Araştırma Makalesi
BibTex RIS Kaynak Göster

Plastik Enjeksiyon Komponentlerinde Otomatik Hata Tespiti için Görüntü İşleme ve PLC Tabanlı Sistem Tasarımı

Yıl 2025, Cilt: 7 Sayı: 2, 163 - 174, 31.12.2025
https://doi.org/10.59940/jismar.1729853

Öz

Günümüzde otomasyon sistemlerinde, özellikle plastik enjeksiyon sektöründe faaliyet gösteren üreticiler için üretim bandından çıkan nihai ürünün kalitesi en önemli etkenlerden biridir. Bu bağlamda, üreticiler üretimin son aşaması olan kalite kontrol işlemlerini minumum hata ile gerçekleştirmek istemektedirler. Geleneksel yöntemlere alternatif olarak, üreticilerin ihtiyaç ve taleplerine hızlı yanıt verebilecek için tam otomasyonlu bir sistem geliştirilmiştir. Bu çalışmada, plastik enjeksiyon komponentlerinin kalite kontrolünü otomatikleştirmek amacıyla, PLC tabanlı görüntü işlemeyle sınıflandırma ve fiziksel ayrıştırma sistemi tasarlanarak gerçekleştirilmiştir. Görüntü işleme işlemleri, Python dili ve OpenCV kütüphanesi kullanılarak geliştirilmiştir. Plastik enjeksiyon numune komponentlerine HSV renk uzayında eşikleme ve kontur analizi yapılmıştır. Kameradan alınan görüntülerde, RGB’den HSV renk uzayına yapılan dönüşümler sayesinde komponentlerin rengi ve geometrik şekli başarılı bir şekilde tanımlanmıştır. OpenCV kütüphaneleri ile desteklenen görüntü işleme algoritmaları, kameradan alınan görüntülerin anlık işlenmesi sağlanmıştır. Görüntü verileri üzerinden renk ve geometrik şekil tespiti yapılmıştır. Tespiti yapılan komponentler, GUI üzerinden kullanıcı tarafından belirlenen hatalı renk ve şekil değerlendirilmesi sonucu PLC’ye Modbus RS-232 seri haberleşme protokolü ile tetikleme sinyali gönderilmiştir. PLC, bu sinyali pnömatik silindire ileterek çalışmasını sağlamıştır. Pnömatik silindirin hareketi sonucunda hatalı komponentler, konveyör hattından otomatik olarak ayrıştırılmıştır. Sistem üzerinde yapılan testler kapsamında, farklı renk ve şekil kombinasyonlarına sahip numune komponentler kullanılarak mavi dairede %100, yeşil yıldızda %95.00, sarı üçgende %98.33 ve turuncu kare için ise %98.33 doğruluk oranına ulaşılmıştır.

Kaynakça

  • [1] Ciofu, C., & Mindru, D. T. (2013). Injection and micro injection of polymeric plastics materials: a review. Int. J. Mod. Manufact. Technol, 1, 49-68.
  • [2] Senthilvelan, S., & Gnanamoorthy, R. (2006). Fiber reinforcement in injection molded nylon 6/6 spur gears. Applied composite materials, 13(4), 237-248.
  • [3] Rosato, D. V., & Rosato, M. G. (2012). Injection molding handbook. Springer Science & Business Media..
  • [4] Muresan, M. P., Cireap, D. G., & Giosan, I. (2020, September). Automatic vision inspection solution for the manufacturing process of automotive components through plastic injection molding. In 2020 IEEE 16th international conference on intelligent computer communication and processing (ICCP) (pp. 423-430). IEEE.
  • [5] Rigelsford, J. (2001). Industrial image processing: Visual quality control in manufacturing. Sensor Review, 21(2).
  • [6] Huang, J., Huang, Z., Li, C., & Liu, J. (2025). Research on Defect Detection Method of Motor Control Board Based on Image Processing. arXiv preprint arXiv:2505.17493.
  • [7] Xiong, C., Wang, W., & Song, R. (2025). Structural Design and Grasping Control Strategy of an Intelligent Sorting Robotic Arm Based on Machine Vision. Journal of Electrical Systems, 21.
  • [8] Tang, B., Chen, L., Sun, W., & Lin, Z. K. (2023). Review of surface defect detection of steel products based on machine vision. IET Image Processing, 17(2), 303-322
  • [9] Roslan, M. I. B., Ibrahim, Z., & Abd Aziz, Z. (2022, May). Real-time plastic surface defect detection using deep learning. In 2022 IEEE 12th symposium on computer applications & industrial electronics (ISCAIE) (pp. 111-116). IEEE.
  • [10] Adamo, F., Attivissimo, F., Di Nisio, A., & Savino, M. (2009). A low-cost inspection system for online defects assessment in satin glass. Measurement, 42(9), 1304-1311.
  • [11] Şengül, Ö., Öztürk, S., & Kuncan, M. (2020). PLC ve Operatör Panel Kullanarak Konveyör Bantta Renk Temelli Nesne Ayrıştırma. European Journal of Science and Technology, 401-412.
  • [12] Liu, N., Zhang, Y., & Wang, Z. (2025). Hybrid Model and Data-Driven Optimal PID Control with Enhanced Disturbance Rejection. IEEE Transactions on Automation Science and Engineering.
  • [13] Bayrakcı, H. C., & Büyükpatpat, H. (2021). PLC ve SCADA kontrol yöntemleri ile sıvı dolum otomasyonu. Avrupa Bilim ve Teknoloji Dergisi, (27), 283-291.
  • [14] S. Şentürk and B. Satıcı, “İç mekandaki yüzeylerin görsel özellikleri ve işık arasındaki ilişki,” 2022. [Online]. Available: www.skupit.com.tr. Accessed: Aug. 04, 2025.
  • [15] Ş. Öztürk, “Cam üretim hatalarının görüntü işleme tabanlı bulunması,” Ms.C dissertation, Selçuk Univ., Turkey, 2015.
  • [16] A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits and Devices Magazine, vol. 21, no. 3, pp. 6–20, May 2005, doi: 10.1109/MCD.2005.1438751.
  • [17] Wang, P. (2024, November). CMOS image sensor applications and working principles. In 2nd International Conference on Mechatronic Automation and Electrical Engineering (ICMAEE 2024) (Vol. 2024, pp. 98-104). IET.
  • [18] Umaru, K., Marlon, M., Nansukusa, Y., Asikuru, S., Ritah, N., & Zaina, K. (2025). PLC Based Speed Control in a Color Sorting System: A Design and Simulation Perspective. Journal of Engineering, Technology, and Applied Science (JETAS), 7(1), 37-51.
  • [19] Kusnandar, T., Santoso, J., & Surendro, K. (2024). Enhancing Color Selection in HSV Color Space. Ingenierie des Systemes d'Information, 29(4), 1483.
  • [20] G. Saravanan, G. Yamuna, and S. Nandhini, “Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models,” International Conference on Communication and Signal Processing, ICCSP 2016, pp. 462–466, Nov. 2016, doi: 10.1109/ICCSP.2016.7754179.
  • [21] Chernov, V., Alander, J., & Bochko, V. (2015). Integer-based accurate conversion between RGB and HSV color spaces. Computers & Electrical Engineering, 46, 328-337.
  • [22] Corso, R., Khan, F., Yezzi, A., & Comelli, A. (2025). Features for Active Contour and Surface Segmentation: A Review: R. Corso et al. Archives of Computational Methods in Engineering, 1-27.
  • [23] S. Kocer, O. Dundar, and R. Butuner, Programmable Smart Microcontroller Cards EDITORS. 2021. [Online]. Available: www.isres.org. Accessed: Feb. 08, 2025.
  • [24] Al Agha, A., Zidan, A. M., Ramzan, M., Shafique, A., Abbas, S., Nazar, M., & Al Garalleh, H. (2025). Analysis of active and passive control of fluid with fractional derivative. Numerical Heat Transfer, Part A: Applications, 86(15), 5222-5240.
  • [25] Sathyanarayanan, S., & Tantri, B. R. (2024). Confusion matrix-based performance evaluation metrics. African Journal of Biomedical Research, 27(4S), 4023-4031.
  • [26] Dur, R., Koçer, S., & Dündar, Ö. (2022). Evaluation of Customer Loss Analysis for Marketing Campaigns in the Banking Sector. Politeknik Dergisi, 26(2), 759-764.
  • [27] Dündar, Ö., & Koçer, S. (2024). Pneumonia Detection from Pediatric Lung X-Ray Images Using Artificial Neural Networks. Politeknik Dergisi, 1-1.

Development of Automated Defect Detection System for Plastic Injection Components using Image Processing and PLC Integration

Yıl 2025, Cilt: 7 Sayı: 2, 163 - 174, 31.12.2025
https://doi.org/10.59940/jismar.1729853

Öz

In today’s automation systems, especially within the plastic injection industry, the quality of the final product emerging from the production line is one of the most critical factors for manufacturers. In this context, manufacturers aim to perform quality control processes, the final stage of production, with minimal error. As an alternative to traditional methods, a fully automated system has been developed to quickly respond to the needs and demands of manufacturers. In this study, a PLC-based system combining image processing for classification and physical separation was designed and implemented to automate the quality control of plastic injection components. The image processing tasks were developed using the Python programming language and the OpenCV library. Thresholding and contour analysis were applied to plastic injection sample components in the HSV color space. Through the conversion of images from RGB to HSV color space, the color and geometric shape of the components were accurately identified. Real-time image processing of the captured frames was achieved using OpenCV-supported algorithms. Based on the image data, color and shape detection was performed. The identified components were evaluated through a user-defined GUI, where defect criteria based on color and shape were set. If a component matched the defective criteria, a trigger signal was sent to the PLC via the Modbus RS-232 serial communication protocol. The PLC then activated a pneumatic cylinder, which physically removed the defective components from the conveyor line. Tests conducted on the system using sample components with different color and shape combinations yielded accuracy rates of 100% for blue circles, 95.00% for green stars, 98.33% for yellow triangles, and 98.33% for orange squares.

Kaynakça

  • [1] Ciofu, C., & Mindru, D. T. (2013). Injection and micro injection of polymeric plastics materials: a review. Int. J. Mod. Manufact. Technol, 1, 49-68.
  • [2] Senthilvelan, S., & Gnanamoorthy, R. (2006). Fiber reinforcement in injection molded nylon 6/6 spur gears. Applied composite materials, 13(4), 237-248.
  • [3] Rosato, D. V., & Rosato, M. G. (2012). Injection molding handbook. Springer Science & Business Media..
  • [4] Muresan, M. P., Cireap, D. G., & Giosan, I. (2020, September). Automatic vision inspection solution for the manufacturing process of automotive components through plastic injection molding. In 2020 IEEE 16th international conference on intelligent computer communication and processing (ICCP) (pp. 423-430). IEEE.
  • [5] Rigelsford, J. (2001). Industrial image processing: Visual quality control in manufacturing. Sensor Review, 21(2).
  • [6] Huang, J., Huang, Z., Li, C., & Liu, J. (2025). Research on Defect Detection Method of Motor Control Board Based on Image Processing. arXiv preprint arXiv:2505.17493.
  • [7] Xiong, C., Wang, W., & Song, R. (2025). Structural Design and Grasping Control Strategy of an Intelligent Sorting Robotic Arm Based on Machine Vision. Journal of Electrical Systems, 21.
  • [8] Tang, B., Chen, L., Sun, W., & Lin, Z. K. (2023). Review of surface defect detection of steel products based on machine vision. IET Image Processing, 17(2), 303-322
  • [9] Roslan, M. I. B., Ibrahim, Z., & Abd Aziz, Z. (2022, May). Real-time plastic surface defect detection using deep learning. In 2022 IEEE 12th symposium on computer applications & industrial electronics (ISCAIE) (pp. 111-116). IEEE.
  • [10] Adamo, F., Attivissimo, F., Di Nisio, A., & Savino, M. (2009). A low-cost inspection system for online defects assessment in satin glass. Measurement, 42(9), 1304-1311.
  • [11] Şengül, Ö., Öztürk, S., & Kuncan, M. (2020). PLC ve Operatör Panel Kullanarak Konveyör Bantta Renk Temelli Nesne Ayrıştırma. European Journal of Science and Technology, 401-412.
  • [12] Liu, N., Zhang, Y., & Wang, Z. (2025). Hybrid Model and Data-Driven Optimal PID Control with Enhanced Disturbance Rejection. IEEE Transactions on Automation Science and Engineering.
  • [13] Bayrakcı, H. C., & Büyükpatpat, H. (2021). PLC ve SCADA kontrol yöntemleri ile sıvı dolum otomasyonu. Avrupa Bilim ve Teknoloji Dergisi, (27), 283-291.
  • [14] S. Şentürk and B. Satıcı, “İç mekandaki yüzeylerin görsel özellikleri ve işık arasındaki ilişki,” 2022. [Online]. Available: www.skupit.com.tr. Accessed: Aug. 04, 2025.
  • [15] Ş. Öztürk, “Cam üretim hatalarının görüntü işleme tabanlı bulunması,” Ms.C dissertation, Selçuk Univ., Turkey, 2015.
  • [16] A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits and Devices Magazine, vol. 21, no. 3, pp. 6–20, May 2005, doi: 10.1109/MCD.2005.1438751.
  • [17] Wang, P. (2024, November). CMOS image sensor applications and working principles. In 2nd International Conference on Mechatronic Automation and Electrical Engineering (ICMAEE 2024) (Vol. 2024, pp. 98-104). IET.
  • [18] Umaru, K., Marlon, M., Nansukusa, Y., Asikuru, S., Ritah, N., & Zaina, K. (2025). PLC Based Speed Control in a Color Sorting System: A Design and Simulation Perspective. Journal of Engineering, Technology, and Applied Science (JETAS), 7(1), 37-51.
  • [19] Kusnandar, T., Santoso, J., & Surendro, K. (2024). Enhancing Color Selection in HSV Color Space. Ingenierie des Systemes d'Information, 29(4), 1483.
  • [20] G. Saravanan, G. Yamuna, and S. Nandhini, “Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models,” International Conference on Communication and Signal Processing, ICCSP 2016, pp. 462–466, Nov. 2016, doi: 10.1109/ICCSP.2016.7754179.
  • [21] Chernov, V., Alander, J., & Bochko, V. (2015). Integer-based accurate conversion between RGB and HSV color spaces. Computers & Electrical Engineering, 46, 328-337.
  • [22] Corso, R., Khan, F., Yezzi, A., & Comelli, A. (2025). Features for Active Contour and Surface Segmentation: A Review: R. Corso et al. Archives of Computational Methods in Engineering, 1-27.
  • [23] S. Kocer, O. Dundar, and R. Butuner, Programmable Smart Microcontroller Cards EDITORS. 2021. [Online]. Available: www.isres.org. Accessed: Feb. 08, 2025.
  • [24] Al Agha, A., Zidan, A. M., Ramzan, M., Shafique, A., Abbas, S., Nazar, M., & Al Garalleh, H. (2025). Analysis of active and passive control of fluid with fractional derivative. Numerical Heat Transfer, Part A: Applications, 86(15), 5222-5240.
  • [25] Sathyanarayanan, S., & Tantri, B. R. (2024). Confusion matrix-based performance evaluation metrics. African Journal of Biomedical Research, 27(4S), 4023-4031.
  • [26] Dur, R., Koçer, S., & Dündar, Ö. (2022). Evaluation of Customer Loss Analysis for Marketing Campaigns in the Banking Sector. Politeknik Dergisi, 26(2), 759-764.
  • [27] Dündar, Ö., & Koçer, S. (2024). Pneumonia Detection from Pediatric Lung X-Ray Images Using Artificial Neural Networks. Politeknik Dergisi, 1-1.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı, İmalat Süreçleri ve Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Ayşegül İncekara 0000-0002-7654-9994

Sabri Koçer 0000-0002-4849-747X

Şaban Gülcü 0000-0001-7714-8861

Gönderilme Tarihi 30 Haziran 2025
Kabul Tarihi 25 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA İncekara, A., Koçer, S., & Gülcü, Ş. (2025). Plastik Enjeksiyon Komponentlerinde Otomatik Hata Tespiti için Görüntü İşleme ve PLC Tabanlı Sistem Tasarımı. Journal of Information Systems and Management Research, 7(2), 163-174. https://doi.org/10.59940/jismar.1729853