Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Mechanical and Microstructural Properties of Polyolefin Rubber and Glass Beads Filled Polypropylene Composites

Yıl 2022, , 91 - 105, 06.06.2022
https://doi.org/10.55546/jmm.1092570

Öz

In the automotive industry and many industries, parts are expected to meet certain requirements with regards to their tensile strength, stiffness, and high impact strength. For this reason, polypropylene homopolymer, which is a fragile polymer widely used in the automotive industry, is combined with additives to reduce its fragility. In this study, the mechanical and microstructural properties of polyolefin rubber and glass bead filled polypropylene composites have been investigated. Polypropylene (PP) was combined with polyolefin rubber (POE) and glass beads (GB) at different weight rates to create the composites and pure polypropylene was compared to the three prepared PP composites; 8% polyolefin rubber by weight, 8% glass bead by weight, and 8% polyolefin rubber and 8% glass bead by weight. The fracture surface examinations of the pure polypropylene (PP), and the polyolefin rubber added PP, glass bead added PP, and polyolefin rubber and glass bead added PP composites were carried out using Scanning Electron Microscopy (SEM). In addition, Energy Dispersive Spectroscopy (EDS) analysis was also performed for the characterization. It was observed that the tensile strength values of the PP composites (PP-8%POE, PP-8%GB, and PP-8%POE-8%GB) showed a slight decrease relative to the pure PP. When rigid glass beads were added to the pure PP polymer main matrix (8% by weight), the stiffness of the composite increased and the modulus of elasticity increased by approximately 8% relative to pure PP. In addition, it was observed that the % elongation at break values of the PP composites (PP-8%POE, PP-8%GB, and PP-8%POE-8%GB) increased significantly relative to the values for pure PP.

Kaynakça

  • Brillinger J. H., Banks S. A., Thermoplastic Elastomers for Flexible Body Components. SAE Transactions 85(4), 2340-2349, 1976.
  • Cai J., Luo R., Lv R., He Y., Zhou D., H, W., Crystallization Kinetics of Ethylene-Co-Propylene Rubber/Isotactic Polypropylene Blend Investigated via Chip-Calorimeter Measurement. European Polymer Journal 96, 79-86, 2017.
  • Carvalho G. B., Canevarolo S., Sousa J. A., Influence of Interfacial Interactions on The Mechanical Behavior of Hybrid Composites of Polypropylene / Short Glass Fibers / Hollow Glass Beads. Polymer Testing 85, 106418, 2020.
  • Coran A.Y., Patel R.P., Thermoplastic Elastomers by Blending and Dynamic Vulcanization. In: Karger-Kocsis, J. (eds) Polypropylene Structure, blends and composites. Springer, Dordrecht.162-201, 1995.
  • Cunha M. P., Grisa A. M. C., Klein J., Poletto M., Brandalise R. N., Preparation and Characterization of Hollow Glass Microspheres-Reinforced Poly (Acrylonitrile-Co-Butadiene-Co-Styrene) Composites. Materials Research 21(6), e20180201, 2018.
  • Drobny J. G., Handbook of Thermoplastic Elastomers, William Andrew Inc., First Edition, pp.191-99, 2007.
  • Fan Q., Zhang J., Wu Z., Yang S., Chen Y., Ying Lu, Zhang Q., Great Improvement of Low-Temperature Impact Resistance of Isotactic Polypropylene/Ethylene Propylene Diene Monomer Rubber Blends by Traces of Carbon Nanotubes and β-Nucleating Agents. Polymers for Advanced Technologies 31(3), 508-519, 2020.
  • Farhang L., Bagheri R., Investigation of Toughening Micro-Mechanisms in Polypropylene/ Ethylene-Propylene-Diene Rubber Blends at Crack and Notch Tips. Materials Performance and Characterization 3(3), 469-488, 2014.
  • Fasihi, M., Mansouri H., Effect of Rubber Interparticle Distance Distribution on Toughening Behavior of Thermoplastic Polyolefin Elastomer Toughened Polypropylene. Journal of Applied Polymer Science 133(40), 44068, 2016.
  • He D., Jiang B. The Elastic Modulus of Filled Polymer Composites. Journal of Applied Polymer Science 49(4), 617-621, 1993.
  • Hu S., Hou Y., Wang X., Zhang L., Zhu Y., Research Progress of Rubber and Elastomer Toughening Modified PP. Hecheng Shuzhi Ji Suliao/China Synthetic Resin and Plastics 36(5),104-109, 2019.
  • Jang B. Z., Uhlmann D. R., Vander Sande J. B., Rubber‐toughening in Polypropylene. Journal of Applied Polymer Science 30(6), 2485-2504, 1985.
  • Kim S. Y., Ha J. U., Shin D., Jung W., Lee P. C., Mechanical Properties and Morphology of Polyamide/Polypropylene Blends. Elastomers and Composites 55(1), 1-5, 2020.
  • Kwok K. W., Gao Z. M., Choy C. L., Zhu X. G., Stiffness and toughness of Polypropylene/Glass Bead Composites. Polymer Composites 24(1), 53-59, 2003.
  • Lendvai L., A Novel Preparation Method of Polypropylene/Natural Rubber Blends with Improved Toughness. Polymer International 70(3), 298-307, 2021.
  • Li Y., Wei G. X., Sue H. J., Morphology and toughening mechanisms in clay-modified styrene-butadiene-styrene rubber-toughened polypropylene. Journal of Materials Science 37(12), 2447-2459, 2002.
  • Li F., Gao Y., Zhang Y., Jiang W., Design of High Impact Thermal Plastic Polymer Composites with Balanced Toughness and Rigidity: Toughening with One Phase Modifier. Polymer 191, 122237, 2020.
  • Liang J. Z., Impact Fracture Toughness of Hollow Glass Bead-Filled Polypropylene Composites. Journal of Materials Science 42(3), 841-846, 2007a.
  • Liang J. Z., Li R. K. Y., Mechanical Properties and Morphology of Glass Bead–Filled Polypropylene Composites. Polymer Composites 19(6), 698-703, 1998.
  • Liang J. Z., Li R. K. Y., Rubber Toughening in Polypropylene: A Review. Journal of Applied Polymer Science 77(2), 409-417, 2000.
  • Liang J. Z., Tensile and Flexural Properties of Hollow Glass Bead-Filled ABS Composites. Journal of Elastomers and Plastics 37(4), 361-370, 2005.
  • Liang J. Z., Tensile Properties of Hollow Glass Bead-Filled Polypropylene Composites. Journal of Applied Polymer Science 104(3),1697-1701, 2007b.
  • Liang J. Z., Wu C. B., Effects of the Glass Bead Content and the surface treatment on the Mechanical Properties of Polypropylene Composites. Journal of Applied Polymer Science 123(5), 3054-3063, 2012.
  • Lim J. W., Hassan A., Rahmat A. R., Wahit M. U., Phase Morphology and Mechanical Properties of Rubber-Toughened Polypropylene Nanocomposites: Effect of Elastomer Polarity. Polymer - Plastics Technology and Engineering 47(4), 411-419, 2008.
  • Lim J. W., Hassan A., Rahmat A. R., Wahit M. U., Rubber-Toughened Polypropylene Nanocomposite: Effect of Polyethylene Octene Copolymer on Mechanical Properties and Phase Morphology. Journal of Applied Polymer Science 99(6), 3441-3450, 2006.
  • Liu G., Qiu G., Study on the Mechanical and Morphological Properties of Toughened Polypropylene Blends for Automobile Bumpers. Polymer Bulletin 70(3), 849-857, 2013.
  • Lotti C., Correa C. A, Canevarolo S. V, Mechanical and Morphological Characterization of Polypropylene Toughened with Olefinic Elastomer. Materials Research 3(2), 37-44, 2000.
  • Mao H., Cheng Y., Guo W., Meng Z., Wei W., Hua L., Yang Q., Effect of POE on Mechanical Properties and Cellular Structure of PP/Nano-CaCO3composites in IMD/MIM Process. Materials Research Express 7(9), 095308, 2020.
  • Müller M., Mechanical Properties of Resin Reinforced with Glass Beads. Agronomy Research 15(S1), 1107-1118, 2017.
  • Purowski T., Dzierzanowski P., Bulska E., Wagner B., Nowak A., A study of glass beads from the Hallstatt C–D from southwestern Poland: implications for glass technology and provenance. Archaeometry 54(1), 44-166, 2012.
  • Shi L., Xiao J. M. The Toughening Mechanism of Rubber Particles in Polypropylene Composite. IOP Conference Series: Materials Science and Engineering 164, 012027, 2017.
  • Tang C. Y., Liang J. Z., Yung K. C., Li R. K. Y., Tjong S. C., Mechanical Properties of Glass Beads Filled Polypropylene Composites. Key Engineering Materials 149, 823-828,1998.
  • Tjong S. C., Xu S. A., Ternary Polymer Composites: PA6,6/maleated SEBS/Glass Beads. Journal of Applied Polymer Science 81(13), 3231-3237, 2001.
  • Unal H., Morphology and Mechanical Properties of Composites based on Polyamide 6 and Mineral Additives. Materials & Design 25(6),483-487, 2004.
  • Wahit M. U., Hassan A., Mohd Ishak Z. A., Czigany T., Ethylene-Octene Copolymer (POE) Toughened Polyamide 6/Polypropylene Nanocomposites: Effect of POE Maleation. Express Polymer Letters 3(5), 309-319, 2009.
  • Wang X., Hu S., Guo Y., Li G., Xu R. Toughened High-Flow Polypropylene with Polyolefin-Based Elastomers. Polymers 11(12), 1-16, 2019.
  • Whiteley K. S., Heggs T. G., Koch H., Mawer R. L., Immel W., Polyolefins. Ullmann’s Encyclopedia of Industrial Chemistry. A21_487, 2000.
  • Wu J. H., Chen C. W., Wu Y. T., Wu G. T., Kuo M. C., Tsai Y., Mechanical Properties, Morphology, and Crystallization Behavior of Polypropylene/Elastomer/Talc Composites. Polymer Composites 36(1), 69-77, 2015.
  • Yang W., Shi W., Li Z. M., Xie B. H., Feng J. M., Yang M. B., Mechanical Properties of Glass Bead-filled Linear Low-Density Polyethylene. Journal of Elastomers and Plastics 36(3), 251-265, 2004.

Cam Bilya ve Termoplastik Poliolefin Elastomer Katkılı Polipropilen Kompozitlerin Mekanik ve Mikroyapı Özelliklerinin İncelenmesi

Yıl 2022, , 91 - 105, 06.06.2022
https://doi.org/10.55546/jmm.1092570

Öz

Otomotiv endüstrisinde ve birçok uygulama endüstrisinde, parçaların çekme mukavemeti, rijitliği ve yüksek darbe mukavemeti ile ilgili belirli gereksinimleri karşılaması beklenir. Bu nedenle otomotiv endüstrisinde yaygın olarak kullanılan kırılgan bir polimer olan polipropilen homopolimer, kırılganlığını azaltmak için katkı maddeleri ile birleştirilir. Bu çalışmada, poliolefin kauçuk ve cam bilya dolgulu polipropilen kompozitlerin mekanik ve mikroyapısal özellikleri araştırılmıştır. Polipropilen (PP), kompozitleri oluşturmak için poliolefin kauçuk (POE) ve/veya cam bilyalar (GB) ile farklı ağırlık oranlarında birleştirildi ve saf polipropilen hazırlanan üç PP kompoziti ile karşılaştırıldı; Ağırlıkça %8 poliolefin kauçuk, ağırlıkça %8 cam bilya ve ağırlıkça %8 poliolefin kauçuk ve %8 cam bilya. Saf polipropilen (PP) ve poliolefin kauçuk katkılı PP, cam bilya katkılı PP ve poliolefin kauçuk ve cam bilya katkılı PP kompozitler üzerinde çekme testleri yapılarak elde edilen çatlak kırılma yüzeylerinin görüntüleri Taramalı Elektron Mikroskobu (SEM) ve mikro yapı incelemeleri için Enerji Dağılım Spektroskopisi (EDS) alınmıştır. PP kompozitlerin (PP+%8POE, PP+%8GB ve PP+%8POE+%8GB) çekme mukavemet değerlerinin saf PP'ye göre hafif bir düşüş gösterdiği gözlemlendi. Saf PP polimer ana matrisine (ağırlıkça %8) sert cam bilyalar eklendiğinde, kompozitin sertliği arttı ve elastisite modülü, saf PP'ye göre yaklaşık %8 arttmıştır. Ayrıca PP kompozitlerin (PP+%8POE, PP+%8GB ve PP+%8POE+%8GB) kopma anındaki uzama yüzdesinin saf PP değerlerine göre önemli ölçüde arttığı gözlemlenmiştir.

Kaynakça

  • Brillinger J. H., Banks S. A., Thermoplastic Elastomers for Flexible Body Components. SAE Transactions 85(4), 2340-2349, 1976.
  • Cai J., Luo R., Lv R., He Y., Zhou D., H, W., Crystallization Kinetics of Ethylene-Co-Propylene Rubber/Isotactic Polypropylene Blend Investigated via Chip-Calorimeter Measurement. European Polymer Journal 96, 79-86, 2017.
  • Carvalho G. B., Canevarolo S., Sousa J. A., Influence of Interfacial Interactions on The Mechanical Behavior of Hybrid Composites of Polypropylene / Short Glass Fibers / Hollow Glass Beads. Polymer Testing 85, 106418, 2020.
  • Coran A.Y., Patel R.P., Thermoplastic Elastomers by Blending and Dynamic Vulcanization. In: Karger-Kocsis, J. (eds) Polypropylene Structure, blends and composites. Springer, Dordrecht.162-201, 1995.
  • Cunha M. P., Grisa A. M. C., Klein J., Poletto M., Brandalise R. N., Preparation and Characterization of Hollow Glass Microspheres-Reinforced Poly (Acrylonitrile-Co-Butadiene-Co-Styrene) Composites. Materials Research 21(6), e20180201, 2018.
  • Drobny J. G., Handbook of Thermoplastic Elastomers, William Andrew Inc., First Edition, pp.191-99, 2007.
  • Fan Q., Zhang J., Wu Z., Yang S., Chen Y., Ying Lu, Zhang Q., Great Improvement of Low-Temperature Impact Resistance of Isotactic Polypropylene/Ethylene Propylene Diene Monomer Rubber Blends by Traces of Carbon Nanotubes and β-Nucleating Agents. Polymers for Advanced Technologies 31(3), 508-519, 2020.
  • Farhang L., Bagheri R., Investigation of Toughening Micro-Mechanisms in Polypropylene/ Ethylene-Propylene-Diene Rubber Blends at Crack and Notch Tips. Materials Performance and Characterization 3(3), 469-488, 2014.
  • Fasihi, M., Mansouri H., Effect of Rubber Interparticle Distance Distribution on Toughening Behavior of Thermoplastic Polyolefin Elastomer Toughened Polypropylene. Journal of Applied Polymer Science 133(40), 44068, 2016.
  • He D., Jiang B. The Elastic Modulus of Filled Polymer Composites. Journal of Applied Polymer Science 49(4), 617-621, 1993.
  • Hu S., Hou Y., Wang X., Zhang L., Zhu Y., Research Progress of Rubber and Elastomer Toughening Modified PP. Hecheng Shuzhi Ji Suliao/China Synthetic Resin and Plastics 36(5),104-109, 2019.
  • Jang B. Z., Uhlmann D. R., Vander Sande J. B., Rubber‐toughening in Polypropylene. Journal of Applied Polymer Science 30(6), 2485-2504, 1985.
  • Kim S. Y., Ha J. U., Shin D., Jung W., Lee P. C., Mechanical Properties and Morphology of Polyamide/Polypropylene Blends. Elastomers and Composites 55(1), 1-5, 2020.
  • Kwok K. W., Gao Z. M., Choy C. L., Zhu X. G., Stiffness and toughness of Polypropylene/Glass Bead Composites. Polymer Composites 24(1), 53-59, 2003.
  • Lendvai L., A Novel Preparation Method of Polypropylene/Natural Rubber Blends with Improved Toughness. Polymer International 70(3), 298-307, 2021.
  • Li Y., Wei G. X., Sue H. J., Morphology and toughening mechanisms in clay-modified styrene-butadiene-styrene rubber-toughened polypropylene. Journal of Materials Science 37(12), 2447-2459, 2002.
  • Li F., Gao Y., Zhang Y., Jiang W., Design of High Impact Thermal Plastic Polymer Composites with Balanced Toughness and Rigidity: Toughening with One Phase Modifier. Polymer 191, 122237, 2020.
  • Liang J. Z., Impact Fracture Toughness of Hollow Glass Bead-Filled Polypropylene Composites. Journal of Materials Science 42(3), 841-846, 2007a.
  • Liang J. Z., Li R. K. Y., Mechanical Properties and Morphology of Glass Bead–Filled Polypropylene Composites. Polymer Composites 19(6), 698-703, 1998.
  • Liang J. Z., Li R. K. Y., Rubber Toughening in Polypropylene: A Review. Journal of Applied Polymer Science 77(2), 409-417, 2000.
  • Liang J. Z., Tensile and Flexural Properties of Hollow Glass Bead-Filled ABS Composites. Journal of Elastomers and Plastics 37(4), 361-370, 2005.
  • Liang J. Z., Tensile Properties of Hollow Glass Bead-Filled Polypropylene Composites. Journal of Applied Polymer Science 104(3),1697-1701, 2007b.
  • Liang J. Z., Wu C. B., Effects of the Glass Bead Content and the surface treatment on the Mechanical Properties of Polypropylene Composites. Journal of Applied Polymer Science 123(5), 3054-3063, 2012.
  • Lim J. W., Hassan A., Rahmat A. R., Wahit M. U., Phase Morphology and Mechanical Properties of Rubber-Toughened Polypropylene Nanocomposites: Effect of Elastomer Polarity. Polymer - Plastics Technology and Engineering 47(4), 411-419, 2008.
  • Lim J. W., Hassan A., Rahmat A. R., Wahit M. U., Rubber-Toughened Polypropylene Nanocomposite: Effect of Polyethylene Octene Copolymer on Mechanical Properties and Phase Morphology. Journal of Applied Polymer Science 99(6), 3441-3450, 2006.
  • Liu G., Qiu G., Study on the Mechanical and Morphological Properties of Toughened Polypropylene Blends for Automobile Bumpers. Polymer Bulletin 70(3), 849-857, 2013.
  • Lotti C., Correa C. A, Canevarolo S. V, Mechanical and Morphological Characterization of Polypropylene Toughened with Olefinic Elastomer. Materials Research 3(2), 37-44, 2000.
  • Mao H., Cheng Y., Guo W., Meng Z., Wei W., Hua L., Yang Q., Effect of POE on Mechanical Properties and Cellular Structure of PP/Nano-CaCO3composites in IMD/MIM Process. Materials Research Express 7(9), 095308, 2020.
  • Müller M., Mechanical Properties of Resin Reinforced with Glass Beads. Agronomy Research 15(S1), 1107-1118, 2017.
  • Purowski T., Dzierzanowski P., Bulska E., Wagner B., Nowak A., A study of glass beads from the Hallstatt C–D from southwestern Poland: implications for glass technology and provenance. Archaeometry 54(1), 44-166, 2012.
  • Shi L., Xiao J. M. The Toughening Mechanism of Rubber Particles in Polypropylene Composite. IOP Conference Series: Materials Science and Engineering 164, 012027, 2017.
  • Tang C. Y., Liang J. Z., Yung K. C., Li R. K. Y., Tjong S. C., Mechanical Properties of Glass Beads Filled Polypropylene Composites. Key Engineering Materials 149, 823-828,1998.
  • Tjong S. C., Xu S. A., Ternary Polymer Composites: PA6,6/maleated SEBS/Glass Beads. Journal of Applied Polymer Science 81(13), 3231-3237, 2001.
  • Unal H., Morphology and Mechanical Properties of Composites based on Polyamide 6 and Mineral Additives. Materials & Design 25(6),483-487, 2004.
  • Wahit M. U., Hassan A., Mohd Ishak Z. A., Czigany T., Ethylene-Octene Copolymer (POE) Toughened Polyamide 6/Polypropylene Nanocomposites: Effect of POE Maleation. Express Polymer Letters 3(5), 309-319, 2009.
  • Wang X., Hu S., Guo Y., Li G., Xu R. Toughened High-Flow Polypropylene with Polyolefin-Based Elastomers. Polymers 11(12), 1-16, 2019.
  • Whiteley K. S., Heggs T. G., Koch H., Mawer R. L., Immel W., Polyolefins. Ullmann’s Encyclopedia of Industrial Chemistry. A21_487, 2000.
  • Wu J. H., Chen C. W., Wu Y. T., Wu G. T., Kuo M. C., Tsai Y., Mechanical Properties, Morphology, and Crystallization Behavior of Polypropylene/Elastomer/Talc Composites. Polymer Composites 36(1), 69-77, 2015.
  • Yang W., Shi W., Li Z. M., Xie B. H., Feng J. M., Yang M. B., Mechanical Properties of Glass Bead-filled Linear Low-Density Polyethylene. Journal of Elastomers and Plastics 36(3), 251-265, 2004.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Hüseyin Ünal 0000-0003-0521-6647

Kemal Ermiş 0000-0003-3110-2731

Şahan Demirtaş 0000-0002-2246-6288

Yayımlanma Tarihi 6 Haziran 2022
Gönderilme Tarihi 24 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Ünal, H., Ermiş, K., & Demirtaş, Ş. (2022). Investigation of Mechanical and Microstructural Properties of Polyolefin Rubber and Glass Beads Filled Polypropylene Composites. Journal of Materials and Mechatronics: A, 3(1), 91-105. https://doi.org/10.55546/jmm.1092570
AMA Ünal H, Ermiş K, Demirtaş Ş. Investigation of Mechanical and Microstructural Properties of Polyolefin Rubber and Glass Beads Filled Polypropylene Composites. J. Mater. Mechat. A. Haziran 2022;3(1):91-105. doi:10.55546/jmm.1092570
Chicago Ünal, Hüseyin, Kemal Ermiş, ve Şahan Demirtaş. “Investigation of Mechanical and Microstructural Properties of Polyolefin Rubber and Glass Beads Filled Polypropylene Composites”. Journal of Materials and Mechatronics: A 3, sy. 1 (Haziran 2022): 91-105. https://doi.org/10.55546/jmm.1092570.
EndNote Ünal H, Ermiş K, Demirtaş Ş (01 Haziran 2022) Investigation of Mechanical and Microstructural Properties of Polyolefin Rubber and Glass Beads Filled Polypropylene Composites. Journal of Materials and Mechatronics: A 3 1 91–105.
IEEE H. Ünal, K. Ermiş, ve Ş. Demirtaş, “Investigation of Mechanical and Microstructural Properties of Polyolefin Rubber and Glass Beads Filled Polypropylene Composites”, J. Mater. Mechat. A, c. 3, sy. 1, ss. 91–105, 2022, doi: 10.55546/jmm.1092570.
ISNAD Ünal, Hüseyin vd. “Investigation of Mechanical and Microstructural Properties of Polyolefin Rubber and Glass Beads Filled Polypropylene Composites”. Journal of Materials and Mechatronics: A 3/1 (Haziran 2022), 91-105. https://doi.org/10.55546/jmm.1092570.
JAMA Ünal H, Ermiş K, Demirtaş Ş. Investigation of Mechanical and Microstructural Properties of Polyolefin Rubber and Glass Beads Filled Polypropylene Composites. J. Mater. Mechat. A. 2022;3:91–105.
MLA Ünal, Hüseyin vd. “Investigation of Mechanical and Microstructural Properties of Polyolefin Rubber and Glass Beads Filled Polypropylene Composites”. Journal of Materials and Mechatronics: A, c. 3, sy. 1, 2022, ss. 91-105, doi:10.55546/jmm.1092570.
Vancouver Ünal H, Ermiş K, Demirtaş Ş. Investigation of Mechanical and Microstructural Properties of Polyolefin Rubber and Glass Beads Filled Polypropylene Composites. J. Mater. Mechat. A. 2022;3(1):91-105.