Araştırma Makalesi
BibTex RIS Kaynak Göster

Makine Öğrenmesi Yaklaşımlarıyla İklim Değişikliğinin Hidroelektrik Üretim Üzerindeki Etkisinin Modellenmesi: Ceyhan Havzası Menzelet Barajı Örneği

Yıl 2025, Cilt: 7 Sayı: 2, 131 - 144, 31.12.2025
https://doi.org/10.59940/jismar.1719556

Öz

Bu çalışmanın temel amacı, iklimsel ve hidrolojik değişkenliklerin hidroelektrik enerji üretimi üzerindeki etkisini modellemek ve gelecekteki su-enerji yönetimi senaryoları için bilimsel altyapı sunmaktır. Aynı zamanda, makine öğrenmesi yaklaşımlarının enerji tahmin modellerinde uygulanabilirliğini test etmek ve bölgesel ölçekte karar vericilere yol gösterici bir analiz sağlamaktır. Bu amaçla, 1999–2020 yıllarına ait günlük hidro-meteorolojik gözlem verileri (yağış, sıcaklık, buharlaşma) üzerinde, makine öğrenmesi model yaklaşımı kullanılarak hidroelektrik enerji üretimi tahminlemesi yapılmıştır. Modelleme sürecinde tahminleme için Random Forest, Decision Tree, Gradient Boosting ve Support Vector Regression algoritmaları kullanılmış; her bir model GridSearchCV yöntemiyle hiperparametre optimizasyonuna tabi tutulmuştur. Model başarısı, R², MAE ve MSE gibi hata metrikleri ile karşılaştırılmış ve en yüksek başarı gösteren algoritma belirlenmiştir. Belirlenen en iyi yaklaşım kullanılarak, HadGEM2-ES, GFDL-ESM2M ve MPI-ESM-MR iklim modellerinden elde edilen 2023–2098 dönemi projeksiyon verileri (RCP 4.5 ve RCP 8.5 senaryoları altında) ile geleceğe yönelik enerji üretimi tahminleri gerçekleştirilmiştir. Çalışma, iklim değişikliğinin hidroelektrik enerji potansiyeli üzerindeki etkilerini değerlendirmek açısından literatüre önemli katkı sunacaktır.

Kaynakça

  • [1] Climate Change Report: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge Uni Press, 2021.
  • [2] Zhou, Y., Tol, R. S. J., & Clarke, L. E. Climate policy and the optimal use of hydropower, 2015.
  • [3] van Vliet, M. T. H., Sheffield, J., Wiberg, D., & Wood, E. F. Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environmental Research Letters, 11(12), 124021, 2016. Doi:10.1088/1748-9326/11/12/124021
  • [4] Devlet Su İşleri Genel Müdürlüğü (DSİ). Türkiye Barajları ve Hidroelektrik Santralleri Raporu. Ankara: DSİ Yayınları, 2020.
  • [5] Elektrik İşleri Etüt İdaresi (EIE). Türkiye Elektrik Üretim Durumu ve Potansiyeli Raporu. Ankara: EIE Genel Müdürlüğü, 2020.
  • [6] Yilmaz, M., Aydin, N., & Bayazit, M. Regression-based modeling of hydropower generation at Keban Dam, Turkey. Renewable and Sustainable Energy Reviews, 95, 312–322, 2018. Doi:10.1016/j.rser.2018.07.003.
  • [7] Kaya, M., Demir, Y., & Uysal, G. Application of Artificial Neural Networks in Hydrological Forecasting: A Case Study of the Euphrates Basin. Journal of Hydrologic Engineering, 25(4), 04020008, 2020. Doi:10.1061/(ASCE)HE.1943-5584.0001964.
  • [8] Rashid, M. M., Khan, A., & Ahmad, I. Application of Support Vector Regression in Hydropower Generation Forecasting under Climate Variability. Renewable Energy, 176, 780–792, 2021. Doi:10.1016/j.renene.2021.05.111.
  • [9] Kendall, M. G.. Rank Correlation Methods (4th ed.). London: Charles Griffin, 1975.
  • [10] Mann, H. B. Nonparametric tests against trend. Econometrica, 13(3), 245–259, 1945. Doi:10.2307/1907187.
  • [11] Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389, 1968. Doi:10.2307/2285891.
  • [12] Yu, Y. S., Zou, S., & Whittemore, D. Non-parametric trend analysis of water quality data of rivers in Kansas. Journal of Hydrology, 150(1), 61-80, 1993.
  • [13] Hirsch, R. M., Slack, J. R., & Smith, R. A. Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107–121, 1993.
  • [14] Breiman, L. Random forests. Machine Learning, 45(1), 5–32, 2001. Doi:10.1023/A:1010933404324.
  • [15] Quinlan, J. R. Induction of decision trees. Machine Learning, 1(1), 81–106, 1986. Doi:10.1007/BF00116251.
  • [16] Friedman, J. H. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232, 2001. Doi:10.1214/aos/ 1013203451.
  • [17] Smola, A. J., & Schölkopf, B. A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222, 2004. Doi:10.1023/B:STCO. 0000035301.49549.88.
  • [18] Taylor, K. E., Stouffer, R. J., & Meehl, G. A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498, 2012. Doi:10.1175/BAMS-D-11-00094.1.
  • [19] Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., ... & Woodward, S. Development and evaluation of an Earth-System model–HadGEM2. Geoscientific Model Development, 4(4), 1051–1075, 2011. Doi:10.5194/gmd-4-1051-2011.
  • [20] Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., ... & Krasting, J. P. GFDL’s ESM2 global coupled climate–carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. Journal of Climate, 25(19), 6646–6665, 2012. Doi:10.1175/JCLI-D-11-00560.1.
  • [21] Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., ... & Stevens, B. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5(3), 572–597, 2013. Doi:10.1002/jame.20038.
  • [22] Van Rossum, G. Python tutorial (Technical Report CS R9526). Centrum voor Wiskunde en Informatica (CWI), Amsterdam, Netherlands, 1995.
  • [23] Python Software Foundation. Python Programming Language. https://www.python.org (last access date:May 2025), 1995.
  • [24] Yue, S., Pilon, P., & Cavadias, G. Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of hydrology, 259(1-4), 254-271, 2002.
  • [25] Gök, M. (Editor). Makine Öğrenmesi Algoritmaları, Nobel yayıncılık, ISBN: 978-625-371-882-4, sf:131-136, 2024.

Modeling the Impact of Climate Change on Hydroelectric Production Using Machine Learning Approaches: The Case of Menzelet Dam in the Ceyhan Basin

Yıl 2025, Cilt: 7 Sayı: 2, 131 - 144, 31.12.2025
https://doi.org/10.59940/jismar.1719556

Öz

The main objective of this study is to model the effects of climatic and hydrological variability on hydroelectric energy production and to provide a scientific basis for future water-energy management scenarios. At the same time, to test the applicability of machine learning approaches in energy estimation models and to provide a guiding analysis for decision makers at the regional scale. For this purpose, hydroelectric energy production estimation was performed on daily hydro-meteorological observation data (precipitation, temperature, evaporation) for the years 1999–2020 using machine learning model approach. Random Forest, Decision Tree, Gradient Boosting and Support Vector Regression algorithms were used for estimation in the modeling process; each model was subjected to hyperparameter optimization with the GridSearchCV method. Model success was compared with error metrics such as R², MAE and MSE and the highest success algorithm was determined. Using the best approach determined, future energy production estimates were carried out with the projection data obtained from HadGEM2-ES, GFDL-ESM2M and MPI-ESM-MR climate models for the period 2023–2098 (under RCP 4.5 and RCP 8.5 scenarios). The study will make a significant contribution to literature in terms of evaluating the effects of climate change on hydroelectric energy potential.

Kaynakça

  • [1] Climate Change Report: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge Uni Press, 2021.
  • [2] Zhou, Y., Tol, R. S. J., & Clarke, L. E. Climate policy and the optimal use of hydropower, 2015.
  • [3] van Vliet, M. T. H., Sheffield, J., Wiberg, D., & Wood, E. F. Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environmental Research Letters, 11(12), 124021, 2016. Doi:10.1088/1748-9326/11/12/124021
  • [4] Devlet Su İşleri Genel Müdürlüğü (DSİ). Türkiye Barajları ve Hidroelektrik Santralleri Raporu. Ankara: DSİ Yayınları, 2020.
  • [5] Elektrik İşleri Etüt İdaresi (EIE). Türkiye Elektrik Üretim Durumu ve Potansiyeli Raporu. Ankara: EIE Genel Müdürlüğü, 2020.
  • [6] Yilmaz, M., Aydin, N., & Bayazit, M. Regression-based modeling of hydropower generation at Keban Dam, Turkey. Renewable and Sustainable Energy Reviews, 95, 312–322, 2018. Doi:10.1016/j.rser.2018.07.003.
  • [7] Kaya, M., Demir, Y., & Uysal, G. Application of Artificial Neural Networks in Hydrological Forecasting: A Case Study of the Euphrates Basin. Journal of Hydrologic Engineering, 25(4), 04020008, 2020. Doi:10.1061/(ASCE)HE.1943-5584.0001964.
  • [8] Rashid, M. M., Khan, A., & Ahmad, I. Application of Support Vector Regression in Hydropower Generation Forecasting under Climate Variability. Renewable Energy, 176, 780–792, 2021. Doi:10.1016/j.renene.2021.05.111.
  • [9] Kendall, M. G.. Rank Correlation Methods (4th ed.). London: Charles Griffin, 1975.
  • [10] Mann, H. B. Nonparametric tests against trend. Econometrica, 13(3), 245–259, 1945. Doi:10.2307/1907187.
  • [11] Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389, 1968. Doi:10.2307/2285891.
  • [12] Yu, Y. S., Zou, S., & Whittemore, D. Non-parametric trend analysis of water quality data of rivers in Kansas. Journal of Hydrology, 150(1), 61-80, 1993.
  • [13] Hirsch, R. M., Slack, J. R., & Smith, R. A. Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107–121, 1993.
  • [14] Breiman, L. Random forests. Machine Learning, 45(1), 5–32, 2001. Doi:10.1023/A:1010933404324.
  • [15] Quinlan, J. R. Induction of decision trees. Machine Learning, 1(1), 81–106, 1986. Doi:10.1007/BF00116251.
  • [16] Friedman, J. H. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232, 2001. Doi:10.1214/aos/ 1013203451.
  • [17] Smola, A. J., & Schölkopf, B. A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222, 2004. Doi:10.1023/B:STCO. 0000035301.49549.88.
  • [18] Taylor, K. E., Stouffer, R. J., & Meehl, G. A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498, 2012. Doi:10.1175/BAMS-D-11-00094.1.
  • [19] Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., ... & Woodward, S. Development and evaluation of an Earth-System model–HadGEM2. Geoscientific Model Development, 4(4), 1051–1075, 2011. Doi:10.5194/gmd-4-1051-2011.
  • [20] Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., ... & Krasting, J. P. GFDL’s ESM2 global coupled climate–carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. Journal of Climate, 25(19), 6646–6665, 2012. Doi:10.1175/JCLI-D-11-00560.1.
  • [21] Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., ... & Stevens, B. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5(3), 572–597, 2013. Doi:10.1002/jame.20038.
  • [22] Van Rossum, G. Python tutorial (Technical Report CS R9526). Centrum voor Wiskunde en Informatica (CWI), Amsterdam, Netherlands, 1995.
  • [23] Python Software Foundation. Python Programming Language. https://www.python.org (last access date:May 2025), 1995.
  • [24] Yue, S., Pilon, P., & Cavadias, G. Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of hydrology, 259(1-4), 254-271, 2002.
  • [25] Gök, M. (Editor). Makine Öğrenmesi Algoritmaları, Nobel yayıncılık, ISBN: 978-625-371-882-4, sf:131-136, 2024.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veri Mühendisliği ve Veri Bilimi
Bölüm Araştırma Makalesi
Yazarlar

Ezgi Öztürk İspir 0009-0007-4338-7080

Şerife Yurdagül Kumcu 0000-0002-2367-1531

H. Erdinç Koçer 0000-0002-0799-2140

Gönderilme Tarihi 14 Haziran 2025
Kabul Tarihi 2 Temmuz 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Öztürk İspir, E., Kumcu, Ş. Y., & Koçer, H. E. (2025). Modeling the Impact of Climate Change on Hydroelectric Production Using Machine Learning Approaches: The Case of Menzelet Dam in the Ceyhan Basin. Journal of Information Systems and Management Research, 7(2), 131-144. https://doi.org/10.59940/jismar.1719556