Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultra Kısa Vadeli Rüzgar Enerjisi Tahmininde Gelişmiş Optimizasyon ve Hibrit Derin Öğrenme Modellerinin Kullanımı: Hatay, Türkiye Örneği

Yıl 2025, Cilt: 7 Sayı: 2, 214 - 229, 31.12.2025
https://doi.org/10.59940/jismar.1787678

Öz

Bu çalışma, Bu çalışma, ultra kısa vadeli rüzgar enerjisi tahmininde doğruluğu ve kararlılığı artırmak amacıyla tasarlanmış uçtan uca bir veri hattı ile hibrit derin öğrenme yaklaşımlarının performans karşılaştırmasını sunmaktadır. SCADA tabanlı çok değişkenli verilere, anomali giderme işlemi DBSCAN ile, özellik seçimi ise RFECV tabanlı olarak uygulanmıştır. Optuna gibi gelişmiş bir hiperparametre optimizasyon aracı, ilerici arama ve budama stratejileri kullanarak modelleri (SDAE temel, CNN-LSTM ve GRU-LSTM) eğitmiştir. Performans, t+1'den t+6'ya kadar MAE, RMSE ve R² metrikleriyle değerlendirilmiştir. Bulgular, hibrit mimarilerin temel (SDAE) modele kıyasla önemli bir üstünlük sergilediğini göstermektedir: CNN-LSTM tüm ufuklarda sürekli olarak yüksek doğruluk sergilerken, GRU-LSTM özellikle en kısa ufukta (t+1'de R²=0.9976) en düşük hata değerlerini üretmiştir. CNN-LSTM'nin kararlılığı ufuk uzadıkça korunmuş ve t+6'da bile R²=0.79'luk yüksek bir performans elde edilmiştir. Bu çalışma, en kısa vadeli tahminler için GRU-LSTM, ufuk uzadıkça daha kararlı tahminler için ise CNN-LSTM'in operasyonel kullanımını önermektedir. Sonuçlar, hibrit modellerin endüstriyel uygulamalar için güvenilir bir temel oluşturduğunu ve belirsizlik modellemesi ile Sayısal Hava Tahmini (NWP) entegrasyonuyla daha ileri kazanımlar elde edilebileceğini göstermektedir.

Kaynakça

  • [1] Behera, P., Sethi, N., Dash, D. P., Usman, M., & Sahu, P. K. (2025). “Pathways to achieve carbon neutrality in emerging economies: Catalyzing the role of renewable energy, green growth”, ICT, and political risk. Renewable Energy, 243, 122514.
  • [2] Kok, B., Benli, H., "Energy diversity and nuclear energy for sustainable development in Turkey", Renewable energy, 111 (2017): 870-877.
  • [3] M. C. Senel, E. Koc, 2015. “Wind Energy in the World and Turkey Condition-General Evaluation,” Journal of Engineers and Machinery, volume 56, issue 663, p. 46-56.
  • [4] Teke, O. (2025). “Analysis of Performance Results of Models Created for Wind Power Estimation (PhD. Thesis)”. Iskenderun Technical University Energy Institute, Hatay.
  • [5] Ayar B., Gülten Yalçın Z., Dağ M., (2023). “Harvesting the Wind: A Study on the Feasibility and Advancements of Wind Energy in Turkey”. European Journal of Science and Technology Special Issue 49, 43-49.
  • [6] Albostan, A., Çekiç, Y. and Eren, L. 2009. “The Impact of Wind Energy on Turkey's Supply Security”, Gazi University Faculty of Engineering and Architecture Journal, 24 (4): 641-649.
  • [7] Zheng, Z., Yang, Y., Liu, J., Dai, H.-N., & Zhang, Y. (2019). “Deep and embedded learning approach for traffic flow prediction in urban informatics”. IEEE Transactions on Intelligent Transportation Systems, 21(10), 1–13. https://doi.org/10.1109/TITS.2019.2909904
  • [8] Pandit, R., Astolfi, D., & Durazo-Cardenas, I. (2023). “A review of predictive techniques used to support decision making for maintenance operations of wind turbines”. Energies, 16(4), 1654. https://doi.org/10.3390/en16041654. [9] Tekin, S. F., Fazla, A., & Kozat, S. S. (2021). “Numerical weather forecasting using convolutional-LSTM with attention and context matcher mechanisms”. arXiv. https://doi.org/10.48550/arXiv.2102.00696
  • [10] Liu, Z., Guo, H., Zhang, Y., & Zuo, Z. (2025). A “Comprehensive Review of Wind Power Prediction Based on Machine Learning: Models, Applications, and Challenges”. Energies, 18(2), 350. https://doi.org/10.3390/en18020350
  • [11] Kang, B., Xu, Z., He, W., Ding, G., Han, W., Sun, M., et al. (2024). “Research on the double-layer clustering method of residential energy use characteristics under the background of energy system energy savings and carbon reduction”. Front. Energy Res. 11, 1326257. https://doi:10.3389/fenrg.2023.1326257
  • [12] Kariniotakis, G., Pinson, P., Siebert, N., Giebel, G., & Barthelmie, R. (2004, October). “The state of the art in short term prediction of wind power – from an offshore perspective”. In SeaTech Week – Ocean Energy Conference ADEME-IFREMER, Brest, France. HAL. https://hal.science/hal-00529338. Last Access Date: 10.02.2025
  • [13] Yang, T., Yang, Z., Li, F., & Wang, H. (2024). “A short-term wind power forecasting method based on multivariate signal decomposition and variable selection”. Applied Energy, 360, 122759. https://doi.org/10.1016/j.apenergy.2024.122759
  • [14] Yi, L., Chen, B., Zhan, J., Wang, Y., Huang, Y., Long, J., & Sun, T. (2025). “Multi-scale spatial–temporal interactive network for wind turbine ultra-short-term power prediction” L. Yi et al. The Journal of Supercomputing, 81(8), 906.
  • [15] Deng, Y. C., Tang, X. H., Zhou, Z. Y., Yang, Y., & Niu, F. (2025). “Application of machine learning algorithms in wind power: a review”. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 47(1), 4451-4471.
  • [16] Ghanbari, E., & Avar, A. (2025). “Short-term wind power forecasting using the hybrid model of multivariate variational mode decomposition (MVMD) and long short-term memory (LSTM) neural networks”. Electrical Engineering, 107(3), 2903-2933.
  • [17] Rosca, C. M., & Stancu, A. (2025). “A Comprehensive Review of Machine Learning Models for Optimizing Wind Power Processes”. Applied Sciences, 15(7), 3758.
  • [18] Elsaraiti, M., & Merabet, A. (2021). “A comparative analysis of the arima and lstm predictive models and their effectiveness for predicting wind speed”. Energies, 14(20), 6782.
  • [19] Feng, C., Cui, M., Hodge, B. M., & Zhang, J. (2017). “A data-driven multi-model methodology with deep feature selection for short-term wind forecasting”. Applied Energy, 190, 1245-1257
  • [20] Paik, C., Chung, Y., & Kim, Y. J. (2023). “Power Curve Modeling of Wind Turbines through Clustering-Based Outlier Elimination”. Applied System Innovation, 6(2), 41. https://doi.org/10.3390/asi6020041
  • [21] Zhao, Y., Ye, L., Wang, W., Sun, H., Ju, Y., and Tang, Y. (2018). “Data-driven correction approach to refine power curve of wind farm under wind curtailment”. IEEE Transactions on Sustainable Energy, 9(1), 95-105. https://doi.org/10.1109/TSTE.2017.2717021
  • [22] Veljanovski, G., Popovski, P., Atanasovski, M., & Kostov, M. (2022). “Implementation of neural networks and feature selection for short term load forecast”. 2022 57th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), 229–232. IEEE. https://doi.org/10.1109/ICEST55464.2022.9828610. Last Access Date: 10.02.2025
  • [23] Afrasiabi, M., Mohammadi, M., Rastegar, M., & Afrasiabi, S. (2020). Advanced deep learning approach for probabilistic wind speed forecasting. IEEE Transactions on Industrial Informatics, 17(1), 720-727.
  • [24] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. A., & Bottou, L. (2010). “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion”. Journal of machine learning research, 11(12).
  • [25] Liu, X., Zhang, L., Zhang, Z., Zhao, T., ve Zou, L. (2021b). “Ultra Short-Term wind power prediction model based on wrf wind speed prediction and CatBoost”. IOP Conference Series: Earth and Environmental Science, 838, 11-22. https://doi.org/10.1088/1755-1315/838/1/012001
  • [26] Tyass, I., Khalili, T., Mohamed, R., Abdelouahed, B., Raihani, A., & Mansouri, K. (2023). Wind speed prediction based on statistical and deep learning models. International Journal of Renewable Energy Development, 12(2), 288.
  • [27] Yu, C., Yan, G., Yu, C., & Mi, X. (2023). Attention mechanism is useful in spatio-temporal wind speed prediction: Evidence from China. Applied Soft Computing, 148, 110864.
  • [28] Yin, D., Zhao, L., Zhai, K., & Zheng, J. (2024). “S. Term Wind Power Prediction Based on Feature-Weighted and Combined Models”. Applied Sciences, 14(17), 7698. https://doi.org/10.3390/app14177698
  • [29] Alijoyo, F. A., Gongada, T. N., Kaur, C., Mageswari, N., Sekhar, J. C., Ramesh, J. V. N., El-Ebiary, Y. A. B. and Ulmas, Z. (2024). “Advanced Hybrid CNN-Bi-LSTM Model Augmented with GA And FFO For Enhanced Cyclone İntensity Forecasting”. Alexandria Engineering Journal, 92, 346-357. https://doi.org/https://doi.org/10.1016/j.aej.2024.02.062
  • [30] Dai, X., Liu, G. P., & Hu, W. (2023). “An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting”. Energy, 272, 127173.
  • [31] Nguyen, T. H. T., and Phan, Q. B. (2022). “Hourly day ahead wind speed forecasting based on a hybrid model of EEMD, CNN-Bi-LSTM embedded with GA optimization”. Energy Reports, 8, 53-60. https://doi.org/https://doi.org/10.1016/j.egyr.2022.05.110
  • [32] Li, Q., Wang, G., Wu, X., Gao, Z., & Dan, B. (2024). “Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN”. Energy, 299, 131448. https://doi.org/10.1016/j.energy.2024.131448
  • [33] Park, R.-J., Kang, S., Lee, J., and Jung, S. (2022). “CNN-LSTM based wind power prediction system to improve accuracy”. Renewable Energy. 4(2), 144-166. https://api.semanticscholar.org/CorpusID:24903056.Last Access Date: 15.02.2025
  • [34] Bilal, B., Adjallah, K. H., Sava, A., Yetilmezsoy, K., & Ouassaid, M. (2023). “Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window”. Energy, 263(E), 126159. https://doi.org/10.1016/j.energy.2022.126159
  • [35] Zhang, H., Zhao, L., and Du, Z. (2021). “Wind power prediction based on CNN-LSTM”. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), 3097-3102. https://api.semanticscholar.org/CorpusID:24710878. Last Access Date: 15.02.2025
  • [36] Yong, B., Qiao, F., Wang, C., Shen, J., Wei, Y., & Zhou, Q. (2019). “Ensemble neural network method for wind speed forecasting”. In 2019 IEEE International Workshop on Signal Processing Systems (SiPS) (pp. 31–36). IEEE. https://doi.org/10.1109/SiPS47522.2019.9020410. Last Access Date: 15.03.2025
  • [37] Xin, Z., Liu, X., Zhang, H., Wang, Q., An, Z., & Liu, H. (2024). An enhanced feature extraction based long short-term memory neural network for wind power forecasting via considering the missing data reconstruction. Energy Reports, 11, 97-114.
  • [38] Kuang, H., Guo, Q., Li, S., and Zhong, H. (2021). “Short-term wind power forecasting model based on multi-feature extraction and CNN-LSTM”. IOP Conference Series: Earth and Environmental Science, 702, 43-49. https://api.semanticscholar.org/CorpusID:23385927.Last Access Date: 15.02.2025
  • [39] Zhao, Z., Yun, S., Jia, L., Guo, J., Meng, Y., He, N., Li, X., Shi, J., & Yang, L. (2023). “Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features”. Engineering Applications of Artificial Intelligence, 121, 105982. https://doi.org/10.1016/j.engappai.2023.105982
  • [40] Zhang, D., Chen, B., Zhu, H., Goh, H. H., Dong, Y., & Wu, T. (2023). “Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model”. Energy, 285, 128762.https://doi.org/10.1016/j.energy.2023.128762
  • [41] Joseph, L. P., Deo, R. C., Casillas-Pèrez, D., Prasad, R., Raj, N., & Salcedo-Sanz, S. (2024). “Multi-step-ahead wind speed forecast system: Hybrid multivariate decomposition and feature selection-based gated additive tree ensemble model”. IEEE Access, 12, 58750-58777.
  • [42] Mao, J., Zhao, J., Zhang, H., & Gu, B. (2025). A Novel Hybrid Deep Learning Model for Day-Ahead Wind Power Interval Forecasting. Sustainability, 17(7), 3239. https://doi.org/10.3390/su17073239
  • [43] Emu, I. H., Rahman, M. S., Farzana, F., Islam, M. R., Shiam, I. F., & Sultana, A. (2024). “Wind power forecasting using long short-term memory (LSTM), gated recurrent unit (GRU) and hybrid model”. 2024 IEEE International Conference on Electrical, Computer and Communication Engineering (ECCE), 1–6. IEEE. https://doi.org/10.1109/ECCE60783.2024.10533822. Last Access Date: 18.02.2025
  • [44] Lai, J.P., Lin, Y.L., Lin, H.C., Shih, C.Y., Wang, Y.P., & Pai, P.F. (2023). “Tree-Based Machine Learning Models with Optuna in Predicting Impedance Values for Circuit Analysis”. Micromachines, 14(2), 265. https://doi.org/10.3390/mi14020265
  • [45] Almarzooq, H., and Bin Waheed, U. (2024). “Automating hyperparameter optimization in geophysics with Optuna: a comparative study.” Geophysical Prospecting, 72. 25-46. https://doi.org/10.1111/1365-2478.13484
  • [46] Hanifi, S., Cammarono, A., and Zare Behtash, H. (2024a). “Advanced hyperparameter optimization of deep learning models for wind power prediction”. Renewable Energy, 221, 119-131. https://doi.org/https://doi.org/10.1016/j.renene.2023.119700
  • [47] Sun, T.-H., Wang, C.-C., Wu, Y.-L., Hsu, K.-C., & Lee, T.-H. (2023). Machine learning approaches for biomarker discovery to predict large-artery atherosclerosis. Scientific Reports, 13, 15809. https://doi.org/10.1038/s41598-023-42338-0
  • [48] Chen, C. and Liu, L.-M. (1993), Forecasting time series with outliers. J. Forecast., 12: 13-35. https://doi.org/10.1002/for.3980120103
  • [49] Battaglia, F., and Cucina, D. (2020). “Outlier identifiability in time series”. Stat, 9(1), 281-295. https://doi.org/https://doi.org/10.1002/sta4.281
  • [50] Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. (2018). “Recurrent neural networks for multivariate time series with missing values”. Scientific Reports, 8(1), 60-85. https://doi.org/10.1038/s41598-018-24271-9
  • [51] Lee, K., Park, B., Kim, J., ve Hong, J. (2024). “Day-ahead wind power forecasting based on feature extraction integrating vertical layer wind characteristics in complex terrain”. Energy, 288, 129-143. https://doi.org/https://doi.org/10.1016/j.energy.2023.129713
  • [52] Lipton, Z. Kale, D. Elkan, C. and Wetzel, R. (2015). “Learning to diagnose with LSTM recurrent neural networks.” arXiv. https://doi.org/10.48550/arXiv.1511.03677
  • [53] Sriramalakshmi, P., Subhasree, V., Vondivillu, S. T., & Prakash, S. (2022, May). “Time Series Analysis and Forecasting of Wind Turbine Data”. In 2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON) (pp. 1-9). IEEE. Last Access Date: 15.03.2025
  • [54] Ahsan, M. M., Mahmud, M. A. P., Saha, P. K., Gupta, K. D., & Siddique, Z. (2021). “Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance”. Technologies, 9(3), 52. https://doi.org/10.3390/technologies9030052
  • [55] Zhang, S., Zhang, C., and Yang, Q. (2003). “Data Preparation for data mining”. Applied Artificial Intelligence, 17, 375-381. https://doi.org/10.1080/713827180
  • [56] What Is Data Mining. (2006). “Introduction to data mining”. In Mining multimedia databases, mining time series.
  • [57] Zucatelli, P. J., Nascimento, E. G. S., Santos, A. Á. B., Arce, A. M. G., and Moreira, D. M. (2019). “Study of wind speed forecasting applying computational intelligence”. Aerodynamics. 4(2), 73-100. https://doi.org/10.5772/intechopen.89758
  • [58] Shi, K., Shi, R., Fu, T., Lu, Z., & Zhang, J. (2024). “A Novel Identification Approach Using RFECV–Optuna–XGBoost for Assessing Surrounding Rock Grade of Tunnel Boring Machine Based on Tunneling Parameters”. Applied Sciences, 14(6), 2347. https://doi.org/10.3390/app14062347
  • [59] Patel, S. K., Panchal, S. R., & Panchal, S. S. (2024, December 19). “Wind Nowcast On Radar Imagery Employing Deep Learning Technique”. Journal of Electrical Systems, 20(3). https://doi.org/10.52783/jes.7493
  • [60] Bergstra, J., and Bengio, Y. (2012). “Random search for hyper-parameter optimization”. J. Mach. Learn. Res., 13(2), 281-305.
  • [61] Anande, T., Alsaadi, S. & Leeson, M. Enhanced Modelling Performance with Boosting Ensemble Meta-Learning and Optuna Optimization. SN COMPUT. SCI. 6, 12 (2025). https://doi.org/10.1007/s42979-024-03544-3

Use of Advanced Optimization and Hybrid Deep Learning Models in Ultra-Short-Term Wind Energy Forecasting: The Case of Hatay, Türkiye

Yıl 2025, Cilt: 7 Sayı: 2, 214 - 229, 31.12.2025
https://doi.org/10.59940/jismar.1787678

Öz

This study presents a performance comparison of hybrid deep learning approaches with an end- to-end data pipeline designed to enhance accuracy and stability in ultra-short-term wind power forecasting. Anomaly removal using DBSCAN and feature selection based on RFECV are applied to multivariate SCADA-based data. An advanced hyperparameter optimization tool, Optuna, trained the models (SDAE baseline, CNN-LSTM, and GRU-LSTM) using progressive search and pruning strategies. Performance is evaluated using MAE, RMSE, and R² metrics from t+1 up to t+6 horizons. The findings indicate a significant superiority of the hybrid architectures over the baseline (SDAE) model: CNN-LSTM maintains consistently high accuracy across all horizons, while GRU-LSTM yields the lowest error metrics specifically at the shortest horizon (achieving an R²=0.9976 at t+1). The stability of the CNN-LSTM is maintained as the forecasting horizon extends, achieving a respectable performance of R²=0.79 even at t+6. This work proposes the operational use of GRU-LSTM for the shortest-term forecasts and CNN-LSTM for more stable predictions as the horizon lengthens. The results demonstrate that hybrid models establish a reliable foundation for industrial applications and suggest further gains are possible through the integration of uncertainty modeling and Numerical Weather Prediction (NWP).

Kaynakça

  • [1] Behera, P., Sethi, N., Dash, D. P., Usman, M., & Sahu, P. K. (2025). “Pathways to achieve carbon neutrality in emerging economies: Catalyzing the role of renewable energy, green growth”, ICT, and political risk. Renewable Energy, 243, 122514.
  • [2] Kok, B., Benli, H., "Energy diversity and nuclear energy for sustainable development in Turkey", Renewable energy, 111 (2017): 870-877.
  • [3] M. C. Senel, E. Koc, 2015. “Wind Energy in the World and Turkey Condition-General Evaluation,” Journal of Engineers and Machinery, volume 56, issue 663, p. 46-56.
  • [4] Teke, O. (2025). “Analysis of Performance Results of Models Created for Wind Power Estimation (PhD. Thesis)”. Iskenderun Technical University Energy Institute, Hatay.
  • [5] Ayar B., Gülten Yalçın Z., Dağ M., (2023). “Harvesting the Wind: A Study on the Feasibility and Advancements of Wind Energy in Turkey”. European Journal of Science and Technology Special Issue 49, 43-49.
  • [6] Albostan, A., Çekiç, Y. and Eren, L. 2009. “The Impact of Wind Energy on Turkey's Supply Security”, Gazi University Faculty of Engineering and Architecture Journal, 24 (4): 641-649.
  • [7] Zheng, Z., Yang, Y., Liu, J., Dai, H.-N., & Zhang, Y. (2019). “Deep and embedded learning approach for traffic flow prediction in urban informatics”. IEEE Transactions on Intelligent Transportation Systems, 21(10), 1–13. https://doi.org/10.1109/TITS.2019.2909904
  • [8] Pandit, R., Astolfi, D., & Durazo-Cardenas, I. (2023). “A review of predictive techniques used to support decision making for maintenance operations of wind turbines”. Energies, 16(4), 1654. https://doi.org/10.3390/en16041654. [9] Tekin, S. F., Fazla, A., & Kozat, S. S. (2021). “Numerical weather forecasting using convolutional-LSTM with attention and context matcher mechanisms”. arXiv. https://doi.org/10.48550/arXiv.2102.00696
  • [10] Liu, Z., Guo, H., Zhang, Y., & Zuo, Z. (2025). A “Comprehensive Review of Wind Power Prediction Based on Machine Learning: Models, Applications, and Challenges”. Energies, 18(2), 350. https://doi.org/10.3390/en18020350
  • [11] Kang, B., Xu, Z., He, W., Ding, G., Han, W., Sun, M., et al. (2024). “Research on the double-layer clustering method of residential energy use characteristics under the background of energy system energy savings and carbon reduction”. Front. Energy Res. 11, 1326257. https://doi:10.3389/fenrg.2023.1326257
  • [12] Kariniotakis, G., Pinson, P., Siebert, N., Giebel, G., & Barthelmie, R. (2004, October). “The state of the art in short term prediction of wind power – from an offshore perspective”. In SeaTech Week – Ocean Energy Conference ADEME-IFREMER, Brest, France. HAL. https://hal.science/hal-00529338. Last Access Date: 10.02.2025
  • [13] Yang, T., Yang, Z., Li, F., & Wang, H. (2024). “A short-term wind power forecasting method based on multivariate signal decomposition and variable selection”. Applied Energy, 360, 122759. https://doi.org/10.1016/j.apenergy.2024.122759
  • [14] Yi, L., Chen, B., Zhan, J., Wang, Y., Huang, Y., Long, J., & Sun, T. (2025). “Multi-scale spatial–temporal interactive network for wind turbine ultra-short-term power prediction” L. Yi et al. The Journal of Supercomputing, 81(8), 906.
  • [15] Deng, Y. C., Tang, X. H., Zhou, Z. Y., Yang, Y., & Niu, F. (2025). “Application of machine learning algorithms in wind power: a review”. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 47(1), 4451-4471.
  • [16] Ghanbari, E., & Avar, A. (2025). “Short-term wind power forecasting using the hybrid model of multivariate variational mode decomposition (MVMD) and long short-term memory (LSTM) neural networks”. Electrical Engineering, 107(3), 2903-2933.
  • [17] Rosca, C. M., & Stancu, A. (2025). “A Comprehensive Review of Machine Learning Models for Optimizing Wind Power Processes”. Applied Sciences, 15(7), 3758.
  • [18] Elsaraiti, M., & Merabet, A. (2021). “A comparative analysis of the arima and lstm predictive models and their effectiveness for predicting wind speed”. Energies, 14(20), 6782.
  • [19] Feng, C., Cui, M., Hodge, B. M., & Zhang, J. (2017). “A data-driven multi-model methodology with deep feature selection for short-term wind forecasting”. Applied Energy, 190, 1245-1257
  • [20] Paik, C., Chung, Y., & Kim, Y. J. (2023). “Power Curve Modeling of Wind Turbines through Clustering-Based Outlier Elimination”. Applied System Innovation, 6(2), 41. https://doi.org/10.3390/asi6020041
  • [21] Zhao, Y., Ye, L., Wang, W., Sun, H., Ju, Y., and Tang, Y. (2018). “Data-driven correction approach to refine power curve of wind farm under wind curtailment”. IEEE Transactions on Sustainable Energy, 9(1), 95-105. https://doi.org/10.1109/TSTE.2017.2717021
  • [22] Veljanovski, G., Popovski, P., Atanasovski, M., & Kostov, M. (2022). “Implementation of neural networks and feature selection for short term load forecast”. 2022 57th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), 229–232. IEEE. https://doi.org/10.1109/ICEST55464.2022.9828610. Last Access Date: 10.02.2025
  • [23] Afrasiabi, M., Mohammadi, M., Rastegar, M., & Afrasiabi, S. (2020). Advanced deep learning approach for probabilistic wind speed forecasting. IEEE Transactions on Industrial Informatics, 17(1), 720-727.
  • [24] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. A., & Bottou, L. (2010). “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion”. Journal of machine learning research, 11(12).
  • [25] Liu, X., Zhang, L., Zhang, Z., Zhao, T., ve Zou, L. (2021b). “Ultra Short-Term wind power prediction model based on wrf wind speed prediction and CatBoost”. IOP Conference Series: Earth and Environmental Science, 838, 11-22. https://doi.org/10.1088/1755-1315/838/1/012001
  • [26] Tyass, I., Khalili, T., Mohamed, R., Abdelouahed, B., Raihani, A., & Mansouri, K. (2023). Wind speed prediction based on statistical and deep learning models. International Journal of Renewable Energy Development, 12(2), 288.
  • [27] Yu, C., Yan, G., Yu, C., & Mi, X. (2023). Attention mechanism is useful in spatio-temporal wind speed prediction: Evidence from China. Applied Soft Computing, 148, 110864.
  • [28] Yin, D., Zhao, L., Zhai, K., & Zheng, J. (2024). “S. Term Wind Power Prediction Based on Feature-Weighted and Combined Models”. Applied Sciences, 14(17), 7698. https://doi.org/10.3390/app14177698
  • [29] Alijoyo, F. A., Gongada, T. N., Kaur, C., Mageswari, N., Sekhar, J. C., Ramesh, J. V. N., El-Ebiary, Y. A. B. and Ulmas, Z. (2024). “Advanced Hybrid CNN-Bi-LSTM Model Augmented with GA And FFO For Enhanced Cyclone İntensity Forecasting”. Alexandria Engineering Journal, 92, 346-357. https://doi.org/https://doi.org/10.1016/j.aej.2024.02.062
  • [30] Dai, X., Liu, G. P., & Hu, W. (2023). “An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting”. Energy, 272, 127173.
  • [31] Nguyen, T. H. T., and Phan, Q. B. (2022). “Hourly day ahead wind speed forecasting based on a hybrid model of EEMD, CNN-Bi-LSTM embedded with GA optimization”. Energy Reports, 8, 53-60. https://doi.org/https://doi.org/10.1016/j.egyr.2022.05.110
  • [32] Li, Q., Wang, G., Wu, X., Gao, Z., & Dan, B. (2024). “Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN”. Energy, 299, 131448. https://doi.org/10.1016/j.energy.2024.131448
  • [33] Park, R.-J., Kang, S., Lee, J., and Jung, S. (2022). “CNN-LSTM based wind power prediction system to improve accuracy”. Renewable Energy. 4(2), 144-166. https://api.semanticscholar.org/CorpusID:24903056.Last Access Date: 15.02.2025
  • [34] Bilal, B., Adjallah, K. H., Sava, A., Yetilmezsoy, K., & Ouassaid, M. (2023). “Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window”. Energy, 263(E), 126159. https://doi.org/10.1016/j.energy.2022.126159
  • [35] Zhang, H., Zhao, L., and Du, Z. (2021). “Wind power prediction based on CNN-LSTM”. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), 3097-3102. https://api.semanticscholar.org/CorpusID:24710878. Last Access Date: 15.02.2025
  • [36] Yong, B., Qiao, F., Wang, C., Shen, J., Wei, Y., & Zhou, Q. (2019). “Ensemble neural network method for wind speed forecasting”. In 2019 IEEE International Workshop on Signal Processing Systems (SiPS) (pp. 31–36). IEEE. https://doi.org/10.1109/SiPS47522.2019.9020410. Last Access Date: 15.03.2025
  • [37] Xin, Z., Liu, X., Zhang, H., Wang, Q., An, Z., & Liu, H. (2024). An enhanced feature extraction based long short-term memory neural network for wind power forecasting via considering the missing data reconstruction. Energy Reports, 11, 97-114.
  • [38] Kuang, H., Guo, Q., Li, S., and Zhong, H. (2021). “Short-term wind power forecasting model based on multi-feature extraction and CNN-LSTM”. IOP Conference Series: Earth and Environmental Science, 702, 43-49. https://api.semanticscholar.org/CorpusID:23385927.Last Access Date: 15.02.2025
  • [39] Zhao, Z., Yun, S., Jia, L., Guo, J., Meng, Y., He, N., Li, X., Shi, J., & Yang, L. (2023). “Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features”. Engineering Applications of Artificial Intelligence, 121, 105982. https://doi.org/10.1016/j.engappai.2023.105982
  • [40] Zhang, D., Chen, B., Zhu, H., Goh, H. H., Dong, Y., & Wu, T. (2023). “Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model”. Energy, 285, 128762.https://doi.org/10.1016/j.energy.2023.128762
  • [41] Joseph, L. P., Deo, R. C., Casillas-Pèrez, D., Prasad, R., Raj, N., & Salcedo-Sanz, S. (2024). “Multi-step-ahead wind speed forecast system: Hybrid multivariate decomposition and feature selection-based gated additive tree ensemble model”. IEEE Access, 12, 58750-58777.
  • [42] Mao, J., Zhao, J., Zhang, H., & Gu, B. (2025). A Novel Hybrid Deep Learning Model for Day-Ahead Wind Power Interval Forecasting. Sustainability, 17(7), 3239. https://doi.org/10.3390/su17073239
  • [43] Emu, I. H., Rahman, M. S., Farzana, F., Islam, M. R., Shiam, I. F., & Sultana, A. (2024). “Wind power forecasting using long short-term memory (LSTM), gated recurrent unit (GRU) and hybrid model”. 2024 IEEE International Conference on Electrical, Computer and Communication Engineering (ECCE), 1–6. IEEE. https://doi.org/10.1109/ECCE60783.2024.10533822. Last Access Date: 18.02.2025
  • [44] Lai, J.P., Lin, Y.L., Lin, H.C., Shih, C.Y., Wang, Y.P., & Pai, P.F. (2023). “Tree-Based Machine Learning Models with Optuna in Predicting Impedance Values for Circuit Analysis”. Micromachines, 14(2), 265. https://doi.org/10.3390/mi14020265
  • [45] Almarzooq, H., and Bin Waheed, U. (2024). “Automating hyperparameter optimization in geophysics with Optuna: a comparative study.” Geophysical Prospecting, 72. 25-46. https://doi.org/10.1111/1365-2478.13484
  • [46] Hanifi, S., Cammarono, A., and Zare Behtash, H. (2024a). “Advanced hyperparameter optimization of deep learning models for wind power prediction”. Renewable Energy, 221, 119-131. https://doi.org/https://doi.org/10.1016/j.renene.2023.119700
  • [47] Sun, T.-H., Wang, C.-C., Wu, Y.-L., Hsu, K.-C., & Lee, T.-H. (2023). Machine learning approaches for biomarker discovery to predict large-artery atherosclerosis. Scientific Reports, 13, 15809. https://doi.org/10.1038/s41598-023-42338-0
  • [48] Chen, C. and Liu, L.-M. (1993), Forecasting time series with outliers. J. Forecast., 12: 13-35. https://doi.org/10.1002/for.3980120103
  • [49] Battaglia, F., and Cucina, D. (2020). “Outlier identifiability in time series”. Stat, 9(1), 281-295. https://doi.org/https://doi.org/10.1002/sta4.281
  • [50] Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. (2018). “Recurrent neural networks for multivariate time series with missing values”. Scientific Reports, 8(1), 60-85. https://doi.org/10.1038/s41598-018-24271-9
  • [51] Lee, K., Park, B., Kim, J., ve Hong, J. (2024). “Day-ahead wind power forecasting based on feature extraction integrating vertical layer wind characteristics in complex terrain”. Energy, 288, 129-143. https://doi.org/https://doi.org/10.1016/j.energy.2023.129713
  • [52] Lipton, Z. Kale, D. Elkan, C. and Wetzel, R. (2015). “Learning to diagnose with LSTM recurrent neural networks.” arXiv. https://doi.org/10.48550/arXiv.1511.03677
  • [53] Sriramalakshmi, P., Subhasree, V., Vondivillu, S. T., & Prakash, S. (2022, May). “Time Series Analysis and Forecasting of Wind Turbine Data”. In 2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON) (pp. 1-9). IEEE. Last Access Date: 15.03.2025
  • [54] Ahsan, M. M., Mahmud, M. A. P., Saha, P. K., Gupta, K. D., & Siddique, Z. (2021). “Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance”. Technologies, 9(3), 52. https://doi.org/10.3390/technologies9030052
  • [55] Zhang, S., Zhang, C., and Yang, Q. (2003). “Data Preparation for data mining”. Applied Artificial Intelligence, 17, 375-381. https://doi.org/10.1080/713827180
  • [56] What Is Data Mining. (2006). “Introduction to data mining”. In Mining multimedia databases, mining time series.
  • [57] Zucatelli, P. J., Nascimento, E. G. S., Santos, A. Á. B., Arce, A. M. G., and Moreira, D. M. (2019). “Study of wind speed forecasting applying computational intelligence”. Aerodynamics. 4(2), 73-100. https://doi.org/10.5772/intechopen.89758
  • [58] Shi, K., Shi, R., Fu, T., Lu, Z., & Zhang, J. (2024). “A Novel Identification Approach Using RFECV–Optuna–XGBoost for Assessing Surrounding Rock Grade of Tunnel Boring Machine Based on Tunneling Parameters”. Applied Sciences, 14(6), 2347. https://doi.org/10.3390/app14062347
  • [59] Patel, S. K., Panchal, S. R., & Panchal, S. S. (2024, December 19). “Wind Nowcast On Radar Imagery Employing Deep Learning Technique”. Journal of Electrical Systems, 20(3). https://doi.org/10.52783/jes.7493
  • [60] Bergstra, J., and Bengio, Y. (2012). “Random search for hyper-parameter optimization”. J. Mach. Learn. Res., 13(2), 281-305.
  • [61] Anande, T., Alsaadi, S. & Leeson, M. Enhanced Modelling Performance with Boosting Ensemble Meta-Learning and Optuna Optimization. SN COMPUT. SCI. 6, 12 (2025). https://doi.org/10.1007/s42979-024-03544-3
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veri Mühendisliği ve Veri Bilimi
Bölüm Araştırma Makalesi
Yazarlar

Orkun Teke 0000-0003-4390-263X

Tolga Depci 0000-0001-9562-8068

Gönderilme Tarihi 20 Eylül 2025
Kabul Tarihi 26 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Teke, O., & Depci, T. (2025). Use of Advanced Optimization and Hybrid Deep Learning Models in Ultra-Short-Term Wind Energy Forecasting: The Case of Hatay, Türkiye. Journal of Information Systems and Management Research, 7(2), 214-229. https://doi.org/10.59940/jismar.1787678