BibTex RIS Kaynak Göster

Sediment-bound soil nutrient loss under simulated rainfall

Yıl 2017, Cilt: 67 Sayı: 1, 37 - 48, 01.01.2017
https://doi.org/10.17099/jffiu.95610

Öz

Sediment-bound soil nutrient loss under simulated rainfall

Abstract: Soil erosion is not only the loss of soil particles, but also the loss of sediment-bounded nutrients and elements. One the principle methods of the assessment of soil erosion and nutrient loss, is to use rainfall simulators. The aim of this study was to evaluate the role of land-use, slope gradient and direction on the loss of soil nutrients in Kechik Coupled Watershed Site in Golestan Province using rainfall simulation. In order to determine the sediment’s content of potassium, nitrogen and phosphorous, flame photometry, Kjedalhl and spectrophotometry methods were used. To estimate organic carbon, the Walkey-Black method was exercised. Given the results, the highest obtained values of nitrogen loss was attributed to the agricultural land-use. This follows rangeland and forest; although, with a slight difference. Potassium loss was greatest in the rangelands by 0.15 t.ha-1, and agriculture and forest ranked second and third. Soil nutrient loss in terms of phosphorus, was maximum in the forest land-use and then respectively, agriculture and rangelands. Soil organic carbon loss was maximally measured in the forest, rangeland and agriculture, respectively. In this study, two slope classes of 0-20 and 20-40 was considered in the forest and rangeland land-uses, while the classification of slope gradient in agricultural land-use was in different two classes of 0-15 and 15-30. According the findings, soil nitrogen, phosphorus and organic matter loss was highest in case of the second slope gradient class (20-40% in rangelands and agricultural fields; 20-40% in forest land-uses) of all land-uses and aspects. Interestingly, soil potassium loss was greatest in the first slope class. Northern slope directions had the highest soil nutrient loss compared with the southern direction in all land-use types. The findings of this study put emphasis on the land-use management and primarily underlines the role of agricultural land-uses.

Keywords: Nutrient loss, land-use, Kechik, erosion, BSTF1, Golestan

Yağış simülasyonu modeli kullanarak toprak ve besin maddesi kayıplarının hesaplanması

Özet: Toprak erozyonu sadece toprak parçacıkları kaybı değil, aynı zamanda besin ve elementlerin de kaybıdır. Toprak erozyonu ve besin kaybını ölçmek için yağış simülatörleri kullanmaktır. Bu çalışmanın amacı, arazi kullanımı ve eğim parametrelerini kullanarak Gülistan Eyaleti- Kechik su havzasında yağış simülasyonu modeli kullanarak toprak ve besin kaybını hesaplamaktır. Sedimentlerdeki potasyum, azot ve fosfor içeriğini belirlemek için, Kjedalhl ve spektrofotometri yöntemleri kullanılmıştır. Organik karbon tahmini için ise Walkey-Black Metodu kullanılmıştır. Sonuçlar göz önüne alındığında, azot kaybının en yüksek olduğu alanlar tarımsal arazilerdir. Bunu; küçük bir fark ile meralar ve orman izlemektedir. Potasyum kaybı 0.15 t.ha-1 ile en fazla meralarda görülmüş, tarım ve orman alanları ise ikinci ve üçüncü sırada yer almıştır. Fosfor yönünden toprak besin kaybı, sırasıyla, tarım ve meralar daha sonra orman arazisi kullanımında maksimum olarak ölçülmüştür. Bu çalışmada, orman ve mera arazi kullanımlarında kullanılan eğim sınıfları 0-20 ve 20-40 olarak; tarımsal arazi kullanımında ise 0-15 ve 15-30 olarak kabul edilmiştir. Bulgular, topraktaki azot, fosfor ve organik madde kaybının ikinci eğim sınıfında en yüksek olduğunu göstermiştir. Bu çalışmanın bulguları başta arazi kullanım yönetimine vurgu yapmakta; tarımsal arazi kullanımlarının etkisini ele almaktadır.

Anahtar Kelimeler: Besin kaybı, arazi kullanımı, Kechik, erozyon, BTF1, Gülistan

Received (Geliş): 08.04.2016 - Revised (Düzeltme): 24.05.2016 -   Accepted (Kabul): 06.06.2016

Cite (Atıf): Sheikh, V.B., Shalamzari, M.J., Farajollahi, A., 2017. Sediment-bound soil nutrient loss under simulated rainfall. Journal of the Faculty of Forestry Istanbul University 67(1): 37-48. DOI: 10.17099/jffiu.95610

Kaynakça

  • Avila-Segura, M., Lyne, J.W., Meyer, J.M., Barak, P., 2004. Rapid spectrophotometric analysis of soil phosphorus with a microplate reader. Communications in Soil Science and Plant Analysis 35(3-4): 547-557.
  • Blanco-Canqui, H., Lal, R., 2008. Principles of soil conservation and management: Springer Science and Business Media.
  • Bochet, E., García‐Fayos, P., 2004. Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restoration Ecology 12(2): 166-174.
  • Braimoh, A.K., Vlek, P.L., 2008. Impact of land use on soil resources book. Land Use and Soil Resources chapter, pp.1-7, ISBN 978-1-4020-6777-8, DOI 10.1007/978-1-4020-6778-5_1.
  • Bremner, J.M., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1996. Nitrogen-total. Methods of soil analysis. Part 3-chemical methods: pp. 1085-1121.
  • Brown, J., Lilleland, O., 1946. Rapid determination of potassium and sodium in plant materials and soil extracts by flame photometry. In Proceedings of the American Society for Horticultural Science, Amer Soc Horticultural Science 701 North Saint Asaph Street, Alexandria, Va 22314-1998: pp. 341-346
  • Giorgini, A., Zingales, F., 2013. Agricultural Nonpoint Source Pollution: Model Selection and Application: Elsevier Science.
  • Girmay, G., Singh, B., Nyssen, J., Borrosen, T., 2009. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. Journal of Hydrology 376(1): 70-80.
  • Hartanto, H., Prabhu, R., Widayat, A. S., Asdak, C., 2003. Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management. Forest Ecology and Management 180(1): 361-374.
  • Hester, R.E., Harrison, R. M., 2012. Soils and Food Security: Royal Society of Chemistry. RSC Publishing, ISBN 978-1-84973-426-4, United Kingdom.
  • Huang, J., Wu, P., Zhao, X., 2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena 104: 93-102.
  • Janeau, J.L., Gillard, L.C., Grellier, S., Jouquet, P., Le, T.P.Q., Luu, T.N.M., Ngo, Q.A., Orange, D., Pham, D.R., Tran, D.T. Tran, S.H., 2014. Soil erosion, dissolved organic carbon and nutrient losses under different land use systems in a small catchment in northern Vietnam. Agricultural Water Management 146: 314-323.
  • Lal, R., Singh, B. R., Mwaseba, D. L., Kraybill, D., Hansen, D. O., Eik, L. O., 2014. Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa: Springer International Publishing.
  • Liu, R., Wang, J., Shi, J., Chen, Y., Sun, C., Zhang, P., Shen, Z., 2014. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions. Science of the Total Environment 468: 1069-1077.
  • Owens, P.N., Collins, A.J., 2006. Soil Erosion and Sediment Redistribution in River Catchments: Measurement, Modelling and Management: CABI Pub.
  • Ritter, W.F., Shirmohammadi, A., 2000. Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology: CRC Press.
  • Sharpley, A.N., 1997. Rainfall frequency and nitrogen and phosphorus runoff from soil amended with poultry litter. Journal of Environmental Quality 26(4): 1127-1132.
  • Society, S.W.C., Lal, R., 1994. Soil Erosion Research Methods: Taylor & Francis.
  • Vahabi, J., Nikkami, D., 2008. Assessing dominant factors affecting soil erosion using a portable rainfall simulator. International Journal of Sediment Research 23(4): 376-386.
  • Walky, A., Black, I., 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. 1. Experimental. Soil Science 79: 459-465.
  • Xi-Yuan, W., Zhang, L.P., Fu, X.T., Wang, X.Y., Zhang, H.S., 2011. Nitrogen loss in surface runoff from Chinese cabbage fields. Physics and Chemistry of the Earth, Parts A/B/C 36(9): 401-406.
  • Zachar, D., 1982. Soil Erosion: Elsevier Science. ISBN 0-444-99725-3, pp.546, Amsterdam, Netherlands.

Yağış simülasyonu modeli kullanarak toprak ve besin maddesi kayıplarının hesaplanması

Yıl 2017, Cilt: 67 Sayı: 1, 37 - 48, 01.01.2017
https://doi.org/10.17099/jffiu.95610

Öz

Sediment-bound soil nutrient loss under simulated rainfall

Abstract: Soil erosion is not only the loss of soil particles, but also the loss of sediment-bounded nutrients and elements. One the principle methods of the assessment of soil erosion and nutrient loss, is to use rainfall simulators. The aim of this study was to evaluate the role of land-use, slope gradient and direction on the loss of soil nutrients in Kechik Coupled Watershed Site in Golestan Province using rainfall simulation. In order to determine the sediment’s content of potassium, nitrogen and phosphorous, flame photometry, Kjedalhl and spectrophotometry methods were used. To estimate organic carbon, the Walkey-Black method was exercised. Given the results, the highest obtained values of nitrogen loss was attributed to the agricultural land-use. This follows rangeland and forest; although, with a slight difference. Potassium loss was greatest in the rangelands by 0.15 t.ha-1, and agriculture and forest ranked second and third. Soil nutrient loss in terms of phosphorus, was maximum in the forest land-use and then respectively, agriculture and rangelands. Soil organic carbon loss was maximally measured in the forest, rangeland and agriculture, respectively. In this study, two slope classes of 0-20 and 20-40 was considered in the forest and rangeland land-uses, while the classification of slope gradient in agricultural land-use was in different two classes of 0-15 and 15-30. According the findings, soil nitrogen, phosphorus and organic matter loss was highest in case of the second slope gradient class (20-40% in rangelands and agricultural fields; 20-40% in forest land-uses) of all land-uses and aspects. Interestingly, soil potassium loss was greatest in the first slope class. Northern slope directions had the highest soil nutrient loss compared with the southern direction in all land-use types. The findings of this study put emphasis on the land-use management and primarily underlines the role of agricultural land-uses.

Keywords: Nutrient loss, land-use, Kechik, erosion, BSTF1, Golestan

Yağış simülasyonu modeli kullanarak toprak ve besin maddesi kayıplarının hesaplanması

Özet: Toprak erozyonu sadece toprak parçacıkları kaybı değil, aynı zamanda besin ve elementlerin de kaybıdır. Toprak erozyonu ve besin kaybını ölçmek için yağış simülatörleri kullanmaktır. Bu çalışmanın amacı, arazi kullanımı ve eğim parametrelerini kullanarak Gülistan Eyaleti- Kechik su havzasında yağış simülasyonu modeli kullanarak toprak ve besin kaybını hesaplamaktır. Sedimentlerdeki potasyum, azot ve fosfor içeriğini belirlemek için, Kjedalhl ve spektrofotometri yöntemleri kullanılmıştır. Organik karbon tahmini için ise Walkey-Black Metodu kullanılmıştır. Sonuçlar göz önüne alındığında, azot kaybının en yüksek olduğu alanlar tarımsal arazilerdir. Bunu; küçük bir fark ile meralar ve orman izlemektedir. Potasyum kaybı 0.15 t.ha-1 ile en fazla meralarda görülmüş, tarım ve orman alanları ise ikinci ve üçüncü sırada yer almıştır. Fosfor yönünden toprak besin kaybı, sırasıyla, tarım ve meralar daha sonra orman arazisi kullanımında maksimum olarak ölçülmüştür. Bu çalışmada, orman ve mera arazi kullanımlarında kullanılan eğim sınıfları 0-20 ve 20-40 olarak; tarımsal arazi kullanımında ise 0-15 ve 15-30 olarak kabul edilmiştir. Bulgular, topraktaki azot, fosfor ve organik madde kaybının ikinci eğim sınıfında en yüksek olduğunu göstermiştir. Bu çalışmanın bulguları başta arazi kullanım yönetimine vurgu yapmakta; tarımsal arazi kullanımlarının etkisini ele almaktadır.

Anahtar Kelimeler: Besin kaybı, arazi kullanımı, Kechik, erozyon, BTF1, Gülistan

Received (Geliş): 08.04.2016 - Revised (Düzeltme): 24.05.2016 -   Accepted (Kabul): 06.06.2016

Cite (Atıf): Sheikh, V.B., Shalamzari, M.J., Farajollahi, A., 2017. Sediment-bound soil nutrient loss under simulated rainfall. Journal of the Faculty of Forestry Istanbul University 67(1): 37-78. DOI: 10.17099/jffiu.95610

Kaynakça

  • Avila-Segura, M., Lyne, J.W., Meyer, J.M., Barak, P., 2004. Rapid spectrophotometric analysis of soil phosphorus with a microplate reader. Communications in Soil Science and Plant Analysis 35(3-4): 547-557.
  • Blanco-Canqui, H., Lal, R., 2008. Principles of soil conservation and management: Springer Science and Business Media.
  • Bochet, E., García‐Fayos, P., 2004. Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restoration Ecology 12(2): 166-174.
  • Braimoh, A.K., Vlek, P.L., 2008. Impact of land use on soil resources book. Land Use and Soil Resources chapter, pp.1-7, ISBN 978-1-4020-6777-8, DOI 10.1007/978-1-4020-6778-5_1.
  • Bremner, J.M., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1996. Nitrogen-total. Methods of soil analysis. Part 3-chemical methods: pp. 1085-1121.
  • Brown, J., Lilleland, O., 1946. Rapid determination of potassium and sodium in plant materials and soil extracts by flame photometry. In Proceedings of the American Society for Horticultural Science, Amer Soc Horticultural Science 701 North Saint Asaph Street, Alexandria, Va 22314-1998: pp. 341-346
  • Giorgini, A., Zingales, F., 2013. Agricultural Nonpoint Source Pollution: Model Selection and Application: Elsevier Science.
  • Girmay, G., Singh, B., Nyssen, J., Borrosen, T., 2009. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. Journal of Hydrology 376(1): 70-80.
  • Hartanto, H., Prabhu, R., Widayat, A. S., Asdak, C., 2003. Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management. Forest Ecology and Management 180(1): 361-374.
  • Hester, R.E., Harrison, R. M., 2012. Soils and Food Security: Royal Society of Chemistry. RSC Publishing, ISBN 978-1-84973-426-4, United Kingdom.
  • Huang, J., Wu, P., Zhao, X., 2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena 104: 93-102.
  • Janeau, J.L., Gillard, L.C., Grellier, S., Jouquet, P., Le, T.P.Q., Luu, T.N.M., Ngo, Q.A., Orange, D., Pham, D.R., Tran, D.T. Tran, S.H., 2014. Soil erosion, dissolved organic carbon and nutrient losses under different land use systems in a small catchment in northern Vietnam. Agricultural Water Management 146: 314-323.
  • Lal, R., Singh, B. R., Mwaseba, D. L., Kraybill, D., Hansen, D. O., Eik, L. O., 2014. Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa: Springer International Publishing.
  • Liu, R., Wang, J., Shi, J., Chen, Y., Sun, C., Zhang, P., Shen, Z., 2014. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions. Science of the Total Environment 468: 1069-1077.
  • Owens, P.N., Collins, A.J., 2006. Soil Erosion and Sediment Redistribution in River Catchments: Measurement, Modelling and Management: CABI Pub.
  • Ritter, W.F., Shirmohammadi, A., 2000. Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology: CRC Press.
  • Sharpley, A.N., 1997. Rainfall frequency and nitrogen and phosphorus runoff from soil amended with poultry litter. Journal of Environmental Quality 26(4): 1127-1132.
  • Society, S.W.C., Lal, R., 1994. Soil Erosion Research Methods: Taylor & Francis.
  • Vahabi, J., Nikkami, D., 2008. Assessing dominant factors affecting soil erosion using a portable rainfall simulator. International Journal of Sediment Research 23(4): 376-386.
  • Walky, A., Black, I., 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. 1. Experimental. Soil Science 79: 459-465.
  • Xi-Yuan, W., Zhang, L.P., Fu, X.T., Wang, X.Y., Zhang, H.S., 2011. Nitrogen loss in surface runoff from Chinese cabbage fields. Physics and Chemistry of the Earth, Parts A/B/C 36(9): 401-406.
  • Zachar, D., 1982. Soil Erosion: Elsevier Science. ISBN 0-444-99725-3, pp.546, Amsterdam, Netherlands.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Bölüm Research Makaleler (Araştırma Makalesi)
Yazarlar

Vahed Berdi Sheikh Bu kişi benim

Masoud Jafari Shalamzari

Asghar Farajollahi

Yayımlanma Tarihi 1 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 67 Sayı: 1

Kaynak Göster

APA Sheikh, V. B., Shalamzari, M. J., & Farajollahi, A. (2017). Sediment-bound soil nutrient loss under simulated rainfall. Journal of the Faculty of Forestry Istanbul University, 67(1), 37-48. https://doi.org/10.17099/jffiu.95610
AMA Sheikh VB, Shalamzari MJ, Farajollahi A. Sediment-bound soil nutrient loss under simulated rainfall. J FAC FOR ISTANBUL U. Ocak 2017;67(1):37-48. doi:10.17099/jffiu.95610
Chicago Sheikh, Vahed Berdi, Masoud Jafari Shalamzari, ve Asghar Farajollahi. “Sediment-Bound Soil Nutrient Loss under Simulated Rainfall”. Journal of the Faculty of Forestry Istanbul University 67, sy. 1 (Ocak 2017): 37-48. https://doi.org/10.17099/jffiu.95610.
EndNote Sheikh VB, Shalamzari MJ, Farajollahi A (01 Ocak 2017) Sediment-bound soil nutrient loss under simulated rainfall. Journal of the Faculty of Forestry Istanbul University 67 1 37–48.
IEEE V. B. Sheikh, M. J. Shalamzari, ve A. Farajollahi, “Sediment-bound soil nutrient loss under simulated rainfall”, J FAC FOR ISTANBUL U, c. 67, sy. 1, ss. 37–48, 2017, doi: 10.17099/jffiu.95610.
ISNAD Sheikh, Vahed Berdi vd. “Sediment-Bound Soil Nutrient Loss under Simulated Rainfall”. Journal of the Faculty of Forestry Istanbul University 67/1 (Ocak 2017), 37-48. https://doi.org/10.17099/jffiu.95610.
JAMA Sheikh VB, Shalamzari MJ, Farajollahi A. Sediment-bound soil nutrient loss under simulated rainfall. J FAC FOR ISTANBUL U. 2017;67:37–48.
MLA Sheikh, Vahed Berdi vd. “Sediment-Bound Soil Nutrient Loss under Simulated Rainfall”. Journal of the Faculty of Forestry Istanbul University, c. 67, sy. 1, 2017, ss. 37-48, doi:10.17099/jffiu.95610.
Vancouver Sheikh VB, Shalamzari MJ, Farajollahi A. Sediment-bound soil nutrient loss under simulated rainfall. J FAC FOR ISTANBUL U. 2017;67(1):37-48.