Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazalt Elyaf Yüzeyindeki Silan Katmanının Polilaktit Kompozitlerine Güçlendirme Etkinliğinin Değerlendirilmesi

Yıl 2023, , 87 - 99, 26.06.2023
https://doi.org/10.55546/jmm.1219384

Öz

Bazalt elyaf (BF) yüzeyindeki kaplamanın, kırpılmış BF içeren polilaktid (PLA) kompozitlerin mekanik, ısısal-mekanik, eriyik akış ve morfolojik özelliklerine etkisi, çekme, darbe ve Shore sertlik testleri, dinamik mekanik analiz (DMA), eriyik akış indeksi (MFI) ölçümleri ve taramalı elektron mikroskobu (SEM) karakterizasyon yöntemleri kullanılarak rapor edilmiştir. Kaplanmış ve kaplanmamış BF'nin yüzey özelliklerini araştırmak için kızılötesi spektroskopi analizi uygulanmıştır. Kompozit numuneler, eriyik karıştırma ve enjeksiyon kalıplama prosesi ile hazırlanmıştır. BF'nin PLA matrisine yüzey yapışmasının iyileştirilmesi, kaplanmış BF ve kaplanmamış BF içeren kompozitlerin mekanik test verilerinin karşılaştırılması yardımıyla değerlendirilmiştir. BF yüzeyindeki silan kaplama, kaplanmamış BF'ye kıyasla depolama modülü değerlerinde artışa neden olmuştur. Bunlara ek olarak, PLA'nın MFI değeri, BF eklenmesi ile ciddi bir değişiklik göstermemiştir. Kaplanmış BF ve PLA fazı arasındaki yapışmanın gerçekleştirilmesinden kaynaklanan performans artışı, kompozitlerin SEM mikrografları ile doğrulanmıştır.

Kaynakça

  • Ahmad F., Choi H.S., Park M.K., A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering, 300(1), 10-24, 2015.
  • Ahmed S.A., Tirkes S., Tayfun U., Reinforcing effect of polyurethane sizing on properties of acrylonitrile–butadiene–styrene composites involving short carbon fiber. SN Applied Sciences, 2(12), 1-9, 2020.
  • Akampumuza O., Wambua P.M., Ahmed A., Li W., Qin X.H., Review of the applications of biocomposites in the automotive industry. Polymer Composites, 38(11), 2553-2569, 2017.
  • Arslan C., Dogan M., Effect of fiber amount on mechanical and thermal properties of (3-aminopropyl) triethoxysilane treated basalt fiber reinforced ABS composites. Materials Research Express, 6(11), 115340, 2019.
  • Arslan C., Dogan M., The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly (butylene terephthalate) composites. Composites Part B: Engineering, 146, 145-154, 2018.
  • Auras R., Harte B., Selke S., An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835-864, 2004.
  • Aykanat O., Ermeydan M.A., Production of basalt/wood fiber reinforced polylactic acid hybrid biocomposites and investigation of performance features including insulation properties. Polymer Composites, 43(6), 3519-3530, 2022.
  • Bajpai P.K., Singh I., Madaan J., Development and characterization of PLA-based green composites: A review. Journal of Thermoplastic Composite Materials, 27(1), 52-81, 2014.
  • Bledzki A.K., Faruk O., Effects of the chemical foaming agents, injection parameters, and melt‐flow index on the microstructure and mechanical properties of microcellular injection‐molded wood‐fiber/polypropylene composites. Journal of Applied Polymer Science, 97(3), 1090-1096, 2005.
  • Ceritbinmez F., Yapici A., Kanca E., The effect of nanoparticle additive on surface milling in glass fiber reinforced composite structures. Polymers and Polymer Composites, 29(9S), S575-S585, 2021.
  • Chauhan V., Kärki T., Varis J., Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials, 35(8), 1169-1209, 2022.
  • Chemtob A., Courtecuisse F., Croutxe-Barghorn C., Rigolet S., Simultaneous sol-gel and anionic photopolymerization of 3-(glycidyloxypropyl)trimethoxysilane via photobase catalysis. New Journal of Chemistry, 35, 1803–1808, 2011.
  • Chen X., Li Y., Gu N., A novel basalt fiber reinforced polylactic acid composite for hard tissue repair, Biomedical Materials, 5, 1-8, 2010.
  • Deák T., Czigány T., Tamás P., Németh C., Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents. Express Polymer Letters, 4(10), 2010.
  • Dhand V., Mittal G., Rhee K.Y., Park S.J., Hui D., A short review on basalt fiber reinforced polymer composites. Composites Part B: Engineering, 73, 166-180, 2015.
  • Dike A.S., Improvement of mechanical and physical properties of carbon fiber-reinforced polyamide composites by applying different surface coatings for short carbon fiber. Journal of Thermoplastic Composite Materials, 33(4), 541-553, 2020.
  • Dike A.S., Preparation and characterization of calcite loaded poly (lactic acid) composite materials. Erzincan University Journal of Science and Technology, 13(1), 162-170, 2020.
  • Eselini N., Tirkes S., Akar A.O., Tayfun U., Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid. Journal of Elastomers and Plastics, 52(8), 701-716, 2020.
  • Fiore V., Scalici T., Di Bella G., Valenza A., A review on basalt fibre and its composites. Composites Part B: Engineering, 74, 74-94, 2015.
  • Geethamma V.G., Ramamurthy K., Janardhan R., Thomas S., Melt flow behavior of short coir fiber reinforced natural rubber composites. International Journal of Polymeric Materials, 32(1-4), 147-161, 1996.
  • Gur’ev V.V., Neproshin E.I., Mostovoi G.E., The effect of basalt fiber production technology on mechanical properties of fiber. Glass Ceramics, 58, 62–65, 2001.
  • Hasan K.F., Horváth P.G., Alpár T., Potential natural fiber polymeric nanobiocomposites: A review. Polymers, 12(5), 1072, 2020.
  • Hristov V., Vlachopoulos J., Influence of coupling agents on melt flow behavior of natural fiber composites. Macromolecular Materials and Engineering, 292(5), 608-619, 2007.
  • Ilyas R.A., Zuhri M.Y.M., Aisyah H.A., Asyraf M.R.M., Hassan S.A., Zainudin E.S., Sapuan S.M., Sharma S., Bangar S.P., Jumaidin R., Nawab Y., Sari N.H., Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 14(1), 202, 2022.
  • Jamshaid H., Mishra R., A green material from rock: basalt fiber–a review. The Journal of The Textile Institute, 107(7), 923-937, 2016.
  • Jandas P.J., Mohanty S., Nayak S.K., Srivastava H., Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polymer Composites, 32(11), 1689-1700, 2011.
  • Kaymakçı O., Uyanık N., High performance silane coupled basalt fiber–polypropylene composites prepared by melt compounding. AIP Conference Proceedings, 2205, 020018, 2020.
  • Khandelwal S., Rhee K.Y., Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Composites Part B: Engineering, 192, 108011, 2020.
  • Kurniawan D., Kim B.S., Lee H.Y., Lim J.Y., Effect of silane treatment on mechanical properties of basalt fiber/polylactic acid ecofriendly composites. Polymer-Plastics Technology and Engineering, 52(1), 97-100, 2013.
  • Kurniawan D., Kim B.S., Lee H.Y., Lim J.Y., Towards improving mechanical properties of basalt fiber/polylactic acid composites by fiber surface treatments. Composite Interfaces, 22, 553-562, 2015.
  • Lilli M., Jurko M., Sirjovova V., Zvonek M., Cech V., Scheffler C., Rogero C., Ilyn M, Tirillò J, Sarasini F., Basalt fibre surface modification via plasma polymerization of tetravinylsilane/oxygen mixtures for improved interfacial adhesion with unsaturated polyester matrix. Materials Chemistry and Physics, 274, 125106, 2021.
  • Liu S., Dong C., Yuan C., Bai X., Study of the synergistic effects of fiber orientation, fiber phase and resin phase in a fiber-reinforced composite material on its tribological properties. Wear, 426, 1047-1055, 2019.
  • Liu T., Yu F., Yu X., Zhao X., Lu A., Wang J., Basalt fiber reinforced and elastomer toughened polylactide composites: Mechanical properties, rheology, crystallization and morphology. Journal of Applied Polymer Science, 125(2): 1292-1301, 2012.
  • Murariu M., Dubois P., PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46, 2016.
  • Musa L., Kumar N.K., Abd Rahim S.Z., Rasidi M.S.M., Rennie A.E.W., Rahman R., Kanani Y.Y., Azmi A.A., A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling. Journal of Materials Research and Technology, 20, 2841-2858, 2022.
  • Nagarajan V., Mohanty A.K., Misra M., Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance, ACS Sustainable Chemistry & Engineering, 4, 2899−2916, 2016.
  • Nasir M.H.M., Taha M.M., Razali N., Ilyas R.A., Knight V.F., Norrrahim M.N.F., Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printing. Materials, 15(22), 8082, 2022.
  • Paunikallio T., Suvanto M., Pakkanen T.T., Grafting of 3-(trimethoxysilyl)propyl methacrylate onto polypropylene and use as a coupling agent in viscose fiber/polypropylene composites. Reactive and Functional Polymers, 68, 797–808, 2008.
  • Raghunath Reddy G.V., Deopura B.L., Joshi M., Studies on dry‐jet‐wet spun polyurethane fibers. II. Effect of polyurethane shore hardness on spinnability and fiber properties. Journal of Applied Polymer Science, 116(2), 843-851, 2010.
  • Rasal R.M., Janorkar A.V., Hirt D.E., Poly (lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356, 2010.
  • Ross A., Basalt fibers: Alternative to glass. Composites Technology, 12(4), 2006.
  • Sang L., Han S., Li Z., Yang X., Hou W., Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Composites Part B: Engineering, 164, 629-639, 2019.
  • Sbardella F., Martinelli A., Di Lisio V., Bavasso I., Russo P., Tirillò J., Sarasini F., Surface modification of basalt fibres with ZnO nanorods and its effect on thermal and mechanical properties of PLA-based composites. Biomolecules, 11(2), 200, 2021.
  • Siakeng R., Jawaid M., Ariffin H., Sapuan S.M., Asim M., Saba, N., Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446-463, 2019.
  • Siddika S., Mansura F., Hasan M., Hassan A., Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers and Polymers, 15(5), 1023-1028, 2014.
  • Singha K., A short review on basalt fiber. International Journal of Textile Science, 1: 19–28, 2012.
  • Tábi T., Bakonyi P., Hajba S., Herrera-Franco P.J., Czigány T., Kovács J.G., Creep behaviour of injection-moulded basalt fibre reinforced poly (lactic acid) composites. Journal of Reinforced Plastics and Composites, 35(21), 1600-1610, 2016.
  • Tábi T., Égerházi A.Z., Tamás P., Czigány T., Kovács J.G. Investigation of injection moulded poly (lactic acid) reinforced with long basalt fibres. Composites: Part A, 64, 99–106, 2014.
  • Takayama T., Daigaku Y., Ito H., Takamori H., Mechanical properties of bio-absorbable PLA/PGA fiber-reinforced composites. Journal of Mechanical Science and Technology, 28(10), 4151-4154, 2014.
  • Tayfun Ü., Doğan M., Application of surface modification routes to coconut fiber for its thermoplastic-based biocomposite materials. Sustainable Natural Fiber Composites, 122, 110-127, 2022.
  • Tayfun Ü., Doğan M., Bayramlı E., Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastic composites. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 18(3), 682-694, 2017.
  • Torun A.R., Dike A.S., Yıldız E.C., Sağlam I., Choupani N., Fracture characterization and modeling of Gyroid filled 3D printed PLA structures. Materials Testing, 63(5), 397-401, 2021.
  • Xu J., Hao X., Tang W., Zhou H., Chen L., Guo C., Wang Q., Ou R., Mechanical properties, morphology, and creep resistance of ultra-highly filled bamboo fiber/polypropylene composites: Effects of filler content and melt flow index of polypropylene. Construction and Building Materials, 310, 125289, 2021.
  • Zelenetskii A.N., Gorbatkina Y.A., Kuperman A.M., Zelenskii E.S., Pirogov O.N., Fiber-matrix interaction in composites based on polypropylene and glass and basalt fibers. Polymer Science Series A, 39(10), 1116-1121, 1997.
  • Zhou H., Liu H., Jiang Q., Kuang T., Chen Z., Li W., Effect of process parameters on short fiber orientation along the melt flow direction in water-assisted injection molded part. Advances in Materials Science and Engineering, 7201215, 2019.

Evaluating Reinforcement Effectiveness of Silane Layer on Basalt Fiber Surface to Its Composites with Polylactide

Yıl 2023, , 87 - 99, 26.06.2023
https://doi.org/10.55546/jmm.1219384

Öz

The effect of the covering layer on the basalt fiber (BF) surface on the mechanical, thermo-mechanical, melt-flow, and morphological properties of polylactide (PLA) composites loaded with chopped BF was reported by performing tensile, impact, and Shore hardness tests, dynamic mechanical analysis (DMA), melt flow index (MFI) measurements, and scanning electron microscopy (SEM) characterization methods. Infrared spectroscopy analysis was applied to investigate the surface characteristics of desized and sized BF. Composite specimens were prepared through the melt-compounding and injection molding processes. The improvement of BF surface adhesion to PLA matrix was evaluated by comparing mechanical test data of composites containing desized and sized BF. Silane covering on BF led to an increase in storage modulus values compared to desized BF. Furthermore, the MFI of PLA did not change significantly with BF inclusions. Performance enhancement caused by the establishment of adhesion between the BF and PLA phases was confirmed by SEM micrographs of composites.

Kaynakça

  • Ahmad F., Choi H.S., Park M.K., A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering, 300(1), 10-24, 2015.
  • Ahmed S.A., Tirkes S., Tayfun U., Reinforcing effect of polyurethane sizing on properties of acrylonitrile–butadiene–styrene composites involving short carbon fiber. SN Applied Sciences, 2(12), 1-9, 2020.
  • Akampumuza O., Wambua P.M., Ahmed A., Li W., Qin X.H., Review of the applications of biocomposites in the automotive industry. Polymer Composites, 38(11), 2553-2569, 2017.
  • Arslan C., Dogan M., Effect of fiber amount on mechanical and thermal properties of (3-aminopropyl) triethoxysilane treated basalt fiber reinforced ABS composites. Materials Research Express, 6(11), 115340, 2019.
  • Arslan C., Dogan M., The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly (butylene terephthalate) composites. Composites Part B: Engineering, 146, 145-154, 2018.
  • Auras R., Harte B., Selke S., An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835-864, 2004.
  • Aykanat O., Ermeydan M.A., Production of basalt/wood fiber reinforced polylactic acid hybrid biocomposites and investigation of performance features including insulation properties. Polymer Composites, 43(6), 3519-3530, 2022.
  • Bajpai P.K., Singh I., Madaan J., Development and characterization of PLA-based green composites: A review. Journal of Thermoplastic Composite Materials, 27(1), 52-81, 2014.
  • Bledzki A.K., Faruk O., Effects of the chemical foaming agents, injection parameters, and melt‐flow index on the microstructure and mechanical properties of microcellular injection‐molded wood‐fiber/polypropylene composites. Journal of Applied Polymer Science, 97(3), 1090-1096, 2005.
  • Ceritbinmez F., Yapici A., Kanca E., The effect of nanoparticle additive on surface milling in glass fiber reinforced composite structures. Polymers and Polymer Composites, 29(9S), S575-S585, 2021.
  • Chauhan V., Kärki T., Varis J., Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials, 35(8), 1169-1209, 2022.
  • Chemtob A., Courtecuisse F., Croutxe-Barghorn C., Rigolet S., Simultaneous sol-gel and anionic photopolymerization of 3-(glycidyloxypropyl)trimethoxysilane via photobase catalysis. New Journal of Chemistry, 35, 1803–1808, 2011.
  • Chen X., Li Y., Gu N., A novel basalt fiber reinforced polylactic acid composite for hard tissue repair, Biomedical Materials, 5, 1-8, 2010.
  • Deák T., Czigány T., Tamás P., Németh C., Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents. Express Polymer Letters, 4(10), 2010.
  • Dhand V., Mittal G., Rhee K.Y., Park S.J., Hui D., A short review on basalt fiber reinforced polymer composites. Composites Part B: Engineering, 73, 166-180, 2015.
  • Dike A.S., Improvement of mechanical and physical properties of carbon fiber-reinforced polyamide composites by applying different surface coatings for short carbon fiber. Journal of Thermoplastic Composite Materials, 33(4), 541-553, 2020.
  • Dike A.S., Preparation and characterization of calcite loaded poly (lactic acid) composite materials. Erzincan University Journal of Science and Technology, 13(1), 162-170, 2020.
  • Eselini N., Tirkes S., Akar A.O., Tayfun U., Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid. Journal of Elastomers and Plastics, 52(8), 701-716, 2020.
  • Fiore V., Scalici T., Di Bella G., Valenza A., A review on basalt fibre and its composites. Composites Part B: Engineering, 74, 74-94, 2015.
  • Geethamma V.G., Ramamurthy K., Janardhan R., Thomas S., Melt flow behavior of short coir fiber reinforced natural rubber composites. International Journal of Polymeric Materials, 32(1-4), 147-161, 1996.
  • Gur’ev V.V., Neproshin E.I., Mostovoi G.E., The effect of basalt fiber production technology on mechanical properties of fiber. Glass Ceramics, 58, 62–65, 2001.
  • Hasan K.F., Horváth P.G., Alpár T., Potential natural fiber polymeric nanobiocomposites: A review. Polymers, 12(5), 1072, 2020.
  • Hristov V., Vlachopoulos J., Influence of coupling agents on melt flow behavior of natural fiber composites. Macromolecular Materials and Engineering, 292(5), 608-619, 2007.
  • Ilyas R.A., Zuhri M.Y.M., Aisyah H.A., Asyraf M.R.M., Hassan S.A., Zainudin E.S., Sapuan S.M., Sharma S., Bangar S.P., Jumaidin R., Nawab Y., Sari N.H., Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 14(1), 202, 2022.
  • Jamshaid H., Mishra R., A green material from rock: basalt fiber–a review. The Journal of The Textile Institute, 107(7), 923-937, 2016.
  • Jandas P.J., Mohanty S., Nayak S.K., Srivastava H., Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polymer Composites, 32(11), 1689-1700, 2011.
  • Kaymakçı O., Uyanık N., High performance silane coupled basalt fiber–polypropylene composites prepared by melt compounding. AIP Conference Proceedings, 2205, 020018, 2020.
  • Khandelwal S., Rhee K.Y., Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Composites Part B: Engineering, 192, 108011, 2020.
  • Kurniawan D., Kim B.S., Lee H.Y., Lim J.Y., Effect of silane treatment on mechanical properties of basalt fiber/polylactic acid ecofriendly composites. Polymer-Plastics Technology and Engineering, 52(1), 97-100, 2013.
  • Kurniawan D., Kim B.S., Lee H.Y., Lim J.Y., Towards improving mechanical properties of basalt fiber/polylactic acid composites by fiber surface treatments. Composite Interfaces, 22, 553-562, 2015.
  • Lilli M., Jurko M., Sirjovova V., Zvonek M., Cech V., Scheffler C., Rogero C., Ilyn M, Tirillò J, Sarasini F., Basalt fibre surface modification via plasma polymerization of tetravinylsilane/oxygen mixtures for improved interfacial adhesion with unsaturated polyester matrix. Materials Chemistry and Physics, 274, 125106, 2021.
  • Liu S., Dong C., Yuan C., Bai X., Study of the synergistic effects of fiber orientation, fiber phase and resin phase in a fiber-reinforced composite material on its tribological properties. Wear, 426, 1047-1055, 2019.
  • Liu T., Yu F., Yu X., Zhao X., Lu A., Wang J., Basalt fiber reinforced and elastomer toughened polylactide composites: Mechanical properties, rheology, crystallization and morphology. Journal of Applied Polymer Science, 125(2): 1292-1301, 2012.
  • Murariu M., Dubois P., PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46, 2016.
  • Musa L., Kumar N.K., Abd Rahim S.Z., Rasidi M.S.M., Rennie A.E.W., Rahman R., Kanani Y.Y., Azmi A.A., A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling. Journal of Materials Research and Technology, 20, 2841-2858, 2022.
  • Nagarajan V., Mohanty A.K., Misra M., Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance, ACS Sustainable Chemistry & Engineering, 4, 2899−2916, 2016.
  • Nasir M.H.M., Taha M.M., Razali N., Ilyas R.A., Knight V.F., Norrrahim M.N.F., Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printing. Materials, 15(22), 8082, 2022.
  • Paunikallio T., Suvanto M., Pakkanen T.T., Grafting of 3-(trimethoxysilyl)propyl methacrylate onto polypropylene and use as a coupling agent in viscose fiber/polypropylene composites. Reactive and Functional Polymers, 68, 797–808, 2008.
  • Raghunath Reddy G.V., Deopura B.L., Joshi M., Studies on dry‐jet‐wet spun polyurethane fibers. II. Effect of polyurethane shore hardness on spinnability and fiber properties. Journal of Applied Polymer Science, 116(2), 843-851, 2010.
  • Rasal R.M., Janorkar A.V., Hirt D.E., Poly (lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356, 2010.
  • Ross A., Basalt fibers: Alternative to glass. Composites Technology, 12(4), 2006.
  • Sang L., Han S., Li Z., Yang X., Hou W., Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Composites Part B: Engineering, 164, 629-639, 2019.
  • Sbardella F., Martinelli A., Di Lisio V., Bavasso I., Russo P., Tirillò J., Sarasini F., Surface modification of basalt fibres with ZnO nanorods and its effect on thermal and mechanical properties of PLA-based composites. Biomolecules, 11(2), 200, 2021.
  • Siakeng R., Jawaid M., Ariffin H., Sapuan S.M., Asim M., Saba, N., Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446-463, 2019.
  • Siddika S., Mansura F., Hasan M., Hassan A., Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers and Polymers, 15(5), 1023-1028, 2014.
  • Singha K., A short review on basalt fiber. International Journal of Textile Science, 1: 19–28, 2012.
  • Tábi T., Bakonyi P., Hajba S., Herrera-Franco P.J., Czigány T., Kovács J.G., Creep behaviour of injection-moulded basalt fibre reinforced poly (lactic acid) composites. Journal of Reinforced Plastics and Composites, 35(21), 1600-1610, 2016.
  • Tábi T., Égerházi A.Z., Tamás P., Czigány T., Kovács J.G. Investigation of injection moulded poly (lactic acid) reinforced with long basalt fibres. Composites: Part A, 64, 99–106, 2014.
  • Takayama T., Daigaku Y., Ito H., Takamori H., Mechanical properties of bio-absorbable PLA/PGA fiber-reinforced composites. Journal of Mechanical Science and Technology, 28(10), 4151-4154, 2014.
  • Tayfun Ü., Doğan M., Application of surface modification routes to coconut fiber for its thermoplastic-based biocomposite materials. Sustainable Natural Fiber Composites, 122, 110-127, 2022.
  • Tayfun Ü., Doğan M., Bayramlı E., Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastic composites. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 18(3), 682-694, 2017.
  • Torun A.R., Dike A.S., Yıldız E.C., Sağlam I., Choupani N., Fracture characterization and modeling of Gyroid filled 3D printed PLA structures. Materials Testing, 63(5), 397-401, 2021.
  • Xu J., Hao X., Tang W., Zhou H., Chen L., Guo C., Wang Q., Ou R., Mechanical properties, morphology, and creep resistance of ultra-highly filled bamboo fiber/polypropylene composites: Effects of filler content and melt flow index of polypropylene. Construction and Building Materials, 310, 125289, 2021.
  • Zelenetskii A.N., Gorbatkina Y.A., Kuperman A.M., Zelenskii E.S., Pirogov O.N., Fiber-matrix interaction in composites based on polypropylene and glass and basalt fibers. Polymer Science Series A, 39(10), 1116-1121, 1997.
  • Zhou H., Liu H., Jiang Q., Kuang T., Chen Z., Li W., Effect of process parameters on short fiber orientation along the melt flow direction in water-assisted injection molded part. Advances in Materials Science and Engineering, 7201215, 2019.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Umit Tayfun 0000-0001-5978-5162

Çağrıalp Arslan 0000-0002-5993-2983

Mehmet Doğan 0000-0001-9157-6504

Erken Görünüm Tarihi 23 Haziran 2023
Yayımlanma Tarihi 26 Haziran 2023
Gönderilme Tarihi 19 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Tayfun, U., Arslan, Ç., & Doğan, M. (2023). Bazalt Elyaf Yüzeyindeki Silan Katmanının Polilaktit Kompozitlerine Güçlendirme Etkinliğinin Değerlendirilmesi. Journal of Materials and Mechatronics: A, 4(1), 87-99. https://doi.org/10.55546/jmm.1219384
AMA Tayfun U, Arslan Ç, Doğan M. Bazalt Elyaf Yüzeyindeki Silan Katmanının Polilaktit Kompozitlerine Güçlendirme Etkinliğinin Değerlendirilmesi. J. Mater. Mechat. A. Haziran 2023;4(1):87-99. doi:10.55546/jmm.1219384
Chicago Tayfun, Umit, Çağrıalp Arslan, ve Mehmet Doğan. “Bazalt Elyaf Yüzeyindeki Silan Katmanının Polilaktit Kompozitlerine Güçlendirme Etkinliğinin Değerlendirilmesi”. Journal of Materials and Mechatronics: A 4, sy. 1 (Haziran 2023): 87-99. https://doi.org/10.55546/jmm.1219384.
EndNote Tayfun U, Arslan Ç, Doğan M (01 Haziran 2023) Bazalt Elyaf Yüzeyindeki Silan Katmanının Polilaktit Kompozitlerine Güçlendirme Etkinliğinin Değerlendirilmesi. Journal of Materials and Mechatronics: A 4 1 87–99.
IEEE U. Tayfun, Ç. Arslan, ve M. Doğan, “Bazalt Elyaf Yüzeyindeki Silan Katmanının Polilaktit Kompozitlerine Güçlendirme Etkinliğinin Değerlendirilmesi”, J. Mater. Mechat. A, c. 4, sy. 1, ss. 87–99, 2023, doi: 10.55546/jmm.1219384.
ISNAD Tayfun, Umit vd. “Bazalt Elyaf Yüzeyindeki Silan Katmanının Polilaktit Kompozitlerine Güçlendirme Etkinliğinin Değerlendirilmesi”. Journal of Materials and Mechatronics: A 4/1 (Haziran 2023), 87-99. https://doi.org/10.55546/jmm.1219384.
JAMA Tayfun U, Arslan Ç, Doğan M. Bazalt Elyaf Yüzeyindeki Silan Katmanının Polilaktit Kompozitlerine Güçlendirme Etkinliğinin Değerlendirilmesi. J. Mater. Mechat. A. 2023;4:87–99.
MLA Tayfun, Umit vd. “Bazalt Elyaf Yüzeyindeki Silan Katmanının Polilaktit Kompozitlerine Güçlendirme Etkinliğinin Değerlendirilmesi”. Journal of Materials and Mechatronics: A, c. 4, sy. 1, 2023, ss. 87-99, doi:10.55546/jmm.1219384.
Vancouver Tayfun U, Arslan Ç, Doğan M. Bazalt Elyaf Yüzeyindeki Silan Katmanının Polilaktit Kompozitlerine Güçlendirme Etkinliğinin Değerlendirilmesi. J. Mater. Mechat. A. 2023;4(1):87-99.