Araştırma Makalesi
BibTex RIS Kaynak Göster

Araçlarda askı koluna etki eden yükler için hesaplama yönteminin geliştirilmesi

373 - 383
https://doi.org/10.55546/jmm.1281984

Öz

Bu çalışmada araç konfor ve güvenliği için etkin bir rolü olan süspansiyon sisteminin denge konfigürasyonu kullanılarak analitik açıdan bir statik modeli oluşturulmuştur. Bazı literatür çalışmalarında aksın yük taşıdığı kabul edilirken bazılarında ise yük taşımadığı kabul edilmiştir. Bu nedenle matematiksel model iki durum için değerlendirilmiş, denklemler aksın yük taşıması ve taşımaması durumlarına göre ayrı ayrı incelenmiştir. Çalışmada süspansiyon sistemine ait statik denge şartları kapsamlı bir şekilde dikkate alınmış, analitik model genel bir formülle ifade edilmiştir. Bu sayede MacPherson süspansiyon sistemlerinde askı koluna etki eden yüklemeler ve askı kolu sınır şartları ortaya çıkarılmıştır. Sonuç olarak elde edilen denklemler ile MacPherson süspansiyon sisteminde askı koluna etki eden yükleri ortaya koymuştur. Bu çalışma ile bu tarz askı kolları üzerinde mukavemet analizi ve optimizasyon çalışmaları yapacak araştırmacılar için kullanılabilir denklemler ortaya çıkarılmıştır.

Teşekkür

Bu makale Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı’nda “Hafif ticari bir araçta kullanılan ön alt askı kolunun topoloji optimizasyonu” başlıklı doktora tezindeki veriler ve grafikler kullanılarak oluşturulmuştur.

Kaynakça

  • Alexandru C., A Method for Finding the Static Equilibrium of the Non-steered Wheel Suspension Systems Used in Passenger Cars. Applied Sciences (Switzerland) 12 (14), 7122, 2022.
  • Barton D.C., Fieldhouse J.D., Steering systems, Automotive Chassis Engineering, Springer, First Edition, Germany, pp. 45-110, 2018.
  • Blundell M., Harty D., The Multibody Systems Approach to Vehicle Dynamics, Butterworth-Heinemann Publications, Germany, pp. 60-90, 2004. https://doi.org/10.1016/B978-0-7506-5112-7.X5000-3
  • Carello M., Airale A.G., Composite Suspension Arm Optimization for the City Vehicle XAM 2., Design and Computation of Modern Engineering Materials, Springer Link Publications, Germany, pp. 257-272, 2014.
  • Fuchs H., Salmon R, Lightweight MacPherson Strut Suspension Front Lower Control Arm Design Development. SAE International 01 (0562), 2011.
  • Gadade B., Design, analysis of A-type Front Lower Suspension Arm in Commercial Vehicle. International Research Journal of Engineering and Technology 2 (7), 759-766, 2015.
  • Gillespie T., Fundamental of Vehicle Dynamics, SAE International, Revised Edition, United State, pp. 50-250, 2021.
  • Heißing B., Ersoy M, The Chassis Handbook, Springer, First Edition, Germany, pp. 99-117, 2011.
  • Khode S.S., Patil P.A.N., Gaikwad P.A.B., Design Optimization of a Lower Control Arm of Suspension System in a LCV by Using Topological Approach. International Journal of Innovative Research in Science, Engineering and Technology, 6 (6), 11657-11665, 2017.
  • Kim D.H., Choi D.H., Kim H.S., Design Optimization of a Carbon Fiber Reinforced Composite Automotive Lower Arm. Composites Part B: Engineering, 58, 400-407, 2014.
  • Kutlak H., Uygur İ., Ticari Araç Sac Salıncak Düzeninin Sonlu Elemanlar Metodu ile Yorulma Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2(1), 235-250, 2014.
  • Pachapuri M.S.A., Lingannavar R.G., Kelageri N.K., Phadate K.K., Design and Analysis of Lower Control Arm of Suspension System. Materials Today: Proceedings, 47, 2949-2956, 2021.
  • Putra T.E., Ikbal M, Heliyon Automotive Suspension Component Behaviors Driven on Flat and Rough Road Surfaces. Heliyon, 7, e07528, 2021.
  • Song Z., Zhao X., Research on Lightweight Design of Automobile Lower Arm Based on Carbon Fiber Materials. World Journal of Engineering and Technology, 05 (04), 730-742, 2017.
  • Tang L., Wu J., Liu J., Jiang C., Shangguan W. Bin., Topology Optimization and Performance Calculation for Control Arms of a Suspension. Advances in Mechanical Engineering, 6, 1-10, 2014.
  • Wang W., Chen X., Design Methodology for Wheel Corner Module Topology Based on Position and Orientation Characteristics. Mechanism and Machine Theory, 136 (4800), 122-140, 2019.
  • Yende S.V., Burande D.H., Static Structural Analysis and Topology Optimization of Lower Control Arm for LMV. The IUP Journal of Mechanical Engineering, 13 (2), 108-120, 2020.

Development of the calculation method for the loads acting on the lower control arm in vehicles

373 - 383
https://doi.org/10.55546/jmm.1281984

Öz

In this study, an analytical static model was created by using the balance configuration of the suspension system, which has an active role in vehicle comfort and safety. In some literature studies, it is accepted that the axle carries a load, while in others it is accepted that it does not carry a load. For this reason, the mathematical model was evaluated for two cases, and the equations were examined separately according to the axle load bearing and non-load bearing conditions. In the study, the static equilibrium conditions of the suspension system were taken into account in detail, and the analytical model was expressed with a general formula. In this way, the loadings affecting the suspension arm and the limit conditions of the suspension arm have been revealed in MacPherson suspension systems. With the resulting equations, MacPherson revealed the loads acting on the suspension arm in the suspension system. With this study, usable equations have been revealed for researchers who will carry out strength analysis and optimization studies on such suspension arms.

Kaynakça

  • Alexandru C., A Method for Finding the Static Equilibrium of the Non-steered Wheel Suspension Systems Used in Passenger Cars. Applied Sciences (Switzerland) 12 (14), 7122, 2022.
  • Barton D.C., Fieldhouse J.D., Steering systems, Automotive Chassis Engineering, Springer, First Edition, Germany, pp. 45-110, 2018.
  • Blundell M., Harty D., The Multibody Systems Approach to Vehicle Dynamics, Butterworth-Heinemann Publications, Germany, pp. 60-90, 2004. https://doi.org/10.1016/B978-0-7506-5112-7.X5000-3
  • Carello M., Airale A.G., Composite Suspension Arm Optimization for the City Vehicle XAM 2., Design and Computation of Modern Engineering Materials, Springer Link Publications, Germany, pp. 257-272, 2014.
  • Fuchs H., Salmon R, Lightweight MacPherson Strut Suspension Front Lower Control Arm Design Development. SAE International 01 (0562), 2011.
  • Gadade B., Design, analysis of A-type Front Lower Suspension Arm in Commercial Vehicle. International Research Journal of Engineering and Technology 2 (7), 759-766, 2015.
  • Gillespie T., Fundamental of Vehicle Dynamics, SAE International, Revised Edition, United State, pp. 50-250, 2021.
  • Heißing B., Ersoy M, The Chassis Handbook, Springer, First Edition, Germany, pp. 99-117, 2011.
  • Khode S.S., Patil P.A.N., Gaikwad P.A.B., Design Optimization of a Lower Control Arm of Suspension System in a LCV by Using Topological Approach. International Journal of Innovative Research in Science, Engineering and Technology, 6 (6), 11657-11665, 2017.
  • Kim D.H., Choi D.H., Kim H.S., Design Optimization of a Carbon Fiber Reinforced Composite Automotive Lower Arm. Composites Part B: Engineering, 58, 400-407, 2014.
  • Kutlak H., Uygur İ., Ticari Araç Sac Salıncak Düzeninin Sonlu Elemanlar Metodu ile Yorulma Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2(1), 235-250, 2014.
  • Pachapuri M.S.A., Lingannavar R.G., Kelageri N.K., Phadate K.K., Design and Analysis of Lower Control Arm of Suspension System. Materials Today: Proceedings, 47, 2949-2956, 2021.
  • Putra T.E., Ikbal M, Heliyon Automotive Suspension Component Behaviors Driven on Flat and Rough Road Surfaces. Heliyon, 7, e07528, 2021.
  • Song Z., Zhao X., Research on Lightweight Design of Automobile Lower Arm Based on Carbon Fiber Materials. World Journal of Engineering and Technology, 05 (04), 730-742, 2017.
  • Tang L., Wu J., Liu J., Jiang C., Shangguan W. Bin., Topology Optimization and Performance Calculation for Control Arms of a Suspension. Advances in Mechanical Engineering, 6, 1-10, 2014.
  • Wang W., Chen X., Design Methodology for Wheel Corner Module Topology Based on Position and Orientation Characteristics. Mechanism and Machine Theory, 136 (4800), 122-140, 2019.
  • Yende S.V., Burande D.H., Static Structural Analysis and Topology Optimization of Lower Control Arm for LMV. The IUP Journal of Mechanical Engineering, 13 (2), 108-120, 2020.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Yazarlar

Süleyman SOYDAŞ
KOCAELİ ÜNİVERSİTESİ, KOCAELİ MESLEK YÜKSEKOKULU
0000-0002-3542-5805
Türkiye


Talip ÇELİK
KOCAELİ ÜNİVERSİTESİ
0000-0003-0033-2454
Türkiye


Halil İbrahim SARAÇ
KOCAELİ ÜNİVERSİTESİ
0000-0002-3414-3582
Türkiye

Yayımlanma Tarihi
Gönderilme Tarihi 12 Nisan 2023

Kaynak Göster

APA
SOYDAŞ, S., ÇELİK, T., & SARAÇ, H. İ. (t.y.). Araçlarda askı koluna etki eden yükler için hesaplama yönteminin geliştirilmesi. Journal of Materials and Mechatronics: A373-383. https://doi.org/10.55546/jmm.1281984
MLA
SOYDAŞ, Süleyman vd. “Araçlarda Askı Koluna Etki Eden yükler için Hesaplama yönteminin geliştirilmesi”. Journal of Materials and Mechatronics: A, ss. 373-8, doi:10.55546/jmm.1281984.
Chicago
SOYDAŞ, Süleyman, Talip ÇELİK, ve Halil İbrahim SARAÇ. “Araçlarda Askı Koluna Etki Eden yükler için Hesaplama yönteminin geliştirilmesi”. Journal of Materials and Mechatronics: At.y., 373-83. https://doi.org/10.55546/jmm.1281984.
EndNote
SOYDAŞ S, ÇELİK T, SARAÇ Hİ Araçlarda askı koluna etki eden yükler için hesaplama yönteminin geliştirilmesi. Journal of Materials and Mechatronics: A 373–383.
ISNAD
SOYDAŞ, Süleyman vd. “Araçlarda Askı Koluna Etki Eden yükler için Hesaplama yönteminin geliştirilmesi”. Journal of Materials and Mechatronics: A. t.y. 373-383. https://doi.org/10.55546/jmm.1281984.
AMA
SOYDAŞ S, ÇELİK T, SARAÇ Hİ. Araçlarda askı koluna etki eden yükler için hesaplama yönteminin geliştirilmesi. J. Mater. Mechat. A.:373-383. doi:10.55546/jmm.1281984
Vancouver
SOYDAŞ S, ÇELİK T, SARAÇ Hİ. Araçlarda askı koluna etki eden yükler için hesaplama yönteminin geliştirilmesi. J. Mater. Mechat. A. :373-8.
IEEE
S. SOYDAŞ, T. ÇELİK, ve H. İ. SARAÇ, “Araçlarda askı koluna etki eden yükler için hesaplama yönteminin geliştirilmesi”, J. Mater. Mechat. A, ss. 373–383, doi: 10.55546/jmm.1281984.
JAMA
SOYDAŞ S, ÇELİK T, SARAÇ Hİ. Araçlarda askı koluna etki eden yükler için hesaplama yönteminin geliştirilmesi. J. Mater. Mechat. A.;:373–383.