Araştırma Makalesi
BibTex RIS Kaynak Göster

Modeling of Bromphenol Blue Biosorption Using Taguchi Experimental Design Method and Equilibrium Isotherms

Yıl 2021, , 960 - 968, 01.06.2021
https://doi.org/10.21597/jist.791151

Öz

The presence of dyes in the aquatic environment is a global problem because of the negative consequences on the ecosystem quality. Adsorption process is used as a low cost and effective method for removing hazardous dyes. This study investigated removal of Bromophenol Blue from aqueous solutions by Fomes fomentarius and Trametes versicolor. The statistical relationships of the parameters in the biosorption process by considering three controllable factors including initial pH value (2, 7, 12), initial dye concentration (25, 50, 75 mg L-1) and contact time (30, 150, 270 minutes) were investigated at three different levels and the biosorption process was optimized using Taguchi orthogonal array (L9 OA) experimental design. As a result of experimental studies, the optimal dye removal conditions were determined as the contact time of 270 minutes, pH: 2 and initial Bromophenol Blue concentration of 50 mg L-1 for F. fomentarius. The optimal dye removal conditions were determined as the contact time of 150 minutes, pH: 2 and initial Bromophenol Blue concentration of 50 mg L-1 for T. versicolor. For F. fomentarius and T. versicolor, the removal efficiencies at optimum conditions were 78.34% and 69.28%, respectively. Biosorption isotherms were modeled using the Langmuir and Freundlich models. The biosorption of Bromephenol Blue on F. fomentarius and T. versicolor fitted better in the Freundlich and Langmuir models by non-linearized equations, respectively. Both biosorbents can be promising for dyes removal from aqueous environment.

Kaynakça

  • Bayramoğlu G, Arıca MY, 2007. Biosorption of benzidine based textile dyes Direct Blue 1 and Direct Red 128 using native and heat-treated biomass of Trametes versicolor. Journal of Hazardous Materials, 143, 1-2, 135-143.
  • Dada AO, Inyinbor AA, Oluyori AP, 2012. Comparative adsorption of dyes unto activated carbon prepared from maize stems and sugar cane stems. Journal of Applied Chemistry, 2: 38–43.
  • Dhananasekaran S, Palanivel R, Pappu S, 2016. Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by a-chitin nanoparticles. Journal of advanced research, 7: 113–124.
  • El-Gamal SMA, Amin MS, Ahmed MA, 2015. Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. Journal of environmental chemical engineering, 3(3): 1702-1712.
  • Freundlich H, 1906. Over the adsorption in solution. Zeitschrift für physikalische Chemie. 57: 385–470.
  • Googerdchian F, Moheb A, Emadi R, Asgari M, 2018. Optimization of Pb (II) ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method. Journal of hazardous materials, 349: 186-194.
  • Katheresan V, Kansedo J, Lau SY, 2018. Efficiency of various recent wastewater dye removal methods: a review. Journal of environmental chemical engineering, 6(4): 4676-4697.
  • Langmuir I, 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society. 40(9): 1361–1403.
  • Maurya NS, Mittal AK, Cornel P, Rother E, 2006. Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresource technology, 97(3): 512-521.
  • Rashad M, Al-Aoh, HA, 2019. Promising adsorption studies of bromophenol blue using copper oxide nanoparticles. Desalination and Water Treatment, 139: 360-368.
  • Seow TW, Lim CK, 2016. Removal of dye by adsorption: a review. International Journal of Applied Engineering Research, 11(4): 2675-2679.
  • Sohni S, Gul K, Ahmad F, Ahmad I, Khan A, Khan N, Bahadar Khan S, 2018. Highly efficient removal of acid red‐17 and bromophenol blue dyes from industrial wastewater using graphene oxide functionalized magnetic chitosan composite. Polymer Composites, 39(9): 3317-3328.
  • Subbaiah MV, Yuvaraja G, Vijaya Y, Krishnaiah A, 2011. Equilibrium, kinetic and thermodynamic studies on biosorption of Pb (II) and Cd (II) from aqueous solution by fungus (Trametes versicolor) biomass. Journal of the Taiwan Institute of Chemical Engineers, 42(6): 965-971.
  • Taguchi G, 1990. Introduction to Quality Engineering. McGraw-Hill, New York, USA.
  • Zare EN, Motahari A, Sillanpää M, 2018. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environmental research, 162: 173-195. 3.
  • Zeroual Y, Kim BS, Kim CS, Blaghen M, Lee KM, 2006. Biosorption of bromophenol blue from aqueous solutions by Rhizopus stolonifer biomass. Water, air, and soil pollution, 177(1-4): 135-146.

Taguchi Deneysel Tasarım Yöntemi Kullanılarak Bromfenol Mavisi Biyosorpsiyonunun Modellenmesi ve Denge İzotermleri

Yıl 2021, , 960 - 968, 01.06.2021
https://doi.org/10.21597/jist.791151

Öz

Su ortamında boyaların varlığı, ekosistem kalitesini olumsuz etkilediği için küresel bir sorundur. Tehlikeli boyaların biyosorpsiyon yöntemiyle ayrılması düşük maliyetli ve etkili bir yöntem olarak kullanılmaktadır. Bu çalışmada Fomes fomentarius (L.) Fr. ve Trametes versicolor (L.) Lloyd biyosorbent olarak kullanılarak sulu çözeltiden Bromfenol Mavisinin giderimi çalışılmıştır. Taguchi deney tasarımında L9 (33) ortogonal dizi (OD) kullanılarak başlangıç pH değeri (2, 7, 12) başlangıç boya konsantrasyonu (25, 50, 75 mg L-1) ve temas süresi gibi (30, 150, 270 dk) kontrol edilebilir 3 faktör ve her faktörün 3 farklı seviyesinin biyosorpsiyon sürecindeki istatistiksel ilişkileri araştırılmış ve sistemin optimizasyonu yapılmıştır. Deneysel çalışmalar sonucunda parametrelerin optimum değerleri F. fomentarius ile biyosorpsiyonda temas süresi 270 dk, başlangıç pH değeri 2 ve başlangıç boya konsantrasyonu 50 mg L-1, T. versicolor ile biyosorpsiyonda temas süresi 150 dk, başlangıç pH değeri 2 ve başlangıç boya konsantrasyonu 50 mg L-1 olarak belirlenmiştir. Belirlenen ptimum
koşullardaki boya giderim verimleri F. fomentarius için %78.34, T. versicolor için %69.28 olarak bulunmuştur.
Biyosorpsiyon izotermleri Langmuir ve Freundlich denklemleri kullanılarak modellenmiştir. F. fomentarius ile yapılan deneylerde en iyi model uyumu Freundlich izotermi ile T. versicolor ile yapılan deneylerde en iyi uyum Langmuir izotermi ile sağlanmıştır. Giderim performansları göz önünde bulundurulduğunda her iki biyosorbentin de boya endüstrisi atıksularının gideriminde düşük maliyetli ve etkili biyosorbentler olarak değerlendirilebilecekleri sonucuna varılmıştır.

Kaynakça

  • Bayramoğlu G, Arıca MY, 2007. Biosorption of benzidine based textile dyes Direct Blue 1 and Direct Red 128 using native and heat-treated biomass of Trametes versicolor. Journal of Hazardous Materials, 143, 1-2, 135-143.
  • Dada AO, Inyinbor AA, Oluyori AP, 2012. Comparative adsorption of dyes unto activated carbon prepared from maize stems and sugar cane stems. Journal of Applied Chemistry, 2: 38–43.
  • Dhananasekaran S, Palanivel R, Pappu S, 2016. Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by a-chitin nanoparticles. Journal of advanced research, 7: 113–124.
  • El-Gamal SMA, Amin MS, Ahmed MA, 2015. Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. Journal of environmental chemical engineering, 3(3): 1702-1712.
  • Freundlich H, 1906. Over the adsorption in solution. Zeitschrift für physikalische Chemie. 57: 385–470.
  • Googerdchian F, Moheb A, Emadi R, Asgari M, 2018. Optimization of Pb (II) ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method. Journal of hazardous materials, 349: 186-194.
  • Katheresan V, Kansedo J, Lau SY, 2018. Efficiency of various recent wastewater dye removal methods: a review. Journal of environmental chemical engineering, 6(4): 4676-4697.
  • Langmuir I, 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society. 40(9): 1361–1403.
  • Maurya NS, Mittal AK, Cornel P, Rother E, 2006. Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresource technology, 97(3): 512-521.
  • Rashad M, Al-Aoh, HA, 2019. Promising adsorption studies of bromophenol blue using copper oxide nanoparticles. Desalination and Water Treatment, 139: 360-368.
  • Seow TW, Lim CK, 2016. Removal of dye by adsorption: a review. International Journal of Applied Engineering Research, 11(4): 2675-2679.
  • Sohni S, Gul K, Ahmad F, Ahmad I, Khan A, Khan N, Bahadar Khan S, 2018. Highly efficient removal of acid red‐17 and bromophenol blue dyes from industrial wastewater using graphene oxide functionalized magnetic chitosan composite. Polymer Composites, 39(9): 3317-3328.
  • Subbaiah MV, Yuvaraja G, Vijaya Y, Krishnaiah A, 2011. Equilibrium, kinetic and thermodynamic studies on biosorption of Pb (II) and Cd (II) from aqueous solution by fungus (Trametes versicolor) biomass. Journal of the Taiwan Institute of Chemical Engineers, 42(6): 965-971.
  • Taguchi G, 1990. Introduction to Quality Engineering. McGraw-Hill, New York, USA.
  • Zare EN, Motahari A, Sillanpää M, 2018. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environmental research, 162: 173-195. 3.
  • Zeroual Y, Kim BS, Kim CS, Blaghen M, Lee KM, 2006. Biosorption of bromophenol blue from aqueous solutions by Rhizopus stolonifer biomass. Water, air, and soil pollution, 177(1-4): 135-146.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği / Environment Engineering
Yazarlar

Dilek Gümüş 0000-0001-7665-3057

Fatih Gümüş 0000-0002-4660-7591

Yayımlanma Tarihi 1 Haziran 2021
Gönderilme Tarihi 6 Eylül 2020
Kabul Tarihi 22 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Gümüş, D., & Gümüş, F. (2021). Taguchi Deneysel Tasarım Yöntemi Kullanılarak Bromfenol Mavisi Biyosorpsiyonunun Modellenmesi ve Denge İzotermleri. Journal of the Institute of Science and Technology, 11(2), 960-968. https://doi.org/10.21597/jist.791151
AMA Gümüş D, Gümüş F. Taguchi Deneysel Tasarım Yöntemi Kullanılarak Bromfenol Mavisi Biyosorpsiyonunun Modellenmesi ve Denge İzotermleri. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2021;11(2):960-968. doi:10.21597/jist.791151
Chicago Gümüş, Dilek, ve Fatih Gümüş. “Taguchi Deneysel Tasarım Yöntemi Kullanılarak Bromfenol Mavisi Biyosorpsiyonunun Modellenmesi Ve Denge İzotermleri”. Journal of the Institute of Science and Technology 11, sy. 2 (Haziran 2021): 960-68. https://doi.org/10.21597/jist.791151.
EndNote Gümüş D, Gümüş F (01 Haziran 2021) Taguchi Deneysel Tasarım Yöntemi Kullanılarak Bromfenol Mavisi Biyosorpsiyonunun Modellenmesi ve Denge İzotermleri. Journal of the Institute of Science and Technology 11 2 960–968.
IEEE D. Gümüş ve F. Gümüş, “Taguchi Deneysel Tasarım Yöntemi Kullanılarak Bromfenol Mavisi Biyosorpsiyonunun Modellenmesi ve Denge İzotermleri”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 2, ss. 960–968, 2021, doi: 10.21597/jist.791151.
ISNAD Gümüş, Dilek - Gümüş, Fatih. “Taguchi Deneysel Tasarım Yöntemi Kullanılarak Bromfenol Mavisi Biyosorpsiyonunun Modellenmesi Ve Denge İzotermleri”. Journal of the Institute of Science and Technology 11/2 (Haziran 2021), 960-968. https://doi.org/10.21597/jist.791151.
JAMA Gümüş D, Gümüş F. Taguchi Deneysel Tasarım Yöntemi Kullanılarak Bromfenol Mavisi Biyosorpsiyonunun Modellenmesi ve Denge İzotermleri. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:960–968.
MLA Gümüş, Dilek ve Fatih Gümüş. “Taguchi Deneysel Tasarım Yöntemi Kullanılarak Bromfenol Mavisi Biyosorpsiyonunun Modellenmesi Ve Denge İzotermleri”. Journal of the Institute of Science and Technology, c. 11, sy. 2, 2021, ss. 960-8, doi:10.21597/jist.791151.
Vancouver Gümüş D, Gümüş F. Taguchi Deneysel Tasarım Yöntemi Kullanılarak Bromfenol Mavisi Biyosorpsiyonunun Modellenmesi ve Denge İzotermleri. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(2):960-8.