Araştırma Makalesi
BibTex RIS Kaynak Göster

Eritematöz Skuamöz Hastalıkların Teşhisinde Makine Öğrenme Algoritmalarının Etkisi

Yıl 2021, Cilt: 4 Sayı: 2, 195 - 202, 23.09.2021
https://doi.org/10.38016/jista.901670

Öz

Eritematöz skuamöz hastalıkların ayırıcı tanısı dermatolojide önemli problemlerden biridir. Hepsi birbirleri arasında, çok az farkla eritem ve ölçeklenmenin klinik özelliklerini paylaşmaktadırlar. Bu gruba dâhil olan hastalıklar; sedef hastalığı, seboreik dermatit, liken planus, gül hastalığı (pityriasis rosea), kronik dermatit ve pityriasis rubra pilaris olarak sınıflandırılabilmektedir. Tanı için genellikle biyopsi gereklidir ancak ne yazık ki bu hastalıklar pek çok histopatolojik özelliği de paylaşmaktadır. Diğer taraftan, son yıllarda özellikle bilgisayar teknolojisindeki gelişmeler ve yapay zekâ teknolojileri, biyomedikal alanda kendine geniş bir uygulama alanı bulmuştur. Tıbbi cihazlarda bilgisayar teknolojilerinin kullanılmasıyla daha hassas, daha hızlı, insandan kaynaklanan hataları minimize eden cihazlar geliştirilmektedir. Dolayısıyla, bu çalışmada, makine öğrenme algoritmaları deri hastalıklarının sınıflandırılması ve tahmininde ne kadar etkili olmaktadır onun araştırılması yapılmıştır. Bu çalışmada, 366 hastaya ait 33 nitelikten oluşan deri doku örnekleri, Destek Vektör Makineleri (Support Vector Machines - SVM), Topluluk Öğrenme Algoritmaları (Ensemble Learning Algorithms - ELA), Karar Ağaçları (Decision Trees - DT) ve k-En Yakın Komşuluk (k-Nearest Neighborhood - k-NN) ile sınıflandırılmış ve en yüksek doğruluk değerleri kaydedilmiştir. Buna göre deri hastalıklarının ayrıştırılması ve sınıflandırılması ile ilgili etkiler araştırılmıştır. SVM ile bu veri setinde, önceki tüm çalışmalardan daha yüksek olan %99.73'lük bir doğruluk elde edilmiştir.

Kaynakça

  • Abakar, K.A., Yu, C., 2014. Performance of SVM based on PUK kernel in comparison to SVM based on RBF kernel in prediction of yarn tenacity. Indian Journal of Fibre & Textile Research, 39, 55-59.
  • Borda, L.J., Wikramanayake, T.C., 2015. Seborrheic dermatitis and dandruff: a comprehensive review. Journal of Clinical and Investigative Dermatology, 3(2), 1-22.
  • Brochu, E., Cora, V. M., De Freitas, N., 2010. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599.
  • Chaurasia, V., Pal, S., 2020. Machine learning algorithms using binary classification and multi model ensemble techniques for skin diseases prediction. International Journal of Biomedical Engineering and Technology, 34(1), 57-74.
  • Çifci, A., İlkuçar, M., Bozkurt, M.R., Uyaroğlu, Y., 2014. Liken planus ve sedef deri hastalıklarının çok katmanlı yapay sinir ağı kullanılarak sınıflandırılması. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5 (1), 30-36.
  • Dua, D., Graff, C., 2019. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
  • Dumas, N.S, Ntambi, M.J., 2018. A discussion on the relationship between skin lipid metabolism and whole-body glucose and lipid metabolism: systematic review. Journal of Cell Signaling, 3(3), 191.
  • Elsayad, A.M., Al-Dhaifallah, M., Nassef, A.M., 2018. Analysis and diagnosis of erythemato-squamous diseases using CHAID decision trees. IEEE 15th International Multi-Conference on Systems, Signals & Devices (SSD). 19-22 March 2018, Yasmine Hammamet, Tunisia, pp. 252-262.
  • Fidelis, M.V., Lopes, S.H., Freitas, A.A., 2000. Discovering comprehensible classification rules with a genetic algorithm. Proceedings of the 2000 Congress on Evolutionary Computation, 16-19 July 2000, La Jolla, CA, USA, pp. 805-810.
  • Fonacier, L.S., Dreskin, S.C., Leung D.Y.M., 2010. Allergic skin diseases. Journal of Allergy and Clinical Immunology, 125(2), 138-149.
  • Freund, Y., Schapire, R.E., 1996. Experiments with a new boosting algorithm. Machine Learning: Proceedings of the Thirteenth International Conference, July 1996, pp. 148-156.
  • Fürnkranz, J., 2002. Round robin classification. The Journal of Machine Learning Research, 2, 721-747.
  • Gurusamy, L., Selvaraj, U., 2016. Clinicopathological study of lichen planus in a tertiary care center. International Journal of Scientific Study, 4(1), 244-247.
  • Guvenir H.A., Demiroz G., Ilter N., 1998. Learning differential diagnosis of eryhemato-squamous diseases using voting feature intervals. Artificial Intelligence in Medicine, 13, 147-165.
  • Huang, S., Cai, N., Pacheco, P.P., Narrandes, S., Wang, Y., Xu, W., 2018. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics-Proteomics, 15(1), 41-51.
  • Idoko, J.B., Arslan, M., Abiyev, R. 2018. Fuzzy neural system application to differential diagnosis of erythemato-squamous diseases. Cyprus J Med Sci, 3(2), 90-97.
  • Karabatak M., Ince M.C., 2009. A new feature selection method based on association rules for diagnosis of erythemato-squamous diseases. Expert Systems with Applications, 36(10), 12500-12505.
  • Lee, S.H., Jeong, S.K., Ahn, S.K., 2006. An update of the defensive barrier function of skin. Yonsei Medical Journal, 47(3), 293-306.
  • Lu, Y., Tian, Q., 2009. Discriminant subspace analysis: An adaptive approach for image classification. IEEE Transactions on Multimedia, 11(7), 1289-1300.
  • Lyons, F., Ousley, L., 2014. Dermatology for the advanced practice nurse. Springer Publishing Company, New York.
  • Močkus, J., 1974. On Bayesian methods for seeking the extremum. Optimization Techniques IFIP Technical Conference. 1-7 July 1974, Springer, Berlin, Heidelberg, pp. 400-404.
  • Mohammed, M., Khan, M.B., Bashier, E.B.M., 2016. Machine learning: algorithms and applications. CRC Press.
  • Nedorost, S.T., 2012. Generalized dermatitis in clinical practice. Springer Science & Business Media, Berlin.
  • Parikh, K.S., Shah, T.P., 2017. Feature selection paradigm using weighted probabilistic approach. International Journal of Advanced Science and Technology, 100, 1-14.
  • Putatunda, S., 2020. A hybrid deep learning approach for diagnosis of the erythemato-squamous disease. IEEE International Conference on Electronics, Computing and Communication Technologies. 2-4 July 2020, Bangalore, India, pp. 1-6.
  • Rashid, A.N.M.B., Ahmed, M., Sikos, L.F., Haskell-Dowland, P., 2020. A novel penalty-based wrapper objective function for feature selection in Big Data using cooperative co-evolution. IEEE Access, 8, 150113-150129.
  • Rasmussen, C.E., 2003. Gaussian processes in machine learning. Summer School on Machine Learning. Springer, Berlin, Heidelberg, pp. 63-71.
  • Shastri, S., Kour, P., Kumar, S., Singh, K., Mansotra, V. 2021. GBoost: A novel Grading-AdaBoost ensemble approach for automatic identification of erythemato-squamous disease. International Journal of Information Technology, 13(3), 959-971.
  • Subasi, A., Gursoy, M.I., 2010. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert systems with applications, 37(12), 8659-8666.
  • Tabassum, N., Hamdani, M., 2014. Plants used to treat skin diseases. Pharmacognosy Review, 8(15), 52-60. Verma, A.K., Pal, S., Kumar, S., 2020. Prediction of skin disease using ensemble data mining techniques and feature selection method—a comparative study. Applied Biochemistry and Biotechnology, 190(2), 341-359.
  • Wang, D., Chong, V.C-L., Chong, W-S., Oon, H.H., 2018. A review on pityriasis rubra pilaris. American Journal of Clinical Dermatology, 19(3), 377-390.
  • Xie, J., Wang, C., 2011. Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases. Expert Systems with Applications, 38(5), 5809-5815.
  • Yousef, H., Alhajj, M., Sharma, S., Anatomy, 2021. Skin (Integument), Epidermis. Treasure Island, FL: StatPearls Publishing.
  • Zhou, Z.H., 2012. Ensemble Methods: Foundations and Algorithms. New York, USA, Chapman and Hall/CRC.

Evaluation of Machine Learning Algorithms Performance in Diagnosis of Erythematous Squamous Diseases

Yıl 2021, Cilt: 4 Sayı: 2, 195 - 202, 23.09.2021
https://doi.org/10.38016/jista.901670

Öz

Differential diagnosis of erythematous squamous diseases is one of the important problems in dermatology. They all share the clinical picture of erythema and scaling among each other, with little difference. The diseases included in this group can be classified as psoriasis, seborrheic dermatitis, lichen planus, pityriasis rosea, chronic dermatitis and pityriasis rubra pilaris. Biopsy for diagnosis, but unfortunately these diseases also share many histopathological features. Technologies related to some other technologies have found wide application in the biomedical field. With the use of computer technologies in medical devices, more sensitive, faster, faster, cutting devices are developed. Therefore, it has been investigated how effective machine learning algorithms are in classifying and predicting skin diseases. In this study, skin tissue samples consisting of 33 attributes belonging to 366 patients, Support Vector Machines (SVM), Ensemble Learning Algorithms (ELA), Decision Trees (DT), k-Nearest Neighborhood (k-NN) were classified with algorithms and the highest knowledge information was recorded. Accordingly, the effects related to the separation and classification of skin diseases have been investigated. SVM has achieved an accuracy of 99.73% which is higher than all the previous studies on this dataset.

Kaynakça

  • Abakar, K.A., Yu, C., 2014. Performance of SVM based on PUK kernel in comparison to SVM based on RBF kernel in prediction of yarn tenacity. Indian Journal of Fibre & Textile Research, 39, 55-59.
  • Borda, L.J., Wikramanayake, T.C., 2015. Seborrheic dermatitis and dandruff: a comprehensive review. Journal of Clinical and Investigative Dermatology, 3(2), 1-22.
  • Brochu, E., Cora, V. M., De Freitas, N., 2010. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599.
  • Chaurasia, V., Pal, S., 2020. Machine learning algorithms using binary classification and multi model ensemble techniques for skin diseases prediction. International Journal of Biomedical Engineering and Technology, 34(1), 57-74.
  • Çifci, A., İlkuçar, M., Bozkurt, M.R., Uyaroğlu, Y., 2014. Liken planus ve sedef deri hastalıklarının çok katmanlı yapay sinir ağı kullanılarak sınıflandırılması. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5 (1), 30-36.
  • Dua, D., Graff, C., 2019. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
  • Dumas, N.S, Ntambi, M.J., 2018. A discussion on the relationship between skin lipid metabolism and whole-body glucose and lipid metabolism: systematic review. Journal of Cell Signaling, 3(3), 191.
  • Elsayad, A.M., Al-Dhaifallah, M., Nassef, A.M., 2018. Analysis and diagnosis of erythemato-squamous diseases using CHAID decision trees. IEEE 15th International Multi-Conference on Systems, Signals & Devices (SSD). 19-22 March 2018, Yasmine Hammamet, Tunisia, pp. 252-262.
  • Fidelis, M.V., Lopes, S.H., Freitas, A.A., 2000. Discovering comprehensible classification rules with a genetic algorithm. Proceedings of the 2000 Congress on Evolutionary Computation, 16-19 July 2000, La Jolla, CA, USA, pp. 805-810.
  • Fonacier, L.S., Dreskin, S.C., Leung D.Y.M., 2010. Allergic skin diseases. Journal of Allergy and Clinical Immunology, 125(2), 138-149.
  • Freund, Y., Schapire, R.E., 1996. Experiments with a new boosting algorithm. Machine Learning: Proceedings of the Thirteenth International Conference, July 1996, pp. 148-156.
  • Fürnkranz, J., 2002. Round robin classification. The Journal of Machine Learning Research, 2, 721-747.
  • Gurusamy, L., Selvaraj, U., 2016. Clinicopathological study of lichen planus in a tertiary care center. International Journal of Scientific Study, 4(1), 244-247.
  • Guvenir H.A., Demiroz G., Ilter N., 1998. Learning differential diagnosis of eryhemato-squamous diseases using voting feature intervals. Artificial Intelligence in Medicine, 13, 147-165.
  • Huang, S., Cai, N., Pacheco, P.P., Narrandes, S., Wang, Y., Xu, W., 2018. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics-Proteomics, 15(1), 41-51.
  • Idoko, J.B., Arslan, M., Abiyev, R. 2018. Fuzzy neural system application to differential diagnosis of erythemato-squamous diseases. Cyprus J Med Sci, 3(2), 90-97.
  • Karabatak M., Ince M.C., 2009. A new feature selection method based on association rules for diagnosis of erythemato-squamous diseases. Expert Systems with Applications, 36(10), 12500-12505.
  • Lee, S.H., Jeong, S.K., Ahn, S.K., 2006. An update of the defensive barrier function of skin. Yonsei Medical Journal, 47(3), 293-306.
  • Lu, Y., Tian, Q., 2009. Discriminant subspace analysis: An adaptive approach for image classification. IEEE Transactions on Multimedia, 11(7), 1289-1300.
  • Lyons, F., Ousley, L., 2014. Dermatology for the advanced practice nurse. Springer Publishing Company, New York.
  • Močkus, J., 1974. On Bayesian methods for seeking the extremum. Optimization Techniques IFIP Technical Conference. 1-7 July 1974, Springer, Berlin, Heidelberg, pp. 400-404.
  • Mohammed, M., Khan, M.B., Bashier, E.B.M., 2016. Machine learning: algorithms and applications. CRC Press.
  • Nedorost, S.T., 2012. Generalized dermatitis in clinical practice. Springer Science & Business Media, Berlin.
  • Parikh, K.S., Shah, T.P., 2017. Feature selection paradigm using weighted probabilistic approach. International Journal of Advanced Science and Technology, 100, 1-14.
  • Putatunda, S., 2020. A hybrid deep learning approach for diagnosis of the erythemato-squamous disease. IEEE International Conference on Electronics, Computing and Communication Technologies. 2-4 July 2020, Bangalore, India, pp. 1-6.
  • Rashid, A.N.M.B., Ahmed, M., Sikos, L.F., Haskell-Dowland, P., 2020. A novel penalty-based wrapper objective function for feature selection in Big Data using cooperative co-evolution. IEEE Access, 8, 150113-150129.
  • Rasmussen, C.E., 2003. Gaussian processes in machine learning. Summer School on Machine Learning. Springer, Berlin, Heidelberg, pp. 63-71.
  • Shastri, S., Kour, P., Kumar, S., Singh, K., Mansotra, V. 2021. GBoost: A novel Grading-AdaBoost ensemble approach for automatic identification of erythemato-squamous disease. International Journal of Information Technology, 13(3), 959-971.
  • Subasi, A., Gursoy, M.I., 2010. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert systems with applications, 37(12), 8659-8666.
  • Tabassum, N., Hamdani, M., 2014. Plants used to treat skin diseases. Pharmacognosy Review, 8(15), 52-60. Verma, A.K., Pal, S., Kumar, S., 2020. Prediction of skin disease using ensemble data mining techniques and feature selection method—a comparative study. Applied Biochemistry and Biotechnology, 190(2), 341-359.
  • Wang, D., Chong, V.C-L., Chong, W-S., Oon, H.H., 2018. A review on pityriasis rubra pilaris. American Journal of Clinical Dermatology, 19(3), 377-390.
  • Xie, J., Wang, C., 2011. Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases. Expert Systems with Applications, 38(5), 5809-5815.
  • Yousef, H., Alhajj, M., Sharma, S., Anatomy, 2021. Skin (Integument), Epidermis. Treasure Island, FL: StatPearls Publishing.
  • Zhou, Z.H., 2012. Ensemble Methods: Foundations and Algorithms. New York, USA, Chapman and Hall/CRC.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makalesi
Yazarlar

Gürkan Bilgin 0000-0002-8441-1557

Ahmet Çifci 0000-0001-7679-9945

Yayımlanma Tarihi 23 Eylül 2021
Gönderilme Tarihi 23 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 2

Kaynak Göster

APA Bilgin, G., & Çifci, A. (2021). Eritematöz Skuamöz Hastalıkların Teşhisinde Makine Öğrenme Algoritmalarının Etkisi. Journal of Intelligent Systems: Theory and Applications, 4(2), 195-202. https://doi.org/10.38016/jista.901670
AMA Bilgin G, Çifci A. Eritematöz Skuamöz Hastalıkların Teşhisinde Makine Öğrenme Algoritmalarının Etkisi. jista. Eylül 2021;4(2):195-202. doi:10.38016/jista.901670
Chicago Bilgin, Gürkan, ve Ahmet Çifci. “Eritematöz Skuamöz Hastalıkların Teşhisinde Makine Öğrenme Algoritmalarının Etkisi”. Journal of Intelligent Systems: Theory and Applications 4, sy. 2 (Eylül 2021): 195-202. https://doi.org/10.38016/jista.901670.
EndNote Bilgin G, Çifci A (01 Eylül 2021) Eritematöz Skuamöz Hastalıkların Teşhisinde Makine Öğrenme Algoritmalarının Etkisi. Journal of Intelligent Systems: Theory and Applications 4 2 195–202.
IEEE G. Bilgin ve A. Çifci, “Eritematöz Skuamöz Hastalıkların Teşhisinde Makine Öğrenme Algoritmalarının Etkisi”, jista, c. 4, sy. 2, ss. 195–202, 2021, doi: 10.38016/jista.901670.
ISNAD Bilgin, Gürkan - Çifci, Ahmet. “Eritematöz Skuamöz Hastalıkların Teşhisinde Makine Öğrenme Algoritmalarının Etkisi”. Journal of Intelligent Systems: Theory and Applications 4/2 (Eylül 2021), 195-202. https://doi.org/10.38016/jista.901670.
JAMA Bilgin G, Çifci A. Eritematöz Skuamöz Hastalıkların Teşhisinde Makine Öğrenme Algoritmalarının Etkisi. jista. 2021;4:195–202.
MLA Bilgin, Gürkan ve Ahmet Çifci. “Eritematöz Skuamöz Hastalıkların Teşhisinde Makine Öğrenme Algoritmalarının Etkisi”. Journal of Intelligent Systems: Theory and Applications, c. 4, sy. 2, 2021, ss. 195-02, doi:10.38016/jista.901670.
Vancouver Bilgin G, Çifci A. Eritematöz Skuamöz Hastalıkların Teşhisinde Makine Öğrenme Algoritmalarının Etkisi. jista. 2021;4(2):195-202.

Zeki Sistemler Teori ve Uygulamaları Dergisi