız Hava Araçları (İHA), aerodinamik uçuş prensiplerine göre aralıksız olarak otomatik ya da yarı otomatik uçabilme özelliğine sahip içerisinde uçuş ekibi (pilot) olmadan hareket eden araçlardır. Çalışma kapsamında İ.Ü.Eğitim Araştırma ve Uygulama Ormanı araştırma alanı olarak belirlenmiş olup, sayısal yükseklik modeli (SYM) verilerinin üretilmesi ve yüksek hassasiyette görüntü alımında uçabilen taşıyıcı platform olarak Trimble UX5 marka yeni nesil autonom İHA ve tümleşik yer kontrol sistemleri kullanılmıştır. Elde edilen görüntü verileri, Trimble Business Center (TBC) v3.1 fotogrametri yazılımı kullanılarak değerlendirilmiştir. Bu çalışma kapsamında, İHA ile uçuş yüksekliğine bağlı olarak 2,4 cm ile 24 cm arasında görüntü çözünürlüğe sahip hassas veriler elde edilebildiği tespit edilmiştir. Ülkemizdeki ormanlık alanlara ait Lidar verileri gibi daha hassas verilerin henüz elde edilememesi nedeniyle insansız hava araçları ormancılık çalışmaları için yüksek hassasiyette çalışmalarda katkı sağlayacak önemli bir araç olacağı sonucuna varılmıştır. İnsansız hava araçlarının ormancılık çalışmalarında kullanılmasında karşılaşılabilecek mevcut dezavantajlar ise, İHA uçuşları konusunda eğitimli personel eksikliği ile inişte uçak bütünlüğünün korunması olduğu görülmüştür. Bu çalışmada, İHA ve sistemlerinin bütün aşamaları ile değerlendirilmiş ve test edilmiştir. Ormancılık çalışmalarında, ihtiyaç duyulan coğrafi bilgi sistemi verilerinin elde edilmesinde İHA olanakları kullanımının yarar sağlayacağı düşünülmektedir. SYM (Sayısal Yüzey Modeli) verilerinin hassasiyeti bakımından detaylı olarak değerlendirilen görüntü alımlarının LIDAR ve IFSAR verilerinin sahip olduğu hassasiyete nispeten sahip olmadığı, ancak maliyet bakımından karşılaştırıldığında oldukça verimli alternatif fotogrametrik bir araç olduğu sonucuna varılmıştır.

Kaynakça

  • Ambrosia, V.G., Wegener, S.S., Sullivan, D.V., Buechel, S.W., Dunagan, S.E., Brass, J.A., Stoneburner, J., Schoenung, S.M., 2003. Demonstrating UAV-acquire dreal-time thermal data overfires. Photogrammetric Engineering Remote Sensing 69(4): 391-402.
  • Anonim, 2010. Unmanned aircraft systems: Terminology, definitions and classification, Joint doctirin note3/10, United Kingdom Ministry of Defence, May 2010, 21pp, United Kingdom.
  • Berni, J., Zarco-Tejada, P.J., Suárez, L., Fereres, E., 2009. Thermal and narrow band multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 722-738.
  • Ccrs, 2013, Fundamentals of Remote Sensing Tutorial [Online], http://www.nrcan.gc.ca/earthsciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9309, [Ziyaret tarihi: 12.12 2013].
  • Chao, H., Chen, Y.Q., 2012, Remote Sensing and Actuation Using Unmanned Vehicles, Wiley, ISBN: 9781118377185.
  • Chiabrando, F., Nex, F., Piatti, D., Rinaudo, F., 2011. UAV and RPV systems for photogrammetric surveys in archaelogicalareas: twotests in the Piedmont region (Italy). Journal of Archaeologica Science 38 : 697-710.
  • Chang-Chun, L., Guang-sheng, Z., Tian-jie, L., A-du, G., 2011. Quickimage-processing method of UAV without control points data in earthquake disaster area. Transactions of Nonferrous Metals Society of China 21: 523-528.
  • Coifman, B.,McCord, M., Mishalani, R. G., Redmill, K. 2004. Surface transportation surveillance from unmanned aerial vehicles. In Proc. Of the 83rd Annual Meeting of the Transportation Research Board.
  • Everaerts, J., 2008. The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, July 3-11 2008, Beijing, China, 1187-1192.
  • Haser, A.B., 2010. Bu insansız hava aracından daha önce yapmamış mıydık?, Bilim ve Teknik Dergisi, Aralık sayısı.
  • Holmgren, J., Persson, Å., 2004. Identifying species of individual trees using airborne laser scanner, Remote Sensing of Environment 90 (4): 415-423.
  • Horcher, A., Visser, R.J., 2004. Unmanned aerial vehicles: applications for natural resource management and monitoring. Council on Forest Engineering Proceedings 2004: Machines and People, The Interface.
  • Hunt, E.R., Cavigelli, M., Daugherty, C.S.T., McMurtrey III, J., Walthall, C.L., 2005. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture 6: 359–378.
  • Laliberte, A.S., Rango, A., 2009. Textureandscale in object-based analysis of sub-decimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Transactions on Geoscienceand Remote Sensing 47(3):761–770
  • Laliberte, A.S., Herrick, J.E., Rango, A., Winters, C., 2010. Acquisition, ortho rectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogrammetric Engineering Remote Sensing 76(6): 661-672.
  • Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., Lejeune, P., 2013. A Photogrammetricworkflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 4(4): 922-944.
  • Linder, W., 2009, Digital Photogrammetry: A Practical Course, Springer Berlin Heidelberg, ISBN: 9783540927259.
  • Malet, J.P., Bogaard, T.A., 2012. Integration of technologies for landslide monitoring and quantitative hazard assessment. Engineering Geology 128: 1.
  • Marshall, D. M., Barnhart, R. K., Hottman, S. B., Shappee, E. and Most, M. T., 2011, Introduction to Unmanned Aircraft Systems, Taylor & Francis, ISBN: 9781439835203.
  • Mozas-Calvache, A.T., Pérez-García, J.L., Cardenal-Escarcena, F.J., Mata-Castro E., Delgado-García J., 2012. Method for photogrammetric surveying of archaeological sites with light aerial Platforms. Journal of Archaeological Science 39: 521-530.
  • Niethammer, U., James, M.R., Rothmund, S., Travelletti, J., Joswig, M., 2012. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology 128: 2-11.
  • Ollero, A., Martinez-de-Dios, J.R., Merino, L., 2006. Unmanned aerial vehicles as tools for forest-fire fighting. Forest Ecology and Management 234: S263.
  • Okuyama, S., Torii, T., Nawa, Y., Kinoshita, I., Suzuki, A., Shibuya, M., Miyazaki, N., 2011. Development of a remote radiation monitoring system using unmanned helicopter. International Congress Series 1276 (2005): 422–423.
  • Pierzchała, M.,Talbot, B., Astrup, R., 2014. Estimating soil displacement from timber extraction trails in steep terrain: application of an unmanned aircraft for 3D modelling. Forests 5(6): 1212-1223.
  • Przybilla, H., Wester-Ebbinghaus, W., 1979. Bildflugmitferngelenktem Kleinflugzeug, Bildmessung und Luftbildwesen 47(5): 137-142.
  • Pyysalo, U. and Hyyppa, H., 2002. Reconstructing tree crowns from laser scanner data for feature extraction, International Archives Of Photogrammetry Remote Sensing and Spatial Information Sciences 34 (3/B): 218-221.
  • Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D., 2011. UAV photogrammetry for mapping and 3d modeling–current status and future perspectives, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38 (1): C22.
  • Rango, A., Laliberte, A., Herrick, J.E., Winters, C., Havstad, K., Steele, C., Browning, D., 2009. Unmanned aerial vehicle based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing 3(1): 033542-033542.
  • Saripalli, S., Montgomery, J.F., Sukhatme, G.S., 2003. Visually guided landing of an unmanned aerial vehicle. IEEE Transactions on Robotics and Automation 19(3): 371-380.
  • Sheng, Y., Gong, P.,Biging, G., 2001. Model-based conifer-crown surface reconstruction from high-resolution aerial images, Photogrammetric Engineering and Remote Sensing 67(8): 957-966.
  • Xiang, H., Tian, L., 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering 108: 174-190.
  • Xiaofeng, L., Zhongren, P., Liye, Z., Li, L., 2012. Unmanned Aerial Vehicle Route Planning for Traffic Information Collection. Journal of Transportation System Engineering & IT 12(1): 91-97.
  • Yılmaz, V., Akar, A., Akar, Ö., Güngör, O., Karslı, F., Gökalp, E., 2013. İnsansız Hava Aracı İle Üretilen Ortofoto Haritalarda Doğruluk Analizi, Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği VII. Teknik Sempozyumu, KTÜ, Trabzon.
  • Yurtseven, H., 2008. Yazılım Fotogrametrisi İle Orman Alanlarına Yönelik Coğrafi Verilerin Elde Edilmesi, MSc, Master Thesis, Fen BilimleriEnstitüsü, Istanbul University.
  • Zarco-Tejadaa P.J., Diaz-Varelaa R., Angileria C., Loudjania V.P., 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy 55: 89-99.
  • Zhang, C., Elaksher, A., 2012. An Unmanned Aerial Vehicle‐Based Imaging System for 3D Measurement of Unpaved Road Surface Distresses. Computer‐Aided Civil and Infrastructure Engineering 27(2): 118-129.
  • Wing, M. G., Burnett, S., Johnson, S., Akay, A. E., Sessions, J., 2014. A Low-cost unmanned aerial system for remote sensing of forested landscapes. International Journal of Remote Sensing Applications 4(3): 113-120.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi (Research Article)
Yazarlar

Mustafa Akgül

Hüseyin Yurtseven Bu kişi benim

Murat Demir

Abdullah Akay

Sercan Gülci Bu kişi benim

Tolga Öztürk

Yayımlanma Tarihi 1 Ocak 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 66 Sayı: 1

Kaynak Göster

APA Akgül, M., Yurtseven, H., Demir, M., Akay, A., vd. (2016). İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları. Journal of the Faculty of Forestry Istanbul University, 66(1), 104-118. https://doi.org/10.17099/jffiu.23976
AMA Akgül M, Yurtseven H, Demir M, Akay A, Gülci S, Öztürk T. İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları. J FAC FOR ISTANBUL U. Ocak 2016;66(1):104-118. doi:10.17099/jffiu.23976
Chicago Akgül, Mustafa, Hüseyin Yurtseven, Murat Demir, Abdullah Akay, Sercan Gülci, ve Tolga Öztürk. “İnsansız Hava araçları Ile yüksek Hassasiyette sayısal yükseklik Modeli üretimi Ve ormancılıkta kullanım Olanakları”. Journal of the Faculty of Forestry Istanbul University 66, sy. 1 (Ocak 2016): 104-18. https://doi.org/10.17099/jffiu.23976.
EndNote Akgül M, Yurtseven H, Demir M, Akay A, Gülci S, Öztürk T (01 Ocak 2016) İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları. Journal of the Faculty of Forestry Istanbul University 66 1 104–118.
IEEE M. Akgül, H. Yurtseven, M. Demir, A. Akay, S. Gülci, ve T. Öztürk, “İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları”, J FAC FOR ISTANBUL U, c. 66, sy. 1, ss. 104–118, 2016, doi: 10.17099/jffiu.23976.
ISNAD Akgül, Mustafa vd. “İnsansız Hava araçları Ile yüksek Hassasiyette sayısal yükseklik Modeli üretimi Ve ormancılıkta kullanım Olanakları”. Journal of the Faculty of Forestry Istanbul University 66/1 (Ocak 2016), 104-118. https://doi.org/10.17099/jffiu.23976.
JAMA Akgül M, Yurtseven H, Demir M, Akay A, Gülci S, Öztürk T. İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları. J FAC FOR ISTANBUL U. 2016;66:104–118.
MLA Akgül, Mustafa vd. “İnsansız Hava araçları Ile yüksek Hassasiyette sayısal yükseklik Modeli üretimi Ve ormancılıkta kullanım Olanakları”. Journal of the Faculty of Forestry Istanbul University, c. 66, sy. 1, 2016, ss. 104-18, doi:10.17099/jffiu.23976.
Vancouver Akgül M, Yurtseven H, Demir M, Akay A, Gülci S, Öztürk T. İnsansız hava araçları ile yüksek hassasiyette sayısal yükseklik modeli üretimi ve ormancılıkta kullanım olanakları. J FAC FOR ISTANBUL U. 2016;66(1):104-18.