Amaranth and quinoa
cultivated in the Andean region and buckwheat originated in Central Asia are
the most important pseudocereals. While amaranth, quinoa and buckwheat have not the same genetic
structure as cereals, they have similar
chemical composition to cereals. Pseudocereals with well-balanced amino acid
composition have a high protein content,
they are also important sources of dietary fibers, phytochemicals, vitamins and minerals. There is no gluten protein in
amaranth, quinoa and buckwheat, and when
they are consumed sufficiently, they show anti-cholesterol, anticancer, antiinflammatory and antidiabetic effects.
Pseudocereals, especially used as whole flour, are important as an attractive
component to develop of gluten-free and functional
foods. In this study, chemical, nutritional and functional properties of
pseudocereals and their use in food products were compiled.
Altındağ, G., Certel, M., Erem, F., Konak, Ü.İ. (2014). Quality characteristics of gluten-free cookies made of buckwheat, corn, and rice flour with-without transglutaminase. Food Science and Technology International, 21(3), 213-220. https://doi.org/10.1177/1082013214525428
Alvarez-Jubete L., Arendt, E.K., Galagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Science and Nutrition, 60(1), 240-257. https://doi.org/10.1080/09637480902950597
Alvarez-Jubete, L., Arendt, E.K., Gallagher, E. (2010a). Nutritive value of pseudo-cereals and their increasing use functional gluten-free ingredients. Trends in Food Science and Technology, 21, 106-113. https://doi.org/10.1016/j.tifs.2009.10.014
Alvarez-Jubete, L., Auty, M., Arendt, E.K., Gallagher, E. (2010b). Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. European Food Research and Technology, 230, 437-445. https://doi.org/10.1007/s00217-009-1184-z
Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K., Gallagher, E. (2010c). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119, 770-778. https://doi.org/10.1016/j.foodchem.2009.07.032
Antoniewska, A., Rutkowska, J., Pineda, M.M., Adamska, A. (2018). Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT - Food Science and Technology, 89, 217-223. https://doi.org/10.1016/j.lwt.2017.10.039
Baker, M.G., Hudson, I., Flores, S., Bhaduri, R., Ghatak, K.P. (2013). Physical, textural and sensory properties of gluten-free muffins prepared using quinoa flour as a replacement for rice flour. Journal of the Academy of Nutrition and Dietetics, 113(9), A60. https://doi.org/10.1016/j.jand.2013.06.210
Bastos, G.M., Soares Junior, M.S., Caliari, M., de Araujo Pereira, A.L., de Morais, C.C., Campos, M.R.H. (2016). Physical and sensory quality of gluten-free spaghetti processed from amaranth flour and potato pulp. LWT - Food Science and Technology, 65, 128-136. https://doi.org/10.1016/j.lwt.2015.07.067
Berghofer, E., Schoenlechner, R. (2002). Grain amaranth. In P.S. Belton and J.R.N. Taylor (Eds.), Pseudocereals and less common cereals: grain properties and utilization potential (pp. 219-260). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-662-09544-7_7
Bhargava, A., Shukla, S., Ohri, D. (2006). Chenopodium quinoa - an Indian perspective. Industrial Crops and Products, 23, 73-87. https://doi.org/10.1016/j.indcrop.2005.04.002
Bhosale, R., Singhal, R. (2006). Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers, 66, 521-527. https://doi.org/10.1016/j.carbpol.2006.04.007
Bilgiçli, N. (2009). Effect of buckwheat flour on chemical and functional properties of tarhana. LWT - Food Science and Technology, 42, 514-518. https://doi.org/10.1016/j.lwt.2008.09.006
Bilgiçli, N. (2013). Some chemical and sensory properties of gluten-free noodle prepared with different legume, pseudocereal and cereal flour blends. Journal of Food and Nutrition Research, 52(4), 251-255.
Bilgiçli, N. (2014). Effect of pseudocereal flours on some chemical properties and phytic acid content of noodle. Quality Assurance and Safety of crops & Foods, 6(2), 175-181. https://doi.org/10.3920/QAS2013.0257
Bonafaccia, G., Marocchini, M., Kreft, I. (2003). Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry, 80, 9-15. https://doi.org/10.1016/S0308-8146(02)00228-5
Bressani, R. (1994). Composition and nutritional properties of amaranth. In O. Paredes-Lopez (Ed.), Amaranth-biology, chemistry and technology (pp. 185-205). London: CRC Press Inc. https://doi.org/10.1201/9781351069601-10
Bruni, R., Medici, A., Guerrini, A., Scalia, S., Poli, F., Muzzoli, M., Sacchetti, G. (2001). Wild Amaranthus caudatus seed oil, a nutraceutical resource from Ecuadorian flora. Journal of Agricultural and Food Chemistry, 49, 5455-5460. https://doi.org/10.1021/jf010385k
Cardenas-Hernandez, A., Beta, T., Loarca-Pina, G., Castano-Tostado, E., Nieto-Barrera, J.O., Mendoza, S. (2016). Improved functional properties of pasta: Enrichment with amaranth seed flour and dried amaranth leaves. Journal of Cereal Science, 72, 84-90. https://doi.org/10.1016/j.jcs.2016.09.014
Carini, R., Poli, G., Diazini, M.U., Maddix, S.P., Slater, T.F., Cheesman, K.H. (1990). Comparative evaluation of the antioxidant activity of α-tocopherol, α-tocopherol polyethylene glycol 1000 succinate and α-tocopherol succinate in isolated hepatocytes and liver microsomal suspensions. Biochemical Pharmacology, 39, 1597-1601. https://doi.org/10.1016/0006-2952(90)90526-Q
Chauhan, A., Saxena, D.C., Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT - Food Science and Technology, 63, 939-945. https://doi.org/10.1016/j.lwt.2015.03.115
Chillo, S., Laverse, J., Falcone, P.M., Del Nobile, M.A. (2008). Quality of spaghetti in base amaranthus wholemeal flour added with quinoa, broad bean and chick pea. Journal of Food Engineering, 84, 101-107. https://doi.org/10.1016/j.jfoodeng.2007.04.022
Chlopicka, J., Pasko, P., Gorinstein, S., Jedryas, A., Zagrodzki, P. (2012). Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT - Food Science and Technology, 46, 548-555. https://doi.org/10.1016/j.lwt.2011.11.009
Cho, S.S., Qi, L., Fahey, G.C., Klurfeld, D.M. (2013). Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. The American Journal of Clinical Nutrition, 98(2), 594-619. https://doi.org/10.3945/ajcn.113.067629
Choy, A.-L., Morrison, P.D., Hughes, J.G., Marriott, P.J., Small, D.M. (2013). Quality and antioxidant properties of instant noodles enhanced with common buckwheat flour. Journal of Cereal Science, 5, 281-287. https://doi.org/10.1016/j.jcs.2012.11.007
Christa, K., Soral-Smietana, M. (2008). Buckwheat grains and buckwheat products-nutritional and prophylactic value of their components-a review. Czech Journal of Food Sciences, 26(3), 153-162. https://doi.org/10.17221/1602-CJFS
Collar, C., Angioloni, A. (2014). Pseudocereals and teff in complex breadmaking matrices: Impact on lipid dynamics. Journal of Cereal Science, 59, 145-154. https://doi.org/10.1016/j.jcs.2013.12.008
Çevik, A. (2016). Tarhananın besinsel zenginleştiirlmesinde kinoa, karabuğday ve lüpen unlarının kullanımı Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Konya, sy. 113.
Demir, B. (2018). Çimlendirilmiş kinoa ununun glutenli ve glutensiz makarna üretiminde kullanım imkanları. Doktora Tezi, Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Konya, sy. 164.
Demir, M.K. (2014). Use of quinoa flour in the production of gluten-free tarhana. Food Science and Technology Research, 20(5), 1087-1092. https://doi.org/10.3136/fstr.20.1087
Dini, I., Tenore, G.C., Dini, A. (2004). Phenolic constituents of Kancolla seeds. Food Chemistry, 84, 163-168. https://doi.org/10.1016/S0308-8146(03)00185-7
Drzewiecki, J., Delgado-Licon, E., Haruenkit, R., Pawelzik, E., Martin-Belloso, O., Park, Y.-S., Jung, S.-T., Trakhtenberg, S., Gorinstein, S. (2003). Identification and differences of total proteins and their soluble fractions in some pseudocereals based on electrophoretic patterns. Journal of Agricultural and Food Chemistry, 51(26), 7798-7804. https://doi.org/10.1021/jf030322x
Dziadek, K., Kopec, A., Pastucha, E., Piatkowska, E., Leszczynska, T., Pisulewska, E., Witkowicz, R., Francik, R. (2016). Basic chemical composition and bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls. Journal of Cereal Science, 69, 1-8. https://doi.org/10.1016/j.jcs.2016.02.004
Ekholm, P., Virkki, L., Ylinen, M., Johansson, L. (2003). The effect of phytic acid and some natural chelating agents on the solubility of mineral elements in oat bran. Food Chemistry, 80, 165-170. https://doi.org/10.1016/S0308-8146(02)00249-2
Elgeti, D., Nordlohne, S.D., Föste, M., Besl, M., Linden, M.H., Heinz, V., Jekle, M., Becker, T. (2014). Volume and texture improvement of gluten-free bread using quinoa white flour. Journal of Cereal Science, 59, 41-47. https://doi.org/10.1016/j.jcs.2013.10.010
Ene, S. (2017). Kinoa'nın erişte üretiminde kullanım olanaklarının araştırılması. Yüksek Lisans Tezi, Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü, Çanakkale, sy. 67.
Fabio, S.R., Siebenhandl, S., Berghofer, E. (2008). Pseudocereals. In E.K. Arendt and Dal Bello (Eds.), Gluten-free cereal products and beverages (pp. 149-191). https://doi.org/10.1016/B978-012373739-7.50009-5
Filipcev, B., Simurina, O., Sakac, M., Sedej, I., Jovanov, P., Pestoric, M., Bodroza-Solarov, M. (2011). Feasibility of use of buckwheat flour as an ingredient in ginger nut biscuit formulation. Food Chemistry, 125, 164-170. https://doi.org/10.1016/j.foodchem.2010.08.055
Fischer Walker, C.L., Ezzati, M., Black, R.E. (2009). Global and regional child mortality and burden of disease attributable to zinc deficiency. European Journal of Clinical Nutrition, 63(5), 591-597. https://doi.org/10.1038/ejcn.2008.9
Gasiorowski, H. (2008). Buckwheat (part 2). Nutritional and chemical characteristics. Przeglad Zbozowo-Mlynarski, 8, 14-17.
Gimenez-Bastida, J.A., Zielinski, H. (2015). Buckwheat as a functional food and its effects on health. Journal of Agricultural and Food Chemistry, 63, 7896-7913.
https://doi.org/10.1021/acs.jafc.5b02498
Goesaert, H., Brijs, K., Veraverbeke, W.S., Courtin, C.M., Gebruers, K., Delcour, J.A. (2005). Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in Food Science and Technology, 16, 12-30. https://doi.org/10.1016/j.tifs.2004.02.011
Gomez-Caravaca, A.M., Iafelice, G., Verardo, V., Marconi, E., Caboni, M.F. (2014). Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd). Food Chemistry, 157, 174-178. https://doi.org/10.1016/j.foodchem.2014.02.023
Gorinstein, S., Pawelzik, E., Delgado-Licon, E., Haruenkit, R., Weisz, M., Trakhtenberg, S. (2002). Characterisation of pseudocereal and cereal proteins by protein and amino acid analysis. Journal of the Science of Food and Agriculture, 82, 886-891. https://doi.org/10.1002/jsfa.1120
Graf, B.L., Rojas-Silva, P., Rojo, L.E., Delatorre-Herrera, J., Baldeon, M.E., Raskin, I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14(4), 431-445. https://doi.org/10.1111/1541-4337.12135
Grizard, D., Barthomeuf, C. (1999). Non-digestible oligosaccharides used as prebiotic agents: mode of production and beneficial effects on animal and human health. Reproduction Nutrition Development, 39, 563-588. https://doi.org/10.1051/rnd:19990505
Hadnadev, T.R.D., Torbica, A.M., Hadnadev, M.S. (2013). Influence of buckwheat flour and carboxymethyl celulose on rheological behaviour and baking performance of gluten-free cookie dough. Food and Bioprocess Technology, 6, 1770-1781. https://doi.org/10.1007/s11947-012-0841-6
Hager, A.-S., Wolter, A., Jacob, F., Zannini, E., Arendt, E.K. (2012). Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. Journal of Cereal Science, 56, 239-247. https://doi.org/10.1016/j.jcs.2012.06.005
Haros, M., Carlsson, N.G., Almgrem, A., Larsson Alminger, M., Sandberg, A.S., Andlid, T. (2009). Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential. International Journal of Food Microbiology, 135, 7-14. https://doi.org/10.1016/j.ijfoodmicro.2009.07.015
Hayıt, F. (2014). Karabuğday, transglutaminaz ve ekşi mayanın dondurulmuş ekmek kalitesi üzerine etkisi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta, sy. 139
Hidalgo, A., Ferraretto, A., De Noni, I., Bottani, M., Cattaneo, S., Galli, S., Brandolini, A. (2018). Bioactive compounds and antioxidant properties of pseudocereals-enriched water biscuits and their in vitro digestates. Food Chemistry, 240, 799-807. https://doi.org/10.1016/j.foodchem.2017.08.014
Islas-Rubio, A.R., de la Barca, A.M.C., Cabrera-Chavez, F., Cota-Gastelum, A.G., Beta, T. (2014). Effect of semolina replacement with a raw: popped amaranth flour blend on cooking quality and texture of pasta. LWT - Food Science and Technology, 57, 217-222. https://doi.org/10.1016/j.lwt.2014.01.014
Jahaniaval, F., Kakuda, Y., Marcone, M.F. (2000). Fatty acid and triacylglycerol compositions of seed oils of five Amaranthus accessions and their comparison to other oils. Journal of the American Oil Chemists' Society, 77, 847-852. https://doi.org/10.1007/s11746-000-0135-0
Kalinova, J., Triska, J., Vrchotova, N. (2006). Distribution of vitamin E, squalene, epicatechin, and rutin in common buckwheat plants (Fagopyrum esculentum Moench). Journal of Agricultural and Food Chemistry, 54, 5330-5335. https://doi.org/10.1021/jf060521r
Kaur, S., Kaur, N. (2017). Development and sensory evaluation of gluten free bakery products using quinoa (Chenopodium quinoa) flour. Journal of Applied and Natural Science, 9(4), 2449-2455. https://doi.org/10.31018/jans.v9i4.1552
Kıtan, S. (2017). Glutensiz tarhana üretiminde kinoa (Chenopodium quinoa) kullanımı. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Samsun, sy. 100.
Kim, S.L., Kim, S.K., Park, C.H. (2002). Comparisons of lipid, fatty acids and tocopherols of different buckwheat species. Food Science and Biotechnology, 11, 332-336.
Klimczak, I., Malecka, M., Pacholek, B. (2002). Antioxidant activity of ethanolic extracts of amaranth seeds. Nahrung/Food, 46, 184-186. https://doi.org/10.1002/1521-3803(20020501)46:3<184::AID-FOOD184>3.0.CO;2-H
Konishi, Y., Hirano, S., Tsuboi, H., Wada, M. (2004). Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Bioscience, Biotechnology, and Biochemistry, 68(1), 231-234. https://doi.org/10.1271/bbb.68.231
Koziol, M.J. (1992). Chemical composition and nutritional value of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5, 35-68. https://doi.org/10.1016/0889-1575(92)90006-6
Kumar, V., Sinha, A.K., Makkar, H.P.S., Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: a review. Food Chemistry, 120, 945-959. https://doi.org/10.1016/j.foodchem.2009.11.052
Levent, H., Bilgiçli, N. (2011). Enrichment of gluten-free cakes with lupin (Lupinus albus L.) or buckwheat (Fagopyrum esculentum M.) flours. International Journal of Food Sciences and Nutrition, 62(7), 725-728. https://doi.org/10.3109/09637486.2011.572546
Lopez, D.N., Galante, M., Robson, M., Boeris, V., Spelzini, D. (2018). Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. International Journal of Biological Macromolecules, 109, 152-159. https://doi.org/10.1016/j.ijbiomac.2017.12.080
Loredana, I.M., Petru, R.B., Daniela, S., Ioan, T.T., Monica, N. (2015). Sensory evaluation of some sweet gluten-free bakery products based on rice and buckwheat flour. Journal of Biotechnology, 208, 5-120. https://doi.org/10.1016/j.jbiotec.2015.06.254
Lorenz, K. (1990). Quinoa (Chenopodium quinoa) starch - Physico-chemical properties and functional characteristics. Starch-Starke, 42, 81-86. https://doi.org/10.1002/star.19900420302
Machado Alencar, N.M., Steel, C.J., Alvim, I.D., de Morais, E.C., Bolini, H.M.A. (2015). Addition of quinoa and amaranth flour in gluten-free breads: Temporal profile and instrumental analysis. LWT - Food Science and Technology, 62, 1011-1018. https://doi.org/10.1016/j.lwt.2015.02.029
Mastebroek, H.D., Limburg, H., Gilles, T., Marvin, H.J.P. (2000). Occurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd.). Journal of the Science of Food and Agriculture, 80(1), 152-156. https://doi.org/10.1002/(SICI)1097-0010(20000101)80:1<152::AID-JSFA503>3.0.CO;2-P
Mazza, G., Oomah, B.D. (2003). Buckwheat. In B. Caballero (Ed.), Encyclopedia of food sciences and nutrition (pp. 692-699). Oxford: Academic Press. https://doi.org/10.1016/B0-12-227055-X/00132-2
Mburu, M.W., Gikonyo, N.K., Kenji, G.M., Mwasaru, A.M. (2011). Properties of a complementary food based on amaranth grain (Amaranthus cruentus) grown in Kenya. Journal of Agriculture and Food Technology, 1(9), 153-178.
Mikulikova, D., Kraic, J. (2006). Natural sources of health-promoting starch. Journal of Food and Nutrition Research, 45, 69-76.
Morishita, T., Yamaguchi, H., Degi, K. (2007). The contribution of polyphenols to antioxidative activity in common buckwheat and tartary buckwheat grain. Plant Production Science, 10, 99-104. https://doi.org/10.1626/pps.10.99
Moronta, J., Smaldini, P.L., Fossati, C.A., Anon, M.C., Docena, G.H. (2016). The anti-inflammatory SSEDIKE peptide from Amaranth seeds modulates IgE-mediated food allergy. Journal of Functional Foods, 25, 579-587. https://doi.org/10.1016/j.jff.2016.06.031
Mota, C., Nascimento, A.C., Santos, M., Delgado, I., Coelho, I., Rego, A., Matos, A.S., Torres, D., Castanheira, I. (2016a). The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amarant (Amaranthus sp.) and buckwheat (Fagopyrum esculentum). Journal of Food Composition and Analysis, 49, 57-64. https://doi.org/10.1016/j.jfca.2016.02.006
Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I. (2016b). Protein content and amino acids profile of pseudocereals. Food Chemistry, 193, 55-61. https://doi.org/10.1016/j.foodchem.2014.11.043
Myers, L.R., Putnam, H.D. (1988). Growing grain amaranth as a specialty crop. In Crop systems. University of Minnesota. FS-03458-GO.
Nascimento, A.C., Mota, C., Coelho, I., Gueifao, S., Santos, M., Matos, A.S., Gimenez, A., Lobo, M., Samman, N., Castanheira, I. (2014). Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chemistry, 148, 420-426. https://doi.org/10.1016/j.foodchem.2013.09.155
Oakenfull, D., Sidhu, G.S. (1990). Could saponins be a useful treatment for hypercolesterolaemia? European Journal of Clinical Nutrition, 44, 79-88.
Ogunremi, O.R., Agrawal, R., Sanni, A.I. (2015). Development of cereal-based functional food using cereal-mix substrate fermented with probiotic strain Pichia kudriavzevii OG32. Food Science and Nutrition, 3, 486-494. https://doi.org/10.1002/fsn3.239
Oomah, B.D., Mazza, G. (1996). Flavonoids and antioxidative activities in buckwheat. Journal of Agricultural and Food Chemistry, 44, 1746-1750. https://doi.org/10.1021/jf9508357
Öncel, E. (2017). Erişte üretiminde farklı oran ve kombinasyonlarda karabuğday, amarant ve kinoa unlarının kullanım imkanları. Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Konya, sy. 74.
Paiva, S.A.R., Russell, R.M. (1999). β-Carotene and other carotenoids as antioxidants. Journal of the American College of Nutrition, 18(59), 426-433. https://doi.org/10.1080/07315724.1999.10718880
Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernandez-Lopez, J., Perez-Alvarez, J., Viuda-Martos, M. (2018). Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Industrial Crops and Products, 111, 38-46. https://doi.org/10.1016/j.indcrop.2017.10.006
Pisoschi, A.M., Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55-74. https://doi.org/10.1016/j.ejmech.2015.04.040
Preetham Kumar, K.V., Dharmaraj, U., Sakhare, S.D., Inamdar, A.A. (2016). Preparation of protein and mineral rich fraction from grain amaranth and evaluation of its functional characteristics. Journal of Cereal Science, 69, 358-362. https://doi.org/10.1016/j.jcs.2016.05.002
Qian, J., Rayas-Duarte, P., Grant, L. (1998). Partial characterization of buckwheat (Fagopyrum esculentum) starch. Cereal Chemistry, 75(3), 365-373. https://doi.org/10.1094/CCHEM.1998.75.3.365
Ramos Diaz, J.M., Kirjoranta, S., Tenitz, S., Penttila, P.A., Serimaa, R., Lampi, A.-M., Jouppila, K. (2013). Use of amaranth, quinoa and kaniwa in extruded corn-based snacks. Journal of Cereal Science, 58(1), 59-67. https://doi.org/10.1016/j.jcs.2013.04.003
Ramos Diaz, J.M., Suuronen, J.-P., Deegan, K.C., Serimaa, R., Tuorila, H., Jouppila, K. (2015). Physical and sensory characteristics of corn-based extruded snacks containing amaranth, quinoa and kaniwa flour. LWT - Food Science and Technology, 64, 1047-1056. https://doi.org/10.1016/j.lwt.2015.07.011
Rickard, S.E., Thompson, L.U. (1997). Interactions and biological effects of phytic acid. In F. Shahidi (Ed.), Antinutrients and phytochemicals in food, ACS symposium series (662, pp. 294-312.), Washington DC: American Chemical Society. https://doi.org/10.1021/bk-1997-0662.ch017
Rocchetti, G., Chiodelli, G., Giuberti, G., Masoero, F., Trevisan, M., Lucini, L. (2017). Evaluation of phenolic profile and antioxidant capacity in gluten-free flours. Food Chemistry, 228, 367-373. https://doi.org/10.1016/j.foodchem.2017.01.142
Rodriguez-Sandoval, E., Sandoval, G., Cortes-Rodriguez, M. (2012). Effect of quinoa and potato flours on the thermomechanical and breadmaking properties of wheat flour. Brazilian Journal of Chemical Engineering, 29(3), 503-510. https://doi.org/10.1590/S0104-66322012000300007
Ross, A.B., Shepherd, M.J., Schüpphaus, M., Sinclair, V., Alfaro, B., Kamal-Eldin, A., Aman, P. (2003). Alkylresorcinols in cereals and cereal products. Journal of Agricultural and Food Chemistry, 51(14), 4111-4118. https://doi.org/10.1021/jf0340456
Ross, A.B., Svelander, C., Karlsson, G., Savolainen, O.I. (2017). Identification and quantification of even and odd chained 5-n alkylresorcinols, branched chain-alkylresorcinols and methylalkylresorcinols in Quinoa (Chenopodium quinoa). Food Chemistry, 220, 344-351. https://doi.org/10.1016/j.foodchem.2016.10.020
Ruales, J., Nair, B.M. (1992). Nutritional quality of the protein in quinoa (Chenopodium quinoa Willd) seeds. Plant Foods for Human Nutrition, 42, 1-12. https://doi.org/10.1007/BF02196067
Ruales, J., Nair, B.M. (1993). Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food Chemistry, 48, 131-136. https://doi.org/10.1016/0308-8146(93)90047-J
Sanz-Penella, J.M., Wronkowska, M., Soral-Smietana, M., Haros, M. (2013). Effect of whole amaranth flour on bread properties and nutritive value. LWT - Food Science and Technology, 50, 679-685. https://doi.org/10.1016/j.lwt.2012.07.031
Scalbert, A., Manach, C., Morand, C., Remesy, C., Jimenez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287-306. https://doi.org/10.1080/1040869059096
Schneeman, B.O. (1999). Building scientific consensus: The importance of dietary fiber. American Journal of Clinical Nutrition, 25, 691-699. https://doi.org/10.1093/ajcn/69.1.1
Schoenlechner, R., Siebenhandl, S., Berghofer, E. (2008). Pseudocereals. In: Arendt, E.K., Dal Bello, F. (Eds.), Gluten-free Cereal Products and Beverages, Ireland, Cork, pp. 149-176. https://doi.org/10.1016/B978-012373739-7.50009-5
Selimovic, A., Milicevic, D., Jasic, M., Selimovic, A., Ackar, D., Pesic, T. (2014). The effect of baking temperature and buckwheat flour addition on the selected properties of wheat bread. Croatian Journal of Food Science and Technology, 6(1), 43-50.
Srichuwong, S., Curti, D., Austin, S., King, R., Lamothe, L., Gloria-Hernandez, H. (2017). Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chemistry, 233, 1-10. https://doi.org/10.1016/j.foodchem.2017.04.019
Stokic, E., Mandic, A., Sakac, M., Misan, A., Pestoric, M., Simurina, O., Jambrec, D., Jovanov, P., Nedeljkovic, N., Milovanovic, I., Sedej, I. (2015). Quality of buckwheat-enriched wheat bread and its antihyperlipidemic effect in statin treated patients. LWT - Food Science and Technology, 63, 556-561. https://doi.org/10.1016/j.lwt.2015.03.023
Tang, Y., Li, X., Chen, P.X., Zhang, B., Hernandez, M., Zhang, H., Marcone, M.F., Liu, R., Tsao, R. (2015). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 174, 502-508. https://doi.org/10.1016/j.foodchem.2014.11.040
Taylor, J.R.N., Parker, M.L. (2002). Quinoa. In P.S. Belton and J.R.N. Taylor (Eds.), Pseudocereals and less common cereals: Grain properties and utilization (pp. 93-122). Berlin: Springer Verlag. https://doi.org/10.1007/978-3-662-09544-7_3
Taylor, J.R.N., Belton, P.S., Beta, T., Duodu, K.G. (2014). Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. Journal of Cereal Science, 59, 257-275. https://doi.org/10.1016/j.jcs.2013.10.009
Turkut, G.M., Cakmak, H., Kumcuoğlu, S., Tavman, S. (2016). Effect of quinoa flour on gluten-free bread batter rheology and bread quality. Journal of Cereal Science, 69, 174-181. https://doi.org/10.1016/j.jcs.2016.03.005
Valcarcel-Yamani, B., Lannes, S.C.S. (2012). Applications of quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus spp.) and their influence in the nutritional value of cereal based foods. Food and Public Health, 2(6), 265-275.
van der Kamp, J.W., Poutanen, K., Seal, C.J., Richardson, D.P. (2014). The HEALTHGRAIN definition of 'whole grain'. Food and Nutrition Research, 58(1), 22100. https://doi.org/10.3402/fnr.v58.22100
Verardo, V., Glicerina, V., Cocci, E., Frenich, A.G., Romani, S., Caboni, M.F. (2018). Determination of free and bound phenolic compounds and their antioxidant activity in buckwheat bread loaf, crust and crumb. LWT - Food Science and Technology, 87, 217-224. https://doi.org/10.1016/j.lwt.2017.08.063
Vilcacundo, R., Hernandez-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1-6. https://doi.org/10.1016/j.cofs.2016.11.007
Wojtowicz, A., Kolasa, A., Moscicki, L. (2013). Influence of buckwheat addition on physical properties, texture and sensory characteristics of extruded corn snacks. Polish Journal of Food and Nutrition Sciences, 63(1), 239-244. https://doi.org/10.2478/v10222-012-0076-2
Yıldız, G., Bilgiçli, N. (2015). Utilisation of buckwheat flour in leavened and unleavened Turkish flat breads. Quality Assurance and Safety of Crops & Foods, 7(2), 207-215. https://doi.org/10.3920/QAS2013.0273
Zhang, Z.-L., Zhou, M.-L., Tang, Y., Li, F.-L., Tang, Y.-X., Shao, J.-R., Xue, W.-T., Wu, Y.-M. (2012). Bioactive compounds in functional buckwheat food. Food Research International, 49, 389-395. https://doi.org/10.1016/j.foodres.2012.07.035
Zielinski, H., Ciska, E., Kozlowska, H. (2001). The cereal grains: focus on vitamin E. Czech Journal of Food Science, 19, 182-188.https://doi.org/10.17221/6605-CJFS
Tahıl benzeri ürünler: Bileşimi, beslenme-sağlık üzerine etkileri ve tahıl ürünlerinde kullanımı
Year 2020,
Volume: 6 Issue: 1, 41 - 56, 01.01.2020
Tahıl benzeri (pseudocereals) ürünlere olan ilgi son
yıllarda önemli bir artış göstermiştir. And Dağları bölgesinde yetiştirilen
amarant ve kinoa ile Orta Asya kökenli karabuğday en önemli tahıl benzeri
ürünlerdir. Amarant, kinoa ve karabuğday, tahıl ile aynı genetik yapıda
olmamalarına karşın, tahıl ürünlerine benzer kimyasal bileşime ve kullanım
alanına sahiptir. Dengeli aminoasit kompozisyonu ile birlikte yüksek oranda
protein içeren tahıl benzeri ürünler; aynı zamanda diyet lifleri,
fitokimyasallar, vitaminler ve minerallar bakımından da önemli birer kaynaktır.
Amarant, kinoa ve karabuğdayda gluten proteini bulunmamakta ve yeterli miktarda
tüketildiklerinde antikolesterol, antikanser, antiinflamatuar ve antidiyabetik
etkiler göstermektedir. Tahıl benzeri ürünler, glutensiz ve fonksiyonel
gıdaların geliştirilmesinde cazip bir bileşen olarak dikkat çekmektedir. Bu
çalışmada, tahıl benzeri ürünlerin kimyasal özellikleri beslenme-sağlık üzerine
etkileri ile tahıl ürünlerinde kullanımı derlenmiştir.
Altındağ, G., Certel, M., Erem, F., Konak, Ü.İ. (2014). Quality characteristics of gluten-free cookies made of buckwheat, corn, and rice flour with-without transglutaminase. Food Science and Technology International, 21(3), 213-220. https://doi.org/10.1177/1082013214525428
Alvarez-Jubete L., Arendt, E.K., Galagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Science and Nutrition, 60(1), 240-257. https://doi.org/10.1080/09637480902950597
Alvarez-Jubete, L., Arendt, E.K., Gallagher, E. (2010a). Nutritive value of pseudo-cereals and their increasing use functional gluten-free ingredients. Trends in Food Science and Technology, 21, 106-113. https://doi.org/10.1016/j.tifs.2009.10.014
Alvarez-Jubete, L., Auty, M., Arendt, E.K., Gallagher, E. (2010b). Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. European Food Research and Technology, 230, 437-445. https://doi.org/10.1007/s00217-009-1184-z
Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K., Gallagher, E. (2010c). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119, 770-778. https://doi.org/10.1016/j.foodchem.2009.07.032
Antoniewska, A., Rutkowska, J., Pineda, M.M., Adamska, A. (2018). Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT - Food Science and Technology, 89, 217-223. https://doi.org/10.1016/j.lwt.2017.10.039
Baker, M.G., Hudson, I., Flores, S., Bhaduri, R., Ghatak, K.P. (2013). Physical, textural and sensory properties of gluten-free muffins prepared using quinoa flour as a replacement for rice flour. Journal of the Academy of Nutrition and Dietetics, 113(9), A60. https://doi.org/10.1016/j.jand.2013.06.210
Bastos, G.M., Soares Junior, M.S., Caliari, M., de Araujo Pereira, A.L., de Morais, C.C., Campos, M.R.H. (2016). Physical and sensory quality of gluten-free spaghetti processed from amaranth flour and potato pulp. LWT - Food Science and Technology, 65, 128-136. https://doi.org/10.1016/j.lwt.2015.07.067
Berghofer, E., Schoenlechner, R. (2002). Grain amaranth. In P.S. Belton and J.R.N. Taylor (Eds.), Pseudocereals and less common cereals: grain properties and utilization potential (pp. 219-260). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-662-09544-7_7
Bhargava, A., Shukla, S., Ohri, D. (2006). Chenopodium quinoa - an Indian perspective. Industrial Crops and Products, 23, 73-87. https://doi.org/10.1016/j.indcrop.2005.04.002
Bhosale, R., Singhal, R. (2006). Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers, 66, 521-527. https://doi.org/10.1016/j.carbpol.2006.04.007
Bilgiçli, N. (2009). Effect of buckwheat flour on chemical and functional properties of tarhana. LWT - Food Science and Technology, 42, 514-518. https://doi.org/10.1016/j.lwt.2008.09.006
Bilgiçli, N. (2013). Some chemical and sensory properties of gluten-free noodle prepared with different legume, pseudocereal and cereal flour blends. Journal of Food and Nutrition Research, 52(4), 251-255.
Bilgiçli, N. (2014). Effect of pseudocereal flours on some chemical properties and phytic acid content of noodle. Quality Assurance and Safety of crops & Foods, 6(2), 175-181. https://doi.org/10.3920/QAS2013.0257
Bonafaccia, G., Marocchini, M., Kreft, I. (2003). Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry, 80, 9-15. https://doi.org/10.1016/S0308-8146(02)00228-5
Bressani, R. (1994). Composition and nutritional properties of amaranth. In O. Paredes-Lopez (Ed.), Amaranth-biology, chemistry and technology (pp. 185-205). London: CRC Press Inc. https://doi.org/10.1201/9781351069601-10
Bruni, R., Medici, A., Guerrini, A., Scalia, S., Poli, F., Muzzoli, M., Sacchetti, G. (2001). Wild Amaranthus caudatus seed oil, a nutraceutical resource from Ecuadorian flora. Journal of Agricultural and Food Chemistry, 49, 5455-5460. https://doi.org/10.1021/jf010385k
Cardenas-Hernandez, A., Beta, T., Loarca-Pina, G., Castano-Tostado, E., Nieto-Barrera, J.O., Mendoza, S. (2016). Improved functional properties of pasta: Enrichment with amaranth seed flour and dried amaranth leaves. Journal of Cereal Science, 72, 84-90. https://doi.org/10.1016/j.jcs.2016.09.014
Carini, R., Poli, G., Diazini, M.U., Maddix, S.P., Slater, T.F., Cheesman, K.H. (1990). Comparative evaluation of the antioxidant activity of α-tocopherol, α-tocopherol polyethylene glycol 1000 succinate and α-tocopherol succinate in isolated hepatocytes and liver microsomal suspensions. Biochemical Pharmacology, 39, 1597-1601. https://doi.org/10.1016/0006-2952(90)90526-Q
Chauhan, A., Saxena, D.C., Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT - Food Science and Technology, 63, 939-945. https://doi.org/10.1016/j.lwt.2015.03.115
Chillo, S., Laverse, J., Falcone, P.M., Del Nobile, M.A. (2008). Quality of spaghetti in base amaranthus wholemeal flour added with quinoa, broad bean and chick pea. Journal of Food Engineering, 84, 101-107. https://doi.org/10.1016/j.jfoodeng.2007.04.022
Chlopicka, J., Pasko, P., Gorinstein, S., Jedryas, A., Zagrodzki, P. (2012). Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT - Food Science and Technology, 46, 548-555. https://doi.org/10.1016/j.lwt.2011.11.009
Cho, S.S., Qi, L., Fahey, G.C., Klurfeld, D.M. (2013). Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. The American Journal of Clinical Nutrition, 98(2), 594-619. https://doi.org/10.3945/ajcn.113.067629
Choy, A.-L., Morrison, P.D., Hughes, J.G., Marriott, P.J., Small, D.M. (2013). Quality and antioxidant properties of instant noodles enhanced with common buckwheat flour. Journal of Cereal Science, 5, 281-287. https://doi.org/10.1016/j.jcs.2012.11.007
Christa, K., Soral-Smietana, M. (2008). Buckwheat grains and buckwheat products-nutritional and prophylactic value of their components-a review. Czech Journal of Food Sciences, 26(3), 153-162. https://doi.org/10.17221/1602-CJFS
Collar, C., Angioloni, A. (2014). Pseudocereals and teff in complex breadmaking matrices: Impact on lipid dynamics. Journal of Cereal Science, 59, 145-154. https://doi.org/10.1016/j.jcs.2013.12.008
Çevik, A. (2016). Tarhananın besinsel zenginleştiirlmesinde kinoa, karabuğday ve lüpen unlarının kullanımı Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Konya, sy. 113.
Demir, B. (2018). Çimlendirilmiş kinoa ununun glutenli ve glutensiz makarna üretiminde kullanım imkanları. Doktora Tezi, Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Konya, sy. 164.
Demir, M.K. (2014). Use of quinoa flour in the production of gluten-free tarhana. Food Science and Technology Research, 20(5), 1087-1092. https://doi.org/10.3136/fstr.20.1087
Dini, I., Tenore, G.C., Dini, A. (2004). Phenolic constituents of Kancolla seeds. Food Chemistry, 84, 163-168. https://doi.org/10.1016/S0308-8146(03)00185-7
Drzewiecki, J., Delgado-Licon, E., Haruenkit, R., Pawelzik, E., Martin-Belloso, O., Park, Y.-S., Jung, S.-T., Trakhtenberg, S., Gorinstein, S. (2003). Identification and differences of total proteins and their soluble fractions in some pseudocereals based on electrophoretic patterns. Journal of Agricultural and Food Chemistry, 51(26), 7798-7804. https://doi.org/10.1021/jf030322x
Dziadek, K., Kopec, A., Pastucha, E., Piatkowska, E., Leszczynska, T., Pisulewska, E., Witkowicz, R., Francik, R. (2016). Basic chemical composition and bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls. Journal of Cereal Science, 69, 1-8. https://doi.org/10.1016/j.jcs.2016.02.004
Ekholm, P., Virkki, L., Ylinen, M., Johansson, L. (2003). The effect of phytic acid and some natural chelating agents on the solubility of mineral elements in oat bran. Food Chemistry, 80, 165-170. https://doi.org/10.1016/S0308-8146(02)00249-2
Elgeti, D., Nordlohne, S.D., Föste, M., Besl, M., Linden, M.H., Heinz, V., Jekle, M., Becker, T. (2014). Volume and texture improvement of gluten-free bread using quinoa white flour. Journal of Cereal Science, 59, 41-47. https://doi.org/10.1016/j.jcs.2013.10.010
Ene, S. (2017). Kinoa'nın erişte üretiminde kullanım olanaklarının araştırılması. Yüksek Lisans Tezi, Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü, Çanakkale, sy. 67.
Fabio, S.R., Siebenhandl, S., Berghofer, E. (2008). Pseudocereals. In E.K. Arendt and Dal Bello (Eds.), Gluten-free cereal products and beverages (pp. 149-191). https://doi.org/10.1016/B978-012373739-7.50009-5
Filipcev, B., Simurina, O., Sakac, M., Sedej, I., Jovanov, P., Pestoric, M., Bodroza-Solarov, M. (2011). Feasibility of use of buckwheat flour as an ingredient in ginger nut biscuit formulation. Food Chemistry, 125, 164-170. https://doi.org/10.1016/j.foodchem.2010.08.055
Fischer Walker, C.L., Ezzati, M., Black, R.E. (2009). Global and regional child mortality and burden of disease attributable to zinc deficiency. European Journal of Clinical Nutrition, 63(5), 591-597. https://doi.org/10.1038/ejcn.2008.9
Gasiorowski, H. (2008). Buckwheat (part 2). Nutritional and chemical characteristics. Przeglad Zbozowo-Mlynarski, 8, 14-17.
Gimenez-Bastida, J.A., Zielinski, H. (2015). Buckwheat as a functional food and its effects on health. Journal of Agricultural and Food Chemistry, 63, 7896-7913.
https://doi.org/10.1021/acs.jafc.5b02498
Goesaert, H., Brijs, K., Veraverbeke, W.S., Courtin, C.M., Gebruers, K., Delcour, J.A. (2005). Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in Food Science and Technology, 16, 12-30. https://doi.org/10.1016/j.tifs.2004.02.011
Gomez-Caravaca, A.M., Iafelice, G., Verardo, V., Marconi, E., Caboni, M.F. (2014). Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd). Food Chemistry, 157, 174-178. https://doi.org/10.1016/j.foodchem.2014.02.023
Gorinstein, S., Pawelzik, E., Delgado-Licon, E., Haruenkit, R., Weisz, M., Trakhtenberg, S. (2002). Characterisation of pseudocereal and cereal proteins by protein and amino acid analysis. Journal of the Science of Food and Agriculture, 82, 886-891. https://doi.org/10.1002/jsfa.1120
Graf, B.L., Rojas-Silva, P., Rojo, L.E., Delatorre-Herrera, J., Baldeon, M.E., Raskin, I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14(4), 431-445. https://doi.org/10.1111/1541-4337.12135
Grizard, D., Barthomeuf, C. (1999). Non-digestible oligosaccharides used as prebiotic agents: mode of production and beneficial effects on animal and human health. Reproduction Nutrition Development, 39, 563-588. https://doi.org/10.1051/rnd:19990505
Hadnadev, T.R.D., Torbica, A.M., Hadnadev, M.S. (2013). Influence of buckwheat flour and carboxymethyl celulose on rheological behaviour and baking performance of gluten-free cookie dough. Food and Bioprocess Technology, 6, 1770-1781. https://doi.org/10.1007/s11947-012-0841-6
Hager, A.-S., Wolter, A., Jacob, F., Zannini, E., Arendt, E.K. (2012). Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. Journal of Cereal Science, 56, 239-247. https://doi.org/10.1016/j.jcs.2012.06.005
Haros, M., Carlsson, N.G., Almgrem, A., Larsson Alminger, M., Sandberg, A.S., Andlid, T. (2009). Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential. International Journal of Food Microbiology, 135, 7-14. https://doi.org/10.1016/j.ijfoodmicro.2009.07.015
Hayıt, F. (2014). Karabuğday, transglutaminaz ve ekşi mayanın dondurulmuş ekmek kalitesi üzerine etkisi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta, sy. 139
Hidalgo, A., Ferraretto, A., De Noni, I., Bottani, M., Cattaneo, S., Galli, S., Brandolini, A. (2018). Bioactive compounds and antioxidant properties of pseudocereals-enriched water biscuits and their in vitro digestates. Food Chemistry, 240, 799-807. https://doi.org/10.1016/j.foodchem.2017.08.014
Islas-Rubio, A.R., de la Barca, A.M.C., Cabrera-Chavez, F., Cota-Gastelum, A.G., Beta, T. (2014). Effect of semolina replacement with a raw: popped amaranth flour blend on cooking quality and texture of pasta. LWT - Food Science and Technology, 57, 217-222. https://doi.org/10.1016/j.lwt.2014.01.014
Jahaniaval, F., Kakuda, Y., Marcone, M.F. (2000). Fatty acid and triacylglycerol compositions of seed oils of five Amaranthus accessions and their comparison to other oils. Journal of the American Oil Chemists' Society, 77, 847-852. https://doi.org/10.1007/s11746-000-0135-0
Kalinova, J., Triska, J., Vrchotova, N. (2006). Distribution of vitamin E, squalene, epicatechin, and rutin in common buckwheat plants (Fagopyrum esculentum Moench). Journal of Agricultural and Food Chemistry, 54, 5330-5335. https://doi.org/10.1021/jf060521r
Kaur, S., Kaur, N. (2017). Development and sensory evaluation of gluten free bakery products using quinoa (Chenopodium quinoa) flour. Journal of Applied and Natural Science, 9(4), 2449-2455. https://doi.org/10.31018/jans.v9i4.1552
Kıtan, S. (2017). Glutensiz tarhana üretiminde kinoa (Chenopodium quinoa) kullanımı. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Samsun, sy. 100.
Kim, S.L., Kim, S.K., Park, C.H. (2002). Comparisons of lipid, fatty acids and tocopherols of different buckwheat species. Food Science and Biotechnology, 11, 332-336.
Klimczak, I., Malecka, M., Pacholek, B. (2002). Antioxidant activity of ethanolic extracts of amaranth seeds. Nahrung/Food, 46, 184-186. https://doi.org/10.1002/1521-3803(20020501)46:3<184::AID-FOOD184>3.0.CO;2-H
Konishi, Y., Hirano, S., Tsuboi, H., Wada, M. (2004). Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Bioscience, Biotechnology, and Biochemistry, 68(1), 231-234. https://doi.org/10.1271/bbb.68.231
Koziol, M.J. (1992). Chemical composition and nutritional value of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5, 35-68. https://doi.org/10.1016/0889-1575(92)90006-6
Kumar, V., Sinha, A.K., Makkar, H.P.S., Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: a review. Food Chemistry, 120, 945-959. https://doi.org/10.1016/j.foodchem.2009.11.052
Levent, H., Bilgiçli, N. (2011). Enrichment of gluten-free cakes with lupin (Lupinus albus L.) or buckwheat (Fagopyrum esculentum M.) flours. International Journal of Food Sciences and Nutrition, 62(7), 725-728. https://doi.org/10.3109/09637486.2011.572546
Lopez, D.N., Galante, M., Robson, M., Boeris, V., Spelzini, D. (2018). Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. International Journal of Biological Macromolecules, 109, 152-159. https://doi.org/10.1016/j.ijbiomac.2017.12.080
Loredana, I.M., Petru, R.B., Daniela, S., Ioan, T.T., Monica, N. (2015). Sensory evaluation of some sweet gluten-free bakery products based on rice and buckwheat flour. Journal of Biotechnology, 208, 5-120. https://doi.org/10.1016/j.jbiotec.2015.06.254
Lorenz, K. (1990). Quinoa (Chenopodium quinoa) starch - Physico-chemical properties and functional characteristics. Starch-Starke, 42, 81-86. https://doi.org/10.1002/star.19900420302
Machado Alencar, N.M., Steel, C.J., Alvim, I.D., de Morais, E.C., Bolini, H.M.A. (2015). Addition of quinoa and amaranth flour in gluten-free breads: Temporal profile and instrumental analysis. LWT - Food Science and Technology, 62, 1011-1018. https://doi.org/10.1016/j.lwt.2015.02.029
Mastebroek, H.D., Limburg, H., Gilles, T., Marvin, H.J.P. (2000). Occurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd.). Journal of the Science of Food and Agriculture, 80(1), 152-156. https://doi.org/10.1002/(SICI)1097-0010(20000101)80:1<152::AID-JSFA503>3.0.CO;2-P
Mazza, G., Oomah, B.D. (2003). Buckwheat. In B. Caballero (Ed.), Encyclopedia of food sciences and nutrition (pp. 692-699). Oxford: Academic Press. https://doi.org/10.1016/B0-12-227055-X/00132-2
Mburu, M.W., Gikonyo, N.K., Kenji, G.M., Mwasaru, A.M. (2011). Properties of a complementary food based on amaranth grain (Amaranthus cruentus) grown in Kenya. Journal of Agriculture and Food Technology, 1(9), 153-178.
Mikulikova, D., Kraic, J. (2006). Natural sources of health-promoting starch. Journal of Food and Nutrition Research, 45, 69-76.
Morishita, T., Yamaguchi, H., Degi, K. (2007). The contribution of polyphenols to antioxidative activity in common buckwheat and tartary buckwheat grain. Plant Production Science, 10, 99-104. https://doi.org/10.1626/pps.10.99
Moronta, J., Smaldini, P.L., Fossati, C.A., Anon, M.C., Docena, G.H. (2016). The anti-inflammatory SSEDIKE peptide from Amaranth seeds modulates IgE-mediated food allergy. Journal of Functional Foods, 25, 579-587. https://doi.org/10.1016/j.jff.2016.06.031
Mota, C., Nascimento, A.C., Santos, M., Delgado, I., Coelho, I., Rego, A., Matos, A.S., Torres, D., Castanheira, I. (2016a). The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amarant (Amaranthus sp.) and buckwheat (Fagopyrum esculentum). Journal of Food Composition and Analysis, 49, 57-64. https://doi.org/10.1016/j.jfca.2016.02.006
Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I. (2016b). Protein content and amino acids profile of pseudocereals. Food Chemistry, 193, 55-61. https://doi.org/10.1016/j.foodchem.2014.11.043
Myers, L.R., Putnam, H.D. (1988). Growing grain amaranth as a specialty crop. In Crop systems. University of Minnesota. FS-03458-GO.
Nascimento, A.C., Mota, C., Coelho, I., Gueifao, S., Santos, M., Matos, A.S., Gimenez, A., Lobo, M., Samman, N., Castanheira, I. (2014). Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chemistry, 148, 420-426. https://doi.org/10.1016/j.foodchem.2013.09.155
Oakenfull, D., Sidhu, G.S. (1990). Could saponins be a useful treatment for hypercolesterolaemia? European Journal of Clinical Nutrition, 44, 79-88.
Ogunremi, O.R., Agrawal, R., Sanni, A.I. (2015). Development of cereal-based functional food using cereal-mix substrate fermented with probiotic strain Pichia kudriavzevii OG32. Food Science and Nutrition, 3, 486-494. https://doi.org/10.1002/fsn3.239
Oomah, B.D., Mazza, G. (1996). Flavonoids and antioxidative activities in buckwheat. Journal of Agricultural and Food Chemistry, 44, 1746-1750. https://doi.org/10.1021/jf9508357
Öncel, E. (2017). Erişte üretiminde farklı oran ve kombinasyonlarda karabuğday, amarant ve kinoa unlarının kullanım imkanları. Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Konya, sy. 74.
Paiva, S.A.R., Russell, R.M. (1999). β-Carotene and other carotenoids as antioxidants. Journal of the American College of Nutrition, 18(59), 426-433. https://doi.org/10.1080/07315724.1999.10718880
Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernandez-Lopez, J., Perez-Alvarez, J., Viuda-Martos, M. (2018). Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Industrial Crops and Products, 111, 38-46. https://doi.org/10.1016/j.indcrop.2017.10.006
Pisoschi, A.M., Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55-74. https://doi.org/10.1016/j.ejmech.2015.04.040
Preetham Kumar, K.V., Dharmaraj, U., Sakhare, S.D., Inamdar, A.A. (2016). Preparation of protein and mineral rich fraction from grain amaranth and evaluation of its functional characteristics. Journal of Cereal Science, 69, 358-362. https://doi.org/10.1016/j.jcs.2016.05.002
Qian, J., Rayas-Duarte, P., Grant, L. (1998). Partial characterization of buckwheat (Fagopyrum esculentum) starch. Cereal Chemistry, 75(3), 365-373. https://doi.org/10.1094/CCHEM.1998.75.3.365
Ramos Diaz, J.M., Kirjoranta, S., Tenitz, S., Penttila, P.A., Serimaa, R., Lampi, A.-M., Jouppila, K. (2013). Use of amaranth, quinoa and kaniwa in extruded corn-based snacks. Journal of Cereal Science, 58(1), 59-67. https://doi.org/10.1016/j.jcs.2013.04.003
Ramos Diaz, J.M., Suuronen, J.-P., Deegan, K.C., Serimaa, R., Tuorila, H., Jouppila, K. (2015). Physical and sensory characteristics of corn-based extruded snacks containing amaranth, quinoa and kaniwa flour. LWT - Food Science and Technology, 64, 1047-1056. https://doi.org/10.1016/j.lwt.2015.07.011
Rickard, S.E., Thompson, L.U. (1997). Interactions and biological effects of phytic acid. In F. Shahidi (Ed.), Antinutrients and phytochemicals in food, ACS symposium series (662, pp. 294-312.), Washington DC: American Chemical Society. https://doi.org/10.1021/bk-1997-0662.ch017
Rocchetti, G., Chiodelli, G., Giuberti, G., Masoero, F., Trevisan, M., Lucini, L. (2017). Evaluation of phenolic profile and antioxidant capacity in gluten-free flours. Food Chemistry, 228, 367-373. https://doi.org/10.1016/j.foodchem.2017.01.142
Rodriguez-Sandoval, E., Sandoval, G., Cortes-Rodriguez, M. (2012). Effect of quinoa and potato flours on the thermomechanical and breadmaking properties of wheat flour. Brazilian Journal of Chemical Engineering, 29(3), 503-510. https://doi.org/10.1590/S0104-66322012000300007
Ross, A.B., Shepherd, M.J., Schüpphaus, M., Sinclair, V., Alfaro, B., Kamal-Eldin, A., Aman, P. (2003). Alkylresorcinols in cereals and cereal products. Journal of Agricultural and Food Chemistry, 51(14), 4111-4118. https://doi.org/10.1021/jf0340456
Ross, A.B., Svelander, C., Karlsson, G., Savolainen, O.I. (2017). Identification and quantification of even and odd chained 5-n alkylresorcinols, branched chain-alkylresorcinols and methylalkylresorcinols in Quinoa (Chenopodium quinoa). Food Chemistry, 220, 344-351. https://doi.org/10.1016/j.foodchem.2016.10.020
Ruales, J., Nair, B.M. (1992). Nutritional quality of the protein in quinoa (Chenopodium quinoa Willd) seeds. Plant Foods for Human Nutrition, 42, 1-12. https://doi.org/10.1007/BF02196067
Ruales, J., Nair, B.M. (1993). Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food Chemistry, 48, 131-136. https://doi.org/10.1016/0308-8146(93)90047-J
Sanz-Penella, J.M., Wronkowska, M., Soral-Smietana, M., Haros, M. (2013). Effect of whole amaranth flour on bread properties and nutritive value. LWT - Food Science and Technology, 50, 679-685. https://doi.org/10.1016/j.lwt.2012.07.031
Scalbert, A., Manach, C., Morand, C., Remesy, C., Jimenez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287-306. https://doi.org/10.1080/1040869059096
Schneeman, B.O. (1999). Building scientific consensus: The importance of dietary fiber. American Journal of Clinical Nutrition, 25, 691-699. https://doi.org/10.1093/ajcn/69.1.1
Schoenlechner, R., Siebenhandl, S., Berghofer, E. (2008). Pseudocereals. In: Arendt, E.K., Dal Bello, F. (Eds.), Gluten-free Cereal Products and Beverages, Ireland, Cork, pp. 149-176. https://doi.org/10.1016/B978-012373739-7.50009-5
Selimovic, A., Milicevic, D., Jasic, M., Selimovic, A., Ackar, D., Pesic, T. (2014). The effect of baking temperature and buckwheat flour addition on the selected properties of wheat bread. Croatian Journal of Food Science and Technology, 6(1), 43-50.
Srichuwong, S., Curti, D., Austin, S., King, R., Lamothe, L., Gloria-Hernandez, H. (2017). Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chemistry, 233, 1-10. https://doi.org/10.1016/j.foodchem.2017.04.019
Stokic, E., Mandic, A., Sakac, M., Misan, A., Pestoric, M., Simurina, O., Jambrec, D., Jovanov, P., Nedeljkovic, N., Milovanovic, I., Sedej, I. (2015). Quality of buckwheat-enriched wheat bread and its antihyperlipidemic effect in statin treated patients. LWT - Food Science and Technology, 63, 556-561. https://doi.org/10.1016/j.lwt.2015.03.023
Tang, Y., Li, X., Chen, P.X., Zhang, B., Hernandez, M., Zhang, H., Marcone, M.F., Liu, R., Tsao, R. (2015). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 174, 502-508. https://doi.org/10.1016/j.foodchem.2014.11.040
Taylor, J.R.N., Parker, M.L. (2002). Quinoa. In P.S. Belton and J.R.N. Taylor (Eds.), Pseudocereals and less common cereals: Grain properties and utilization (pp. 93-122). Berlin: Springer Verlag. https://doi.org/10.1007/978-3-662-09544-7_3
Taylor, J.R.N., Belton, P.S., Beta, T., Duodu, K.G. (2014). Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. Journal of Cereal Science, 59, 257-275. https://doi.org/10.1016/j.jcs.2013.10.009
Turkut, G.M., Cakmak, H., Kumcuoğlu, S., Tavman, S. (2016). Effect of quinoa flour on gluten-free bread batter rheology and bread quality. Journal of Cereal Science, 69, 174-181. https://doi.org/10.1016/j.jcs.2016.03.005
Valcarcel-Yamani, B., Lannes, S.C.S. (2012). Applications of quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus spp.) and their influence in the nutritional value of cereal based foods. Food and Public Health, 2(6), 265-275.
van der Kamp, J.W., Poutanen, K., Seal, C.J., Richardson, D.P. (2014). The HEALTHGRAIN definition of 'whole grain'. Food and Nutrition Research, 58(1), 22100. https://doi.org/10.3402/fnr.v58.22100
Verardo, V., Glicerina, V., Cocci, E., Frenich, A.G., Romani, S., Caboni, M.F. (2018). Determination of free and bound phenolic compounds and their antioxidant activity in buckwheat bread loaf, crust and crumb. LWT - Food Science and Technology, 87, 217-224. https://doi.org/10.1016/j.lwt.2017.08.063
Vilcacundo, R., Hernandez-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1-6. https://doi.org/10.1016/j.cofs.2016.11.007
Wojtowicz, A., Kolasa, A., Moscicki, L. (2013). Influence of buckwheat addition on physical properties, texture and sensory characteristics of extruded corn snacks. Polish Journal of Food and Nutrition Sciences, 63(1), 239-244. https://doi.org/10.2478/v10222-012-0076-2
Yıldız, G., Bilgiçli, N. (2015). Utilisation of buckwheat flour in leavened and unleavened Turkish flat breads. Quality Assurance and Safety of Crops & Foods, 7(2), 207-215. https://doi.org/10.3920/QAS2013.0273
Zhang, Z.-L., Zhou, M.-L., Tang, Y., Li, F.-L., Tang, Y.-X., Shao, J.-R., Xue, W.-T., Wu, Y.-M. (2012). Bioactive compounds in functional buckwheat food. Food Research International, 49, 389-395. https://doi.org/10.1016/j.foodres.2012.07.035
Zielinski, H., Ciska, E., Kozlowska, H. (2001). The cereal grains: focus on vitamin E. Czech Journal of Food Science, 19, 182-188.https://doi.org/10.17221/6605-CJFS
Bilgiçli, N., & Bilgiçli, N. (2020). Tahıl benzeri ürünler: Bileşimi, beslenme-sağlık üzerine etkileri ve tahıl ürünlerinde kullanımı. Food and Health, 6(1), 41-56. https://doi.org/10.3153/FH20006
Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.
Open Access Statement:
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Archiving Policy:
Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).