Araştırma Makalesi
BibTex RIS Kaynak Göster

Bulanık Mantık Denetleyicisi ile Volan Ters Sarkacın Denge Kontrolü

Yıl 2023, , 147 - 160, 26.06.2023
https://doi.org/10.55546/jmm.1202084

Öz

Bu çalışmada, karşılaştırma için bulanık mantık ve PID kontrolör ile bir volan ters sarkaç modellenmiş ve kontrol edilmiştir. Bulanık mantık denetleyicileri, üçgen ve Gauss üyelik fonksiyonları ve "and", "implication" ve "aggregation" gibi çeşitli yöntemler kullanılarak tasarlanmıştır. Bulanık mantık denetleyicilerinden ve PID'den elde edilen tüm kazançlar, deneme yanılma yöntemiyle ayarlanmıştır. En iyi performans, üçgen üyelik fonksiyonu ve "prob/probor" fonksiyonlarını kullanan bulanık mantık denetleyicisi ile elde edilmiştir. Sonuçlar, bulanık mantığın bir volan ters sarkacın denge kontrolü için iyi bir alternatif olduğunu, ancak PID'nin kabul edilebilir bir performansa sahip olduğunu göstermektedir.

Kaynakça

  • Andrievsky B. R., Global stabilization of the unstable Reaction-Wheel Pendulum. Automation and Remote Control, 72(9), 1981–1993, 2011.
  • Bai Y., Wang D., Fundamentals of Fuzzy Logic Control—Fuzzy Sets, Fuzzy Rules and Defuzzifications. In Advanced Fuzzy Logic Technologies in Industrial Applications, Springer, London, pp. 17–36, 2006.
  • Bobrow F., Angelico B. A., da Silva P. S. P., The Cubli: Modeling and Nonlinear Control Utilizing Unit Complex Numbers (arXiv:2009.14625), 2020.
  • Erkol H. O., Ters Sarkaç Sisteminin Yapay Arı Kolonisi Algoritması ile Optimizasyonu. Journal of Polytechnic, 20(4), 863–868, 2017.
  • Gajamohan M., Merz M., Thommen I., D’Andrea R., The Cubli: A cube that can jump up and balance. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3722–3727, 2012.
  • Han H. Y., Han T. Y., Jo H. S., Development of omnidirectional self-balancing robot. 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), September, 57–62, 2014.
  • Hatada K., Sato M., Hirata K., Masui Y., Synthesis of a Calibration-Free Visual Feedback Controller for an Inverted Pendulum Using a Fisheye Lens. IEEE Transactions on Industrial Electronics, 69(12), 13348–13358, 2022.
  • Huang H., Li Z., Guo Z., Guo J., Suo L., Wang, H., Prescribed Performance Adaptive Balance Control for Reaction Wheel-Based Inverted Pendulum-Type Cubli Rovers in Asteroid. Aerospace, 9(11), Article 11, 2022.
  • Jain N., Gupta R., Parmar G., Intelligent Controlling of an Inverted Pendulum Using PSO-PID Controller. International Journal of Engineering Research and Technology (IJERT), 2(12), 3712–3716, 2013.
  • Meyer J., Delson N., De Callafon R. A., Design, modeling and stabilization of a moment exchange based inverted pendulum. IFAC Proceedings Volumes (IFAC-PapersOnline), 15(PART 1), 462–467, 2009.
  • Mishra S. K., Chandra D., Stabilization and Tracking Control of Inverted Pendulum Using Fractional Order PID Controllers. Journal of Engineering, 1–9, 2014.
  • Moghadam A. A. A., Marshall M., Robust Control of the Flywheel Inverted Pendulum System Considering Parameter Uncertainty. 2021 American Control Conference (ACC), 1730–1735, 2021.
  • Mondal R., Dey J., A novel design methodology on cascaded fractional order (FO) PI-PD control and its real time implementation to Cart-Inverted Pendulum System. ISA Transactions, 130, 565–581, 2022.
  • Nawawi S. W., Ahmad M. N., Osman J. H. S., Real-Time Control of a Two-Wheeled Inverted Pendulum Mobile Robot. Engineering and Technology, 2(3), 406–412, 2008.
  • Niemann H., Poulsen J. K., Analysis and design of controllers for a double inverted pendulum. Proceedings of the 2003 American Control Conference, 4, 2803–2808, 2003.
  • Olivares M., Albertos P., On the linear control of underactuated systems: The flywheel inverted pendulum. 2013 10th IEEE International Conference on Control and Automation (ICCA), November, 27–32, 2013.
  • Özmen İ., Közkurt C. (2021). Design of Fuzzy Logic Supported Car Driver Control System. International Journal of Automotive Science And Technology, 5(3), Article 3,2021
  • Prutskii A. S., Mikhalkov N. V., Vasiliev E. Y., Synthesis technique for control of a CMG Stabilization of an inverted pendulum which does not require repeated code generation. Journal of Physics: Conference Series, 2373(9), 092005, 2022.
  • Razmjooy N., Madadi A., Alikhani H.-R., Mohseni M., Comparison of LQR and Pole Placement Design Controllers for Controlling the Inverted Pendulum. Journal of World’s Electrical Engineering and Technology (JWEET), 3(2), 83–88, 2014.
  • Ruan X. G., Wang Y. F., The modelling and control of flywheel inverted pendulum system. Proceedings - 2010 3rd IEEE International Conference on Computer Science and Information Technology, ICCSIT 2010, 6, 423–427., 2010.
  • Tavana M., Hajipour V., A practical review and taxonomy of fuzzy expert systems: Methods and applications. Benchmarking: An International Journal, 27(1), 81–136, 2019.
  • Vasconcelos J. R. C., González E. M. A., Foyo P. M. G. D., Design and Control of a Flywheel Inverted Pendulum System. Congresso Brasileiro de Automática - CBA, 1(1), Article 1, 2019.
  • Villacrés J., Viscaino M., Herrera M., Camacho, O., Controllers Comparison to stabilize a Two-wheeled Inverted Pendulum: PID , LQR and Sliding Mode Control 2 Description of the Two Wheeled Inverted Pendulum. Controllers Comparison to Stabilize a Two-Wheeled Inverted Pendulum: PID, LQR and Sliding Mode Control, 1(January), 29–36, 2016.
  • Wang C., Yin G., Liu C., Fu W., Design and simulation of inverted pendulum system based on the fractional PID controller. 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 5, 1760–1764, 2016.
  • Wasiwitono U., Wahjudi A., Saputra A. K., Yohanes, Stabilization and disturbance attenuation control of the gyroscopic inverted pendulum. Journal of Vibration and Control, 27(3–4), 415–425, 2021.
  • Wu J., Zhang W., Wang S., A Two-Wheeled Self-Balancing Robot with the Fuzzy PD Control Method. Mathematical Problems in Engineering, 2012, 1–13, 2012.

Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller

Yıl 2023, , 147 - 160, 26.06.2023
https://doi.org/10.55546/jmm.1202084

Öz

In this study, a flywheel inverted pendulum was modeled as simulation. The model controlled by fuzzy logic and PID controller for comparison. Fuzzy logic controllers were designed using triangular and Gaussian membership functions and various methods that are "and", "implication" and "aggregation". All gains from fuzzy logic controllers and PID were tuned by the trial-and-error method. The best performance was obtained by fuzzy logic controller that uses a triangular membership function and "prob/probor" functions. The results were evaluated in terms of three phenomena. In terms of Settling Time and Maximum Overshoot, Fuzzy Triangle MF with 0.15 s and 0 degrees, respectively, and PID and Fuzzy Triangle MF models with 0 degrees in terms of Steady-State error achieved the best success. In addition, the robustness of the control system was tested by applying two different types of disturbance inputs, random and impulse. The results show that fuzzy logic is a good alternative for balance control of a flywheel inverted pendulum, but PID has an acceptable performance.

Kaynakça

  • Andrievsky B. R., Global stabilization of the unstable Reaction-Wheel Pendulum. Automation and Remote Control, 72(9), 1981–1993, 2011.
  • Bai Y., Wang D., Fundamentals of Fuzzy Logic Control—Fuzzy Sets, Fuzzy Rules and Defuzzifications. In Advanced Fuzzy Logic Technologies in Industrial Applications, Springer, London, pp. 17–36, 2006.
  • Bobrow F., Angelico B. A., da Silva P. S. P., The Cubli: Modeling and Nonlinear Control Utilizing Unit Complex Numbers (arXiv:2009.14625), 2020.
  • Erkol H. O., Ters Sarkaç Sisteminin Yapay Arı Kolonisi Algoritması ile Optimizasyonu. Journal of Polytechnic, 20(4), 863–868, 2017.
  • Gajamohan M., Merz M., Thommen I., D’Andrea R., The Cubli: A cube that can jump up and balance. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3722–3727, 2012.
  • Han H. Y., Han T. Y., Jo H. S., Development of omnidirectional self-balancing robot. 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), September, 57–62, 2014.
  • Hatada K., Sato M., Hirata K., Masui Y., Synthesis of a Calibration-Free Visual Feedback Controller for an Inverted Pendulum Using a Fisheye Lens. IEEE Transactions on Industrial Electronics, 69(12), 13348–13358, 2022.
  • Huang H., Li Z., Guo Z., Guo J., Suo L., Wang, H., Prescribed Performance Adaptive Balance Control for Reaction Wheel-Based Inverted Pendulum-Type Cubli Rovers in Asteroid. Aerospace, 9(11), Article 11, 2022.
  • Jain N., Gupta R., Parmar G., Intelligent Controlling of an Inverted Pendulum Using PSO-PID Controller. International Journal of Engineering Research and Technology (IJERT), 2(12), 3712–3716, 2013.
  • Meyer J., Delson N., De Callafon R. A., Design, modeling and stabilization of a moment exchange based inverted pendulum. IFAC Proceedings Volumes (IFAC-PapersOnline), 15(PART 1), 462–467, 2009.
  • Mishra S. K., Chandra D., Stabilization and Tracking Control of Inverted Pendulum Using Fractional Order PID Controllers. Journal of Engineering, 1–9, 2014.
  • Moghadam A. A. A., Marshall M., Robust Control of the Flywheel Inverted Pendulum System Considering Parameter Uncertainty. 2021 American Control Conference (ACC), 1730–1735, 2021.
  • Mondal R., Dey J., A novel design methodology on cascaded fractional order (FO) PI-PD control and its real time implementation to Cart-Inverted Pendulum System. ISA Transactions, 130, 565–581, 2022.
  • Nawawi S. W., Ahmad M. N., Osman J. H. S., Real-Time Control of a Two-Wheeled Inverted Pendulum Mobile Robot. Engineering and Technology, 2(3), 406–412, 2008.
  • Niemann H., Poulsen J. K., Analysis and design of controllers for a double inverted pendulum. Proceedings of the 2003 American Control Conference, 4, 2803–2808, 2003.
  • Olivares M., Albertos P., On the linear control of underactuated systems: The flywheel inverted pendulum. 2013 10th IEEE International Conference on Control and Automation (ICCA), November, 27–32, 2013.
  • Özmen İ., Közkurt C. (2021). Design of Fuzzy Logic Supported Car Driver Control System. International Journal of Automotive Science And Technology, 5(3), Article 3,2021
  • Prutskii A. S., Mikhalkov N. V., Vasiliev E. Y., Synthesis technique for control of a CMG Stabilization of an inverted pendulum which does not require repeated code generation. Journal of Physics: Conference Series, 2373(9), 092005, 2022.
  • Razmjooy N., Madadi A., Alikhani H.-R., Mohseni M., Comparison of LQR and Pole Placement Design Controllers for Controlling the Inverted Pendulum. Journal of World’s Electrical Engineering and Technology (JWEET), 3(2), 83–88, 2014.
  • Ruan X. G., Wang Y. F., The modelling and control of flywheel inverted pendulum system. Proceedings - 2010 3rd IEEE International Conference on Computer Science and Information Technology, ICCSIT 2010, 6, 423–427., 2010.
  • Tavana M., Hajipour V., A practical review and taxonomy of fuzzy expert systems: Methods and applications. Benchmarking: An International Journal, 27(1), 81–136, 2019.
  • Vasconcelos J. R. C., González E. M. A., Foyo P. M. G. D., Design and Control of a Flywheel Inverted Pendulum System. Congresso Brasileiro de Automática - CBA, 1(1), Article 1, 2019.
  • Villacrés J., Viscaino M., Herrera M., Camacho, O., Controllers Comparison to stabilize a Two-wheeled Inverted Pendulum: PID , LQR and Sliding Mode Control 2 Description of the Two Wheeled Inverted Pendulum. Controllers Comparison to Stabilize a Two-Wheeled Inverted Pendulum: PID, LQR and Sliding Mode Control, 1(January), 29–36, 2016.
  • Wang C., Yin G., Liu C., Fu W., Design and simulation of inverted pendulum system based on the fractional PID controller. 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 5, 1760–1764, 2016.
  • Wasiwitono U., Wahjudi A., Saputra A. K., Yohanes, Stabilization and disturbance attenuation control of the gyroscopic inverted pendulum. Journal of Vibration and Control, 27(3–4), 415–425, 2021.
  • Wu J., Zhang W., Wang S., A Two-Wheeled Self-Balancing Robot with the Fuzzy PD Control Method. Mathematical Problems in Engineering, 2012, 1–13, 2012.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Otomasyon Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Hüseyin Oktay Erkol 0000-0002-3595-175X

Cemil Közkurt 0000-0003-1407-9867

Erken Görünüm Tarihi 23 Haziran 2023
Yayımlanma Tarihi 26 Haziran 2023
Gönderilme Tarihi 10 Kasım 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Erkol, H. O., & Közkurt, C. (2023). Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller. Journal of Materials and Mechatronics: A, 4(1), 147-160. https://doi.org/10.55546/jmm.1202084
AMA Erkol HO, Közkurt C. Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller. J. Mater. Mechat. A. Haziran 2023;4(1):147-160. doi:10.55546/jmm.1202084
Chicago Erkol, Hüseyin Oktay, ve Cemil Közkurt. “Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller”. Journal of Materials and Mechatronics: A 4, sy. 1 (Haziran 2023): 147-60. https://doi.org/10.55546/jmm.1202084.
EndNote Erkol HO, Közkurt C (01 Haziran 2023) Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller. Journal of Materials and Mechatronics: A 4 1 147–160.
IEEE H. O. Erkol ve C. Közkurt, “Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller”, J. Mater. Mechat. A, c. 4, sy. 1, ss. 147–160, 2023, doi: 10.55546/jmm.1202084.
ISNAD Erkol, Hüseyin Oktay - Közkurt, Cemil. “Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller”. Journal of Materials and Mechatronics: A 4/1 (Haziran 2023), 147-160. https://doi.org/10.55546/jmm.1202084.
JAMA Erkol HO, Közkurt C. Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller. J. Mater. Mechat. A. 2023;4:147–160.
MLA Erkol, Hüseyin Oktay ve Cemil Közkurt. “Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller”. Journal of Materials and Mechatronics: A, c. 4, sy. 1, 2023, ss. 147-60, doi:10.55546/jmm.1202084.
Vancouver Erkol HO, Közkurt C. Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller. J. Mater. Mechat. A. 2023;4(1):147-60.