Araştırma Makalesi
BibTex RIS Kaynak Göster

Aviation-caused CO2 emissions reduction efficiency in EU-28 under CORSIA compliance

Yıl 2022, , 33 - 52, 29.10.2022
https://doi.org/10.51513/jitsa.1164739

Öz

The CORSIA is an emission reduction program which is implemented by ICAO for the global air-line industry. The program aims to contribute to the implemented measures to reduce CO2 emis-sions from the international aviation network. In this regard, we aim to find out the significant factors that affect the levels of CO2 emissions in aviation and the most efficient countries in re-ducing them. Firstly, we examine 28-member countries of the EU (European Union) by using the panel data based stochastic frontier analysis and Malmquist productivity indices. The results show that the determinants affecting the emissions caused by aviation statistically significant for the pe-riod 2008-2017: Energy consumption per flight; millions of passenger-kilometers, freight and mail million tonne-kilometer; the number of commercial aircraft fleets by age groups; the number of countries’ airports; and globalization index of the related country. Moreover, efficiency scores which are obtained by stochastic frontier analysis and Malmquist productivity index differ among the countries. Eastern European countries are observed to be superior in terms of technical effi-ciency. However, there is no significant increasing or decreasing trend in technical efficiency for EU 28 countries. This result is an indication that CORSIA’s emission reduction expectations will not be realized quickly, especially when considering the extensive use of aviation in the globalized countries.

Kaynakça

  • Aircarbon, (2020). Understanding CORSIA. https://www.aircarbon.co/corsia (accessed 8 October 2020).
  • Andreoni, V., Galmarini, S. (2012). European CO2 emission trends: A decomposition analysis for water and aviation transport sectors. Energy, 45 1, 595-602.
  • Arjomandi, A., Dakpo, K. H., Seufert, J. H. (2018). Have Asian airlines caught up with European Airlines? A by-production efficiency analysis. Transportation Research Part A: Policy and Practice,116, 389-403.
  • Banker, R. D., Charnes, A., Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30 9, 1078-1092.
  • Barros, C. P. (2005). Performance measurement in tax offices with a stochastic frontier model. Journal of Economic Studies, 32(6), 497-510.
  • Becken, S. (2002). Analysing international tourist flows to estimate energy use associated with air travel. Journal of Sustainable Tourism, 102, 114-131.
  • Brueckner, J. K., Abreu, C. (2017). Airline fuel usage and carbon emissions: Determining factors. Journal of Air Transport Management, 62, 10-17.
  • Caves, D. W., Christensen, L. R., Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output and productivity. Econometrica: Journal of the Econometric Society, 1393-1414.
  • Caves, D. W., Christensen, L. R., Tretheway, M. W. (1983). Productivity performance of US trunk and local servce airlines in the era of deregulation. Economic Inquiry, 213, 312-324.
  • Chakraborty, K., Biswas, B., Lewis, W. C. (1999). Technical efficiency in stochastic production frontier: A simultaneous equation approach. Economics Research Institute Study Paper, 10, 1.
  • Charnes, A., Cooper, W. W., Rhodes, E. (1978). A Data Envelopment Analysis Approach to Evaluation of the Program Follow through Experiment in US Public School Education No. MSRR-432 Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group.
  • Dreher, A. (2006). KOF index of globalization. Zürich: Konjunkturforschungsstelle ETH Zürich.
  • Düzgün, B. (2014). Türkiye’nin enerji verimliliğinin değerlendirilmesi: beyaz sertifikalar sisteminin Türkiye’ye uygulanabilirliğinin incelenmesi. Ph.D. Thesis, Istanbul Technical University, Turkey.
  • EC (2013). Commission staff working document. https://ec.europa.eu/energy/sites/ener/files/documents/20131106_swd_guidance_neeaps.pdf (accessed 8 October 2020).
  • EC (2020). Reducing emissions from aviation. https://ec.europa.eu/clima/policies/transport/aviation_en (accessed 1 October 2020).
  • EEA (2020). EU Emissions Trading System (ETS) data viewer. https://www.eea.europa.eu/data-and-maps/dashboards/emissions-trading-viewer-1 (accessed 1 October 2020).
  • Egilmez, G., Mcavoy, D. (2013). Benchmarking road safety of US states: A DEA-based Malmquist productivity index approach. Accident Analysis and Prevention, 53, 55-64.
  • ENSPOL (2015). Energy saving policies and energy efficiency obligation schemes. https://energypedia.info/images/5/5c/Report_on_Alternative_schemes_to_Energy_Efficiency_Obligations_under_Article_7_implementation.pdf (accessed 16 February 2020).
  • EU (2020). Directive of the European parliament and of the council. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0210.01.ENG&toc=OJ:L:2018:328:TOC (accessed 16 February 2020).
  • Fitzgerald, J., Tol, R. S. (2007). Airline emissions of carbon dioxide in the European trading system No. 179 Working Paper, The Economic and Social Research Institute ESRI. Dublin.
  • González, R., Hosoda, E. B.¬¬¬¬¬ (2016). Environmental impact of aircraft emissions and aviation fuel tax in Japan. Journal of Air Transport Management, 57, 234-240.
  • Grote, M., Williams, I., Preston, J. (2014). Direct carbon dioxide emissions from civil aircraft. Atmospheric Environment, 95, 214-224.
  • Guardian (2020). World's first fully electric commercial aircraft takes flight in Canada. https://www.theguardian.com/world/2019/dec/11/worlds-first-fully-electric-commercial-aircraft-takes-flight-in-canada (accessed 16 February 2020).
  • Hassan, M., Pfaender, H., Mavris, D. (2018). Probabilistic assessment of aviation CO2 emission targets. Transportation Research Part D: Transport and Environment, 63, 362-376.
  • Henningsen, A. W. (2010). Globalization for Growth in the Aviation Maintenance Repair and Overhaul Industry. In Globalization 2.0 pp. 37-55. Springer, Berlin, Heidelberg.
  • IATA (2017). Annual Review. https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2017.pdf, (accessed 3 October 2020).
  • ICAO (2016). On board a sustainable future: 2016 environmental report. http://www.icao.int/environmentalprotection/Documents/ICAO%20Environmental%20Report%202016.pdf (accessed 8 October 2020).
  • IPCC (1999). IPCC special report aviation and the global atmosphere. https://www.ipcc.ch/report/aviation-and-the-global-atmosphere-2/ (accessed 5 October 2020).
  • Kantenbacher, J., Hanna, P., Cohen, S., Miller, G., Scarles, C. (2018). Public attitudes about climate policy options for aviation. Environmental Science and Policy, 81, 46-53.
  • Kao, C. (2006). Interval efficiency measures in data envelopment analysis with imprecise data. European Journal of Operational Research, 1742, 1087-1099.
  • Kasman, A., Duman, Y. S. (2015). CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: a panel data analysis. Economic Modelling, 44, 97-103.
  • Kula, V., Kandemir, T., Özdemir, L. (2009). Vza Malmquist Toplam Faktör Verimlilik Ölçüsü: İmkb’ye Koteli Çimento Şirketleri Üzerine Bir Araştirma. Sosyal Ekonomik Araştırmalar Dergisi. 9 17, 186-202.
  • Kumbhakar, S. C., Lovell, C. K. (2000). Stochastic production frontier. Cambridge University Press.
  • Lewis, H. F., Sexton, T. R. (2004). Data envelopment analysis with reverse inputs and outputs. Journal of Productivity Analysis, 212, 113-132.
  • Li, Y., Wang, Y. Z., Cui, Q. (2016). Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012. Energy, 96, 8-22.
  • Lu, C. C., Chiu, Y. H., Shyu, M. K., Lee, J. H. (2013). Measuring CO2 emission efficiency in OECD countries: Application of the Hybrid Efficiency model. Economic Modelling, 32, 130-135.
  • Meleo, L., Nava, C. R., Pozzi, C. (2016). Aviation and the costs of the European Emission Trading Scheme: The case of Italy. Energy Policy, 88, 138-147.
  • Merkert, R., Hensher, D. A. (2011). The impact of strategic management and fleet planning on airline efficiency–A random effects Tobit model based on DEA efficiency scores. Transportation Research Part A: Policy and Practice, 457, 686-695.
  • Molloy, J., Melo, P., Graham, D., Majumdar, A., Ochieng, W. (2012). Role of air travel demand elasticities in reducing aviation's carbon dioxide emissions: Evidence for European airlines. Transportation Research Record: Journal of the Transportation Research Board, 2300, 31-41.
  • Pan, W. J., Huang, C. Y., Wang, W. B. (2014). Research on mitigating methods to reduce civil aviation emission. In Advanced Materials Research, 864,1830-1835.
  • Rizet, C., Cruz, C., Mbacké, M. (2012). Reducing freight transport CO2 emissions by increasing the load factor. Procedia-Social and Behavioral Sciences, 48, 184-195.
  • Sarafidis, V. (2002). An Assessment of Comparative Efficiency Measurement Techniques, Europe Economics, Occasional Paper, 2.
  • Scotti, D., Volta, N. (2015). An empirical assessment of the CO2-sensitive productivity of European airlines from 2000 to 2010. Transportation Research Part D: Transport and Environment, 37, 137-149.
  • Staples, M. D., Malina, R., Suresh, P., Hileman, J. I., Barrett, S. R. (2018). Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy, 114, 342-354.
  • Toloo, M., Nalchigar, S. (2009). A new integrated DEA model for finding most BCC-efficient DMU. Applied Mathematical Modelling, 331, 597-604.
  • Tracking Transport Report (2019). Tracking transport report. https://www.iea.org/reports/tracking-transport-2019 (accessed 8 November 2019).
  • Tyteca, D. (1996). On the measurement of the environmental performance of firms—a literature review and a productive efficiency perspective. Journal of environmental management, 463, 281-308.
  • Wilkerson, J. T., Jacobson, M. Z., Malwitz, A., Balasubramanian, S., Wayson, R., Fleming, G., ..., Lele, S. K. (2010). Analysis of emission data from global commercial aviation: 2004 and 2006. Atmospheric Chemistry and Physics, 1013, 6391-6408.
  • Wise, M., Muratori, M., Kyle, P. (2017). Biojet fuels and emissions mitigation in aviation: An integrated assessment modeling analysis. Transportation Research Part D: Transport and Environment, 52, 244-253.
  • World Bank (2020). Air transport, passenger carried. https://data.worldbank.org/indicator/IS.AIR.PSGR, (accessed 8 October 2020).
  • Zhang, J., Fang, H., Wang, H., Jia, M., Wu, J., Fang, S. (2017). Energy efficiency of airlines and its influencing factors: a comparison between China and the United States. Resources, Conservation and Recycling, 125, 1-8.
  • Zhou, W., Wang, T., Yu, Y., Chen, D., Zhu, B. (2016). Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030. Applied Energy, 175, 100-10.

CORSIA uyumluluğu kapsamında AB-28'de havacılık kaynaklı CO2 emisyonlarını azaltma verimliliği

Yıl 2022, , 33 - 52, 29.10.2022
https://doi.org/10.51513/jitsa.1164739

Öz

CORSIA, ICAO tarafından küresel havayolu endüstrisi için uygulanan bir emisyon azaltma programıdır. Program, uluslararası hava taşımacılığı ağından kaynaklanan CO2 emisyonunu azaltmak için uygulanan önleyici faaliyetlere katkıda bulunmayı amaçlamaktadır. Bu kapsamda çalışmamız hava taşımacılığındaki CO2 emisyon düzeylerini etkileyen önemli faktörleri ve emisyonun azaltılmasında en etkin olan ülkeleri ortaya çıkarmayı amaçlamaktadır. İlk olarak, panel veri tabanlı stokastik sınır analizi ve Malmquist verimlilik endeksi yaklaşımlarını kullanarak AB üyesi olan 28 ülkenin analizi yapılmaktadır. Sonuçlar, havacılık kaynaklı emisyonların belirleyicilerinin 2008-2017 dönemi için; uçuş başına enerji tüketimi; taşınan milyon yolcu/kilometre, taşınan milyon ton yük ve posta ton/kilometre; yaş gruplarına göre ticari uçak filosu sayısı; ülkelerin havaalanlarının sayısı; ve ilgili ülkenin küreselleşme endeksi olduğunu göstermiştir. Ayrıca stokastik sınır analizi ve Malmquist verimlilik endeksi ile elde edilen etkinlik puanları ülkeler arasında farklılık göstermektedir. Doğu Avrupa ülkelerinin teknik verimlilik açısından daha üstün olduğu görülmektedir. Ancak, AB 28 ülkeleri için teknik verimlilikte önemli bir artış veya azalış eğilimi yoktur. Bu sonuç, özellikle küreselleşmiş ülkelerde havacılığın yaygın kullanımı düşünüldüğünde CORSIA'nın emisyon azaltım beklentilerinin hızlı bir şekilde gerçekleştirelemeyeceğinin bir göstergesi olabilir.

Kaynakça

  • Aircarbon, (2020). Understanding CORSIA. https://www.aircarbon.co/corsia (accessed 8 October 2020).
  • Andreoni, V., Galmarini, S. (2012). European CO2 emission trends: A decomposition analysis for water and aviation transport sectors. Energy, 45 1, 595-602.
  • Arjomandi, A., Dakpo, K. H., Seufert, J. H. (2018). Have Asian airlines caught up with European Airlines? A by-production efficiency analysis. Transportation Research Part A: Policy and Practice,116, 389-403.
  • Banker, R. D., Charnes, A., Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30 9, 1078-1092.
  • Barros, C. P. (2005). Performance measurement in tax offices with a stochastic frontier model. Journal of Economic Studies, 32(6), 497-510.
  • Becken, S. (2002). Analysing international tourist flows to estimate energy use associated with air travel. Journal of Sustainable Tourism, 102, 114-131.
  • Brueckner, J. K., Abreu, C. (2017). Airline fuel usage and carbon emissions: Determining factors. Journal of Air Transport Management, 62, 10-17.
  • Caves, D. W., Christensen, L. R., Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output and productivity. Econometrica: Journal of the Econometric Society, 1393-1414.
  • Caves, D. W., Christensen, L. R., Tretheway, M. W. (1983). Productivity performance of US trunk and local servce airlines in the era of deregulation. Economic Inquiry, 213, 312-324.
  • Chakraborty, K., Biswas, B., Lewis, W. C. (1999). Technical efficiency in stochastic production frontier: A simultaneous equation approach. Economics Research Institute Study Paper, 10, 1.
  • Charnes, A., Cooper, W. W., Rhodes, E. (1978). A Data Envelopment Analysis Approach to Evaluation of the Program Follow through Experiment in US Public School Education No. MSRR-432 Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group.
  • Dreher, A. (2006). KOF index of globalization. Zürich: Konjunkturforschungsstelle ETH Zürich.
  • Düzgün, B. (2014). Türkiye’nin enerji verimliliğinin değerlendirilmesi: beyaz sertifikalar sisteminin Türkiye’ye uygulanabilirliğinin incelenmesi. Ph.D. Thesis, Istanbul Technical University, Turkey.
  • EC (2013). Commission staff working document. https://ec.europa.eu/energy/sites/ener/files/documents/20131106_swd_guidance_neeaps.pdf (accessed 8 October 2020).
  • EC (2020). Reducing emissions from aviation. https://ec.europa.eu/clima/policies/transport/aviation_en (accessed 1 October 2020).
  • EEA (2020). EU Emissions Trading System (ETS) data viewer. https://www.eea.europa.eu/data-and-maps/dashboards/emissions-trading-viewer-1 (accessed 1 October 2020).
  • Egilmez, G., Mcavoy, D. (2013). Benchmarking road safety of US states: A DEA-based Malmquist productivity index approach. Accident Analysis and Prevention, 53, 55-64.
  • ENSPOL (2015). Energy saving policies and energy efficiency obligation schemes. https://energypedia.info/images/5/5c/Report_on_Alternative_schemes_to_Energy_Efficiency_Obligations_under_Article_7_implementation.pdf (accessed 16 February 2020).
  • EU (2020). Directive of the European parliament and of the council. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0210.01.ENG&toc=OJ:L:2018:328:TOC (accessed 16 February 2020).
  • Fitzgerald, J., Tol, R. S. (2007). Airline emissions of carbon dioxide in the European trading system No. 179 Working Paper, The Economic and Social Research Institute ESRI. Dublin.
  • González, R., Hosoda, E. B.¬¬¬¬¬ (2016). Environmental impact of aircraft emissions and aviation fuel tax in Japan. Journal of Air Transport Management, 57, 234-240.
  • Grote, M., Williams, I., Preston, J. (2014). Direct carbon dioxide emissions from civil aircraft. Atmospheric Environment, 95, 214-224.
  • Guardian (2020). World's first fully electric commercial aircraft takes flight in Canada. https://www.theguardian.com/world/2019/dec/11/worlds-first-fully-electric-commercial-aircraft-takes-flight-in-canada (accessed 16 February 2020).
  • Hassan, M., Pfaender, H., Mavris, D. (2018). Probabilistic assessment of aviation CO2 emission targets. Transportation Research Part D: Transport and Environment, 63, 362-376.
  • Henningsen, A. W. (2010). Globalization for Growth in the Aviation Maintenance Repair and Overhaul Industry. In Globalization 2.0 pp. 37-55. Springer, Berlin, Heidelberg.
  • IATA (2017). Annual Review. https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2017.pdf, (accessed 3 October 2020).
  • ICAO (2016). On board a sustainable future: 2016 environmental report. http://www.icao.int/environmentalprotection/Documents/ICAO%20Environmental%20Report%202016.pdf (accessed 8 October 2020).
  • IPCC (1999). IPCC special report aviation and the global atmosphere. https://www.ipcc.ch/report/aviation-and-the-global-atmosphere-2/ (accessed 5 October 2020).
  • Kantenbacher, J., Hanna, P., Cohen, S., Miller, G., Scarles, C. (2018). Public attitudes about climate policy options for aviation. Environmental Science and Policy, 81, 46-53.
  • Kao, C. (2006). Interval efficiency measures in data envelopment analysis with imprecise data. European Journal of Operational Research, 1742, 1087-1099.
  • Kasman, A., Duman, Y. S. (2015). CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: a panel data analysis. Economic Modelling, 44, 97-103.
  • Kula, V., Kandemir, T., Özdemir, L. (2009). Vza Malmquist Toplam Faktör Verimlilik Ölçüsü: İmkb’ye Koteli Çimento Şirketleri Üzerine Bir Araştirma. Sosyal Ekonomik Araştırmalar Dergisi. 9 17, 186-202.
  • Kumbhakar, S. C., Lovell, C. K. (2000). Stochastic production frontier. Cambridge University Press.
  • Lewis, H. F., Sexton, T. R. (2004). Data envelopment analysis with reverse inputs and outputs. Journal of Productivity Analysis, 212, 113-132.
  • Li, Y., Wang, Y. Z., Cui, Q. (2016). Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012. Energy, 96, 8-22.
  • Lu, C. C., Chiu, Y. H., Shyu, M. K., Lee, J. H. (2013). Measuring CO2 emission efficiency in OECD countries: Application of the Hybrid Efficiency model. Economic Modelling, 32, 130-135.
  • Meleo, L., Nava, C. R., Pozzi, C. (2016). Aviation and the costs of the European Emission Trading Scheme: The case of Italy. Energy Policy, 88, 138-147.
  • Merkert, R., Hensher, D. A. (2011). The impact of strategic management and fleet planning on airline efficiency–A random effects Tobit model based on DEA efficiency scores. Transportation Research Part A: Policy and Practice, 457, 686-695.
  • Molloy, J., Melo, P., Graham, D., Majumdar, A., Ochieng, W. (2012). Role of air travel demand elasticities in reducing aviation's carbon dioxide emissions: Evidence for European airlines. Transportation Research Record: Journal of the Transportation Research Board, 2300, 31-41.
  • Pan, W. J., Huang, C. Y., Wang, W. B. (2014). Research on mitigating methods to reduce civil aviation emission. In Advanced Materials Research, 864,1830-1835.
  • Rizet, C., Cruz, C., Mbacké, M. (2012). Reducing freight transport CO2 emissions by increasing the load factor. Procedia-Social and Behavioral Sciences, 48, 184-195.
  • Sarafidis, V. (2002). An Assessment of Comparative Efficiency Measurement Techniques, Europe Economics, Occasional Paper, 2.
  • Scotti, D., Volta, N. (2015). An empirical assessment of the CO2-sensitive productivity of European airlines from 2000 to 2010. Transportation Research Part D: Transport and Environment, 37, 137-149.
  • Staples, M. D., Malina, R., Suresh, P., Hileman, J. I., Barrett, S. R. (2018). Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy, 114, 342-354.
  • Toloo, M., Nalchigar, S. (2009). A new integrated DEA model for finding most BCC-efficient DMU. Applied Mathematical Modelling, 331, 597-604.
  • Tracking Transport Report (2019). Tracking transport report. https://www.iea.org/reports/tracking-transport-2019 (accessed 8 November 2019).
  • Tyteca, D. (1996). On the measurement of the environmental performance of firms—a literature review and a productive efficiency perspective. Journal of environmental management, 463, 281-308.
  • Wilkerson, J. T., Jacobson, M. Z., Malwitz, A., Balasubramanian, S., Wayson, R., Fleming, G., ..., Lele, S. K. (2010). Analysis of emission data from global commercial aviation: 2004 and 2006. Atmospheric Chemistry and Physics, 1013, 6391-6408.
  • Wise, M., Muratori, M., Kyle, P. (2017). Biojet fuels and emissions mitigation in aviation: An integrated assessment modeling analysis. Transportation Research Part D: Transport and Environment, 52, 244-253.
  • World Bank (2020). Air transport, passenger carried. https://data.worldbank.org/indicator/IS.AIR.PSGR, (accessed 8 October 2020).
  • Zhang, J., Fang, H., Wang, H., Jia, M., Wu, J., Fang, S. (2017). Energy efficiency of airlines and its influencing factors: a comparison between China and the United States. Resources, Conservation and Recycling, 125, 1-8.
  • Zhou, W., Wang, T., Yu, Y., Chen, D., Zhu, B. (2016). Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030. Applied Energy, 175, 100-10.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gizem Kaya 0000-0002-6870-7219

Özgür Kayalıca 0000-0001-9828-7385

Yayımlanma Tarihi 29 Ekim 2022
Gönderilme Tarihi 20 Ağustos 2022
Kabul Tarihi 20 Ekim 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kaya, G., & Kayalıca, Ö. (2022). Aviation-caused CO2 emissions reduction efficiency in EU-28 under CORSIA compliance. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 5(2), 33-52. https://doi.org/10.51513/jitsa.1164739