Çevresel Kirletici Etofenproks'un Zebra Balıklarında (Danio rerio) Subletal Genotoksik Etkileri
Yıl 2020,
Cilt: 4 Sayı: 1, 14 - 18, 15.03.2020
Neslihan Ağırbaşlı
Aysel Çağlan Günal
Gülsüm Koçak
Aylin Sepici Dinçel
Öz
Bu çalışmada ekotoksikolojik araştırmalarda model
organizmalardan olan zebra balığı (Danio rerio), etofenproksun
sucul ekosistemler üzerindeki öldürücü etkilerini belirlemek
için kullanılmıştır. Ester olmayan sentetik piretroid
etofenproks (2-(4-etoksifenil)-2-metilpropil 3-fenoksibenzileter
phenoxybenzylether), haşere kontrol programları ile direkt su
aracılığı ile ya da dolaylı olarak yağmur suları ve yüzey suları
ile vücuda alınabilir. Deney grupları 96. saat LC50 değeri 1/10
(8.1 μg/L) ve 1/100 (0.81 μg/L) dozunda etofenproksa 48 ve
96 saat boyunca maruz bırakılmıştır. Oksidatif DNA hasarını
değerlendirmek için tüm vücut zebra balıkları homojenize edilerek
DNA izolasyonu yapıldı. Daha sonra DNA örnekleri hidrolize
edilerek, oksidatif hasar 8-hidroksi-2’deoksiguanozin (8OHdG,
ng/g doku) olarak enzim immun yöntem ile ölçülmüştür. Kontrol
grubu ile karşılaştırıldığında her iki grupta, düşük ve yüksek her
iki dozda 8OHdG düzeyleri yüksek gözlendi. DNA hasar düzeyi
96. saat yüksek ve düşük doz etofenproksa maruz bırakılan grup
ile 48. saat etofenproksa maruz kalan grup ile karşılaştırıldığında
her iki dozda istatistiksel olarak anlamlı yüksek bulundu. Sonuç
olarak subletal konsantrasyonlarda etofenproksa maruziyetin
zebra balıklarında akut genotoksik etki gösterdiği ve doku hasarına
yol açtığı, maruziyet süresinin devamı ile tamir mekanizmalarının
etkin olabileceği düşünülmektedir.
Destekleyen Kurum
Gazi Üniversitesi Bilimsel Proje Birimi
Proje Numarası
01/2015-38
Kaynakça
- 1. FAO Specifications and Evaluations for Agricultural Pesticides. Etofenprox. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Etofenprox07.pdf (Last accessed: November 2019)
- 2. Sreehari U, Mittal PK, Razdan RK, Dash AP, Ansari MA. Impact of etofenprox (Vectron 20 WP) indoor residual spray on malaria transmission. J Med Res 2009; 129 (5): 593-8.
- 3. Vasquez ME, Gunasekara AS, Cahill TM, Tjeerdema RS. Partitioning of etofenprox under simulated California ricegrowing conditions. PestManag Sci 2010; 66(1):28-34.
- 4. USEPA. United States Environmental Protection Agency Pesticides: Registration Review Etofenprox Summary Document (7407), 2007. https://archive.epa.gov/oppsrrd1/
registration_review/web/html/reg_review_status.html (Erişim tarihi: 24.02.2020).
- 5. Yameogo L, Traore K, Back C, Hougard JM, Calamari D. Risk assessment of etofenprox (vectron®) on non-target aquatic fauna compared with other pesticides used as
Simulium larvicide in a tropical environment. Chemosphere 2001; 42 (8): 965-974.
- 6. Zhang ZY, Yu XY, Wang DL, Yan HJ, Liu XJ. Acute toxicity to zebrafish of two organophosphates and four pyrethroids and their binary mixtures. Pest Man Sci 2010; 66 (1): 84-89.
- 7. WHO. WHO Specifications and Evaluations for Public Health Pesticides. Etofenprox. http://www10.who.int/pqvector-control/prequalified-lists/ETOFENPROX.pdf (Last
accessed: November 2019)
- 8. De Lorenzo ME, De Leon RG. Toxicity of the insecticide etofenprox to three life stages of the grass shrimp, Palaemonetes pugio. Archives of Environ Contam Toxicol
2010; 58 (4): 985-990.
- 9. Benli AC. The influence of etofenprox on narrow clawed crayfish (Astacus leptodactylus Eschscholtz, 1823): Acute toxicity and sublethal effects on histology, hemolymph
parameters, and total hemocyte counts. Environ Toxicol 2015;30(8):887-894.
- 10. Sancho MD, Ferrando M, Gamon, Andreu-Moliner E. Uptake and elimination kinetics of a pesticide in the liver of the European eel, J. Environ.Sci Health B 1998; (33):83–98.
- 11. Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest 2012; (122): 2337-43.
- 12. Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, & Kyrylenko, S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation.
Electromagn Biol Med 2016;35(2):186-2.
- 13. Valavanidis A, Vlachogianni T, Constantinos F. 8-Hydroxy-2′deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C 2009; 27 (2):120-39.
- 14. Floyd, R. A., Watson, J. J., Wong, P. K., Altmiller, D. H., & Rickard, R. C. (1986). Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation. Free Radical Research Communications, 1(3), 163–172.
- 15. Hamilton, M. L., Guo, Z. M., Fuller, C. D., Van Remmen, H., Ward, W. F., Austad, S. N., et al. (2001). A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear
and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Research, 29, 2117–2126.
- 16. Yndestad A, Neurauter CG, Oie E, Forstrom RJ, Vinge LE, Eide, L., & Bjørås, M. Up-regulation of myocardial DNA base excision repair activities in experimental heart failure. Mutat Res 2009; 666(1-2): 32-8.
- 17. Richter C. Free radical mediated DNA oxidation. In: Wallace KB, editor. Free Radical Toxicology. Target Organ Toxicology Series. Washington: Taylor & Francis, 1997:89-111.
- 18. Dizdaroglu M. Chemical determination of free radicalinduced damage to DNA. Free Radical Bio Med 1991;10(3-4): 225-42.
- 19. Loft S, Hogh Danielsen P, Mikkelsen L., Risom L, Forchhammer L, Moller P. Biomarkers of oxidative damage to DNA and repair. Biochem Soc Trans 2008; 36 (5): 1071-
76.
- 20. Jia, Y., Xia, X., Zhang, W., W., Ji, X. L., Chen, J. J., Li, L., & Chang, Z. J. Characterization and expression of dax1 during embryonic and gonad development in the carp (Cyprinus carpio). Turk J Biochem 2017; 42(2),139-148. doi:10.1515/tjb-2016-0115.
- 21. Xu GW, Yao QH, Weng QF, Su BL, Zhang X, Xiong JH.Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. J Pharmaceut Biomed 2004; 36(1): 101-4.
- 22. Hojo Y, Shiraki A, Tsuchiya T, Shimamoto K, Ishii Y, Suzuki K, Mitsumori K. Liver tumor promoting effect of etofenprox in rats and its possible mechanism of action. J Toxicol Sci. 2012;37(2):297-306.
- 23. Teodoro M, Briguglio G, Fenga C, Costa C. Genetic polymorphisms as determinants of pesticide toxicity: Recent advances. Toxicology Reports. 2019 Jun 7; 6: 564-570.
- 24. Jabłońska-Trypuć A., Wołejko E., Wydro U., Butarewicz A. The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor. J. Environ. Sci. Health B. 2017; 52:483–494.
- 25. Benli ACK, Şahin D, Koçak B, Sepici Dinçel A, Karbarile maruz kalan tatlı su istakozlarında (Astacus leptodactylus Eschscholtz, 1823) antioksidan enzim düzeyleri. Turk J Bioch 2012; 37(2): 162-166.
The Sublethal Genotoxic Effects of Environmental Pollutants of Etofenprox on Zebrafish (Danio rerio)
Yıl 2020,
Cilt: 4 Sayı: 1, 14 - 18, 15.03.2020
Neslihan Ağırbaşlı
Aysel Çağlan Günal
Gülsüm Koçak
Aylin Sepici Dinçel
Öz
ecotoxicological research, was used to determine the sublethal
effects of etofenprox on aquatic ecosystems. Non-ester synthetic
pyrethroid etofenprox (2-(4-ethoxyphenyl)-2-methylpropyl
3-phenoxybenzylether) can be taken into the body either by direct
water or indirectly with rainwater and surface waters of pest control
programs. Experimental groups were exposed to etofenprox for 48
and 96 hours at the 96th hour LC50 1/10 (8.1 μg/L) and 1/100 (0.81
μg/L) dose. In order to evaluate genomic oxidative DNA damage,
whole body zebra fish were homogenized and DNA isolation was
performed. DNA samples are then hydrolyzed and the oxidative
damage was measured by commercial kit as EIA. Compared to
the control group, low and high doses of 8OHdG in both groups
were high. DNA damage level was found to be statistically
significantly higher in both doses compared to the 96th hour group
exposed to high and low dose etofenprox and the 48th hour group
exposed to etofenprox. As a result, it is suggested that the sublethal
concentrations of etofenprox has acute genotoxic effect in zebra
fish and causes tissue damage and related with the duration of
exposure repair mechanisms may be effective.
Proje Numarası
01/2015-38
Kaynakça
- 1. FAO Specifications and Evaluations for Agricultural Pesticides. Etofenprox. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Etofenprox07.pdf (Last accessed: November 2019)
- 2. Sreehari U, Mittal PK, Razdan RK, Dash AP, Ansari MA. Impact of etofenprox (Vectron 20 WP) indoor residual spray on malaria transmission. J Med Res 2009; 129 (5): 593-8.
- 3. Vasquez ME, Gunasekara AS, Cahill TM, Tjeerdema RS. Partitioning of etofenprox under simulated California ricegrowing conditions. PestManag Sci 2010; 66(1):28-34.
- 4. USEPA. United States Environmental Protection Agency Pesticides: Registration Review Etofenprox Summary Document (7407), 2007. https://archive.epa.gov/oppsrrd1/
registration_review/web/html/reg_review_status.html (Erişim tarihi: 24.02.2020).
- 5. Yameogo L, Traore K, Back C, Hougard JM, Calamari D. Risk assessment of etofenprox (vectron®) on non-target aquatic fauna compared with other pesticides used as
Simulium larvicide in a tropical environment. Chemosphere 2001; 42 (8): 965-974.
- 6. Zhang ZY, Yu XY, Wang DL, Yan HJ, Liu XJ. Acute toxicity to zebrafish of two organophosphates and four pyrethroids and their binary mixtures. Pest Man Sci 2010; 66 (1): 84-89.
- 7. WHO. WHO Specifications and Evaluations for Public Health Pesticides. Etofenprox. http://www10.who.int/pqvector-control/prequalified-lists/ETOFENPROX.pdf (Last
accessed: November 2019)
- 8. De Lorenzo ME, De Leon RG. Toxicity of the insecticide etofenprox to three life stages of the grass shrimp, Palaemonetes pugio. Archives of Environ Contam Toxicol
2010; 58 (4): 985-990.
- 9. Benli AC. The influence of etofenprox on narrow clawed crayfish (Astacus leptodactylus Eschscholtz, 1823): Acute toxicity and sublethal effects on histology, hemolymph
parameters, and total hemocyte counts. Environ Toxicol 2015;30(8):887-894.
- 10. Sancho MD, Ferrando M, Gamon, Andreu-Moliner E. Uptake and elimination kinetics of a pesticide in the liver of the European eel, J. Environ.Sci Health B 1998; (33):83–98.
- 11. Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest 2012; (122): 2337-43.
- 12. Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, & Kyrylenko, S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation.
Electromagn Biol Med 2016;35(2):186-2.
- 13. Valavanidis A, Vlachogianni T, Constantinos F. 8-Hydroxy-2′deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C 2009; 27 (2):120-39.
- 14. Floyd, R. A., Watson, J. J., Wong, P. K., Altmiller, D. H., & Rickard, R. C. (1986). Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation. Free Radical Research Communications, 1(3), 163–172.
- 15. Hamilton, M. L., Guo, Z. M., Fuller, C. D., Van Remmen, H., Ward, W. F., Austad, S. N., et al. (2001). A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear
and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Research, 29, 2117–2126.
- 16. Yndestad A, Neurauter CG, Oie E, Forstrom RJ, Vinge LE, Eide, L., & Bjørås, M. Up-regulation of myocardial DNA base excision repair activities in experimental heart failure. Mutat Res 2009; 666(1-2): 32-8.
- 17. Richter C. Free radical mediated DNA oxidation. In: Wallace KB, editor. Free Radical Toxicology. Target Organ Toxicology Series. Washington: Taylor & Francis, 1997:89-111.
- 18. Dizdaroglu M. Chemical determination of free radicalinduced damage to DNA. Free Radical Bio Med 1991;10(3-4): 225-42.
- 19. Loft S, Hogh Danielsen P, Mikkelsen L., Risom L, Forchhammer L, Moller P. Biomarkers of oxidative damage to DNA and repair. Biochem Soc Trans 2008; 36 (5): 1071-
76.
- 20. Jia, Y., Xia, X., Zhang, W., W., Ji, X. L., Chen, J. J., Li, L., & Chang, Z. J. Characterization and expression of dax1 during embryonic and gonad development in the carp (Cyprinus carpio). Turk J Biochem 2017; 42(2),139-148. doi:10.1515/tjb-2016-0115.
- 21. Xu GW, Yao QH, Weng QF, Su BL, Zhang X, Xiong JH.Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. J Pharmaceut Biomed 2004; 36(1): 101-4.
- 22. Hojo Y, Shiraki A, Tsuchiya T, Shimamoto K, Ishii Y, Suzuki K, Mitsumori K. Liver tumor promoting effect of etofenprox in rats and its possible mechanism of action. J Toxicol Sci. 2012;37(2):297-306.
- 23. Teodoro M, Briguglio G, Fenga C, Costa C. Genetic polymorphisms as determinants of pesticide toxicity: Recent advances. Toxicology Reports. 2019 Jun 7; 6: 564-570.
- 24. Jabłońska-Trypuć A., Wołejko E., Wydro U., Butarewicz A. The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor. J. Environ. Sci. Health B. 2017; 52:483–494.
- 25. Benli ACK, Şahin D, Koçak B, Sepici Dinçel A, Karbarile maruz kalan tatlı su istakozlarında (Astacus leptodactylus Eschscholtz, 1823) antioksidan enzim düzeyleri. Turk J Bioch 2012; 37(2): 162-166.