Araştırma Makalesi
BibTex RIS Kaynak Göster

Mikro/Nano SiO2 Takviyeli Aramid Kompozitlerde Aşınmanın Veriye Dayalı Tahmini ve Deneysel Analizi

Yıl 2025, Cilt: 6 Sayı: 2, 425 - 441, 26.12.2025
https://doi.org/10.55546/jmm.1797773

Öz

Bu çalışmada, aramid elyaf takviyeli polimer matrisli kompozit malzemelere farklı oranlarda mikro ve nano boyutlu SiO2 partikülleri eklenerek elde edilen numunelerin kuru kayma koşulları altındaki aşınma davranışları belirlenmiştir. Aşınma performansı, kütle kaybı ve özgül aşınma oranları hesaplanarak analiz edilmiş ve aşınmış yüzeyler taramalı elektron mikroskobu kullanılarak incelenmiştir. Aşınma oranları 10, 20 ve 30 N yük ve 100-200 m kayma mesafeleri altında değerlendirilmiştir. Deneysel sonuçlar, özellikle %2-3 nano SiO₂ katkısının aşınma direncini belirgin biçimde artırdığını ve kütle kaybını yaklaşık %55-70 oranında azalttığını göstermiştir. Daha sonra, Yapay Sinir Ağı, Karar Ağacı, Rastgele Orman, Destek Vektör Makinesi, K-En Yakın Komşu ve XGBoost algoritmaları gibi tahmin modelleri kullanılarak aşınma davranışı tahmin edilmiştir Elde edilen aşınma verileri, Grid Search yöntemi ile hiperparametre optimizasyonu yapılarak belirtilen modellerle analiz edilmiştir. Model performansları, 5 katlı çapraz doğrulama ile Ortalama Karesel Hata (MSE) ve Belirleme Katsayısı (R2) değerlerine göre değerlendirilmiştir. Yapay Sinir Ağı için 83,4 MSE ve 0,92 R2, Karar Ağacı için 82,7 MSE ve 0,92 R2 ve K-En Yakın Komşular için 83,4 MSE ve 0,92 R2 ile en iyi sonuçlar elde edilmiştir. Sonuçlar, hiperparametre optimizasyonunun model performansında belirleyici bir rol oynadığını ve YSA, DT ve KNN modellerinin aşınma tahmini açısından yüksek doğruluk sağladığını göstermektedir.

Proje Numarası

BTÜBAP-2023-MMF-03

Kaynakça

  • Antunes P. V., Ramalho A., Carrilho E. V. P., Mechanical and wear behaviours of nano and microfilled polymeric composite: Effect of filler fraction and size. Materials & Design 61, 50-60, 2014.
  • Bîrsan I., Andrei G., Ungureanu V., Roman I., Cîrciumaru A., Wear behavior of fabric reinforced epoxy-based composites, Proceeding of the International Conference BALTTRIB, Kaunas/ Lithuania, November 19-21, 2009, pp: 158-163.
  • Buddi T., Rao B. N., Singh S. K., Purohit R., Rana, R. S., Development and analysis of high density poly ethylene (HDPE) nano SiO2 and wood powder reinforced polymer matrix hybrid nano composites. Journal of Experimental Nanoscience 13(sup1), S24-S30, 2018.
  • Chang L., Friedrich K., Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: A critical discussion of wear mechanisms. Tribology International 43(12), 2355-2364, 2010.
  • Chowdary M. S., Raghavendra G., Kumar M. S. R. N., Ojha S., Boggarapu V., Influence of Nano-Silica on Enhancing the Mechanical Properties of Sisal/Kevlar Fiber Reinforced Polyester Hybrid Composites. Silicon 14(2), 539-546, 2022.
  • Ding H., Kong H., Sun H., Xu Q., Zeng J., Yu M., Improving aramid pulp dispersion in epoxy resin via the in situ preparation of SiO2 on an aramid pulp surface. Polymer Composites 41(4), 1683-1693, 2020.
  • Fu Q., Yang Z., Chen M., Zhao D., Shi B., Ji Q., Wang J., Jia H., Enhance mechanical properties and ablation resistance of EPDM composites by 1D aramid nanofiber-guided SiO2 nanofiller system. Polymer Degradation and Stability 233, 111191, 2025.
  • Gore P. M., Kandasubramanian B., Functionalized Aramid Fibers and Composites for Protective Applications: A Review. Industrial & Engineering Chemistry Research 57(49), 16537-16563, 2018.
  • Gurukarthik Babu B., Prince Winston D., Aravind Bhaskar P. V., Baskaran R., Narayanasamy P., Exploration of Electrical, Thermal, and Mechanical Properties of Phaseolus vulgaris Fiber/Unsaturated Polyester Resin Composite Filled with Nano–SiO2. Journal of Natural Fibers 18(12), 2156-2172, 2021.
  • Jiang Z., Gyurova L., Zhang Z., Friedrich K., Schlarb A. K., Neural network based prediction on mechanical and wear properties of short fibers reinforced polyamide composites. Materials & Design 29(3), 628-637, 2008.
  • Kan W. H., Chang L., The mechanisms behind the tribological behaviour of polymer matrix composites reinforced with TiO2 nanoparticles. Wear 474-475, 203754, 2021.
  • Kaundal R., Patnaik A., Satapathy A., Mechanical characterizations and development of erosive wear model for Al2O3-filled short glass fiber-reinforced polymer composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(11), 893-908, 2018.
  • Khan M. I., Umair M., Hussain R., Nawab Y., Effect of Micro-fillers on the Performance of Thermoplastic Para Aramid Composites for Impact Applications. Fibers and Polymers 22(11), 3120-3134, 2021.
  • Österle W., Dmitriev A. I., Wetzel B., Zhang G., Häusler I., Jim B. C., The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite. Materials & Design 93, 474-484, 2016.
  • Prashanth S., Subbaya K., Nithin K., Sachhidananda S., Fiber reinforced composites-a review. Journal of Material Sciences & Engineering 6(3), 2-6, 2017.
  • Qi H., Zhang G., Zheng Z., Yu J., Hu C., Tribological properties of polyimide composites reinforced with fibers rubbing against Al2O3. Friction 9(2), 301-314, 2021.
  • Singh M., Dodla S., Gautam R. K., Srivastava V. K., Effect of load, sliding frequency, and temperature on tribological properties of graphene nanoplatelets coated carbon fiber reinforced polymer composites. Journal of Composite Materials 57(1), 121-132, 2023.
  • Singh T., Gangil B., Ranakoti L., Joshi A., Effect of silica nanoparticles on physical, mechanical, and wear properties of natural fiber reinforced polymer composites. Polymer Composites 42(5), 2396-2407, 2021.
  • Thimmaiah S. H., Narayanappa K., Thyavihalli Girijappa Y., Gulihonenahali Rajakumara A., Hemath M., Thiagamani S. M. K., Verma A., An artificial neural network and Taguchi prediction on wear characteristics of Kenaf–Kevlar fabric reinforced hybrid polyester composites. Polymer Composites 44(1), 261-273, 2023.
  • Venkatesan M., Palanikumar K., Boopathy S. R., Experimental investigation and analysis on the wear properties of glass fiber and CNT reinforced hybrid polymer composites. Science and Engineering of Composite Materials, 25(5), 963-974, 2018.
  • Yue H., Han F., Zhang Y., Wang C., Zong L., Wang J., Jian X., Interfacial reinforcement of aramid composites through amino SiO2 interphase for ballistic application. Journal of Reinforced Plastics and Composites 44(23-24), 2611-2623 2025.
  • Zhang B., Jia L., Tian M., Ning N., Zhang L., Wang W., Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review. European Polymer Journal, 147, 110352, 2021.
  • Zhang L., Kong H., Qiao M., Ding X., Yu M., Growing Nano-SiO2 on the Surface of Aramid Fibers Assisted by Supercritical CO2 to Enhance the Thermal Stability, Interfacial Shear Strength, and UV Resistance. Polymers 11(9), 1397, 2019.
  • Zhang Z., Yang M., Yuan J., Guo F., Men X., Friction and wear behaviors of MoS2-multi-walled-carbonnanotube hybrid reinforced polyurethane composite coating. Friction 7(4), 316-326, 2019.

Data-Driven Prediction and Experimental Analysis of Wear in Micro/Nano SiO2-Reinforced Aramid Composites

Yıl 2025, Cilt: 6 Sayı: 2, 425 - 441, 26.12.2025
https://doi.org/10.55546/jmm.1797773

Öz

In this study, the wear behavior of samples obtained by adding micro and nano-sized SiO2 particle additives to aramid fiber reinforced polymer matrix composite materials at different rates were investigated under dry sliding conditions. The influence of both micro- and nanoscale additives was explicitly considered, and the composites were fabricated using a controlled hand lay-up method. The wear performance was analyzed by calculating the mass loss and specific wear rates, and the worn surfaces were examined using scanning electron microscopy (SEM). Wear rates were evaluated under 10 and 15 N loads and 100-200 m sliding distances. Experimental results revealed that the addition of 2-3 wt.% nano SiO2 significantly improved the wear resistance and reduced the mass loss by approximately 55-70% compared to the neat composite. SEM images revealed the presence of abrasive grooves, localized adhesion and material transfer, and micro-scale cracking associated with matrix fragmentation and particle pull-out. Then, predictive models such as Artificial Neural Network, Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbors and XGBoost algorithms were used to predict wear behavior. The wear data obtained were analyzed with the mentioned models by performing hyperparameter optimization with Grid Search method. Model performances are evaluated according to Mean Squared Error (MSE) and Coefficient of Determination (R2) values with 5-fold cross validation. The best results were obtained with an MSE of 83.4 and an R2 of 0.92 for Artificial Neural Network, an MSE of 82.7 and an R2 of 0.92 for Decision Tree, and an MSE of 83.4 and an R2 of 0.92 for K-Nearest Neighbors. The results show that hyperparameter optimization plays a decisive role in model performance and ANN, DT and KNN models provide high accuracy in terms of wear prediction.

Etik Beyan

During the writing process of our study, the information of which is given above, international scientific, ethical and citation rules have been followed, no falsification has been made on the data collected, and Journal of Materials and Mechatronics: A (JournalMM) and its editorial board have no responsibility for any ethical violations that may be encountered. I undertake that I have full responsibility and that this study has not been evaluated in any academic environment other than Journal of Materials and Mechatronics: A (JournalMM).

Destekleyen Kurum

Batman University Scientific Research Projects Unit (BTUBAP)

Proje Numarası

BTÜBAP-2023-MMF-03

Teşekkür

This research was supported by Batman University Scientific Research Projects Unit (BTUBAP) under Project no BTÜBAP-2023-MMF-03

Kaynakça

  • Antunes P. V., Ramalho A., Carrilho E. V. P., Mechanical and wear behaviours of nano and microfilled polymeric composite: Effect of filler fraction and size. Materials & Design 61, 50-60, 2014.
  • Bîrsan I., Andrei G., Ungureanu V., Roman I., Cîrciumaru A., Wear behavior of fabric reinforced epoxy-based composites, Proceeding of the International Conference BALTTRIB, Kaunas/ Lithuania, November 19-21, 2009, pp: 158-163.
  • Buddi T., Rao B. N., Singh S. K., Purohit R., Rana, R. S., Development and analysis of high density poly ethylene (HDPE) nano SiO2 and wood powder reinforced polymer matrix hybrid nano composites. Journal of Experimental Nanoscience 13(sup1), S24-S30, 2018.
  • Chang L., Friedrich K., Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: A critical discussion of wear mechanisms. Tribology International 43(12), 2355-2364, 2010.
  • Chowdary M. S., Raghavendra G., Kumar M. S. R. N., Ojha S., Boggarapu V., Influence of Nano-Silica on Enhancing the Mechanical Properties of Sisal/Kevlar Fiber Reinforced Polyester Hybrid Composites. Silicon 14(2), 539-546, 2022.
  • Ding H., Kong H., Sun H., Xu Q., Zeng J., Yu M., Improving aramid pulp dispersion in epoxy resin via the in situ preparation of SiO2 on an aramid pulp surface. Polymer Composites 41(4), 1683-1693, 2020.
  • Fu Q., Yang Z., Chen M., Zhao D., Shi B., Ji Q., Wang J., Jia H., Enhance mechanical properties and ablation resistance of EPDM composites by 1D aramid nanofiber-guided SiO2 nanofiller system. Polymer Degradation and Stability 233, 111191, 2025.
  • Gore P. M., Kandasubramanian B., Functionalized Aramid Fibers and Composites for Protective Applications: A Review. Industrial & Engineering Chemistry Research 57(49), 16537-16563, 2018.
  • Gurukarthik Babu B., Prince Winston D., Aravind Bhaskar P. V., Baskaran R., Narayanasamy P., Exploration of Electrical, Thermal, and Mechanical Properties of Phaseolus vulgaris Fiber/Unsaturated Polyester Resin Composite Filled with Nano–SiO2. Journal of Natural Fibers 18(12), 2156-2172, 2021.
  • Jiang Z., Gyurova L., Zhang Z., Friedrich K., Schlarb A. K., Neural network based prediction on mechanical and wear properties of short fibers reinforced polyamide composites. Materials & Design 29(3), 628-637, 2008.
  • Kan W. H., Chang L., The mechanisms behind the tribological behaviour of polymer matrix composites reinforced with TiO2 nanoparticles. Wear 474-475, 203754, 2021.
  • Kaundal R., Patnaik A., Satapathy A., Mechanical characterizations and development of erosive wear model for Al2O3-filled short glass fiber-reinforced polymer composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(11), 893-908, 2018.
  • Khan M. I., Umair M., Hussain R., Nawab Y., Effect of Micro-fillers on the Performance of Thermoplastic Para Aramid Composites for Impact Applications. Fibers and Polymers 22(11), 3120-3134, 2021.
  • Österle W., Dmitriev A. I., Wetzel B., Zhang G., Häusler I., Jim B. C., The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite. Materials & Design 93, 474-484, 2016.
  • Prashanth S., Subbaya K., Nithin K., Sachhidananda S., Fiber reinforced composites-a review. Journal of Material Sciences & Engineering 6(3), 2-6, 2017.
  • Qi H., Zhang G., Zheng Z., Yu J., Hu C., Tribological properties of polyimide composites reinforced with fibers rubbing against Al2O3. Friction 9(2), 301-314, 2021.
  • Singh M., Dodla S., Gautam R. K., Srivastava V. K., Effect of load, sliding frequency, and temperature on tribological properties of graphene nanoplatelets coated carbon fiber reinforced polymer composites. Journal of Composite Materials 57(1), 121-132, 2023.
  • Singh T., Gangil B., Ranakoti L., Joshi A., Effect of silica nanoparticles on physical, mechanical, and wear properties of natural fiber reinforced polymer composites. Polymer Composites 42(5), 2396-2407, 2021.
  • Thimmaiah S. H., Narayanappa K., Thyavihalli Girijappa Y., Gulihonenahali Rajakumara A., Hemath M., Thiagamani S. M. K., Verma A., An artificial neural network and Taguchi prediction on wear characteristics of Kenaf–Kevlar fabric reinforced hybrid polyester composites. Polymer Composites 44(1), 261-273, 2023.
  • Venkatesan M., Palanikumar K., Boopathy S. R., Experimental investigation and analysis on the wear properties of glass fiber and CNT reinforced hybrid polymer composites. Science and Engineering of Composite Materials, 25(5), 963-974, 2018.
  • Yue H., Han F., Zhang Y., Wang C., Zong L., Wang J., Jian X., Interfacial reinforcement of aramid composites through amino SiO2 interphase for ballistic application. Journal of Reinforced Plastics and Composites 44(23-24), 2611-2623 2025.
  • Zhang B., Jia L., Tian M., Ning N., Zhang L., Wang W., Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review. European Polymer Journal, 147, 110352, 2021.
  • Zhang L., Kong H., Qiao M., Ding X., Yu M., Growing Nano-SiO2 on the Surface of Aramid Fibers Assisted by Supercritical CO2 to Enhance the Thermal Stability, Interfacial Shear Strength, and UV Resistance. Polymers 11(9), 1397, 2019.
  • Zhang Z., Yang M., Yuan J., Guo F., Men X., Friction and wear behaviors of MoS2-multi-walled-carbonnanotube hybrid reinforced polyurethane composite coating. Friction 7(4), 316-326, 2019.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nöral Ağlar, Malzeme Tasarım ve Davranışları, Triboloji
Bölüm Araştırma Makalesi
Yazarlar

Raşit Koray Ergün 0000-0002-5440-0646

İsmail Bayar 0000-0002-4187-3911

Hüseyin Köse 0000-0001-6500-975X

Proje Numarası BTÜBAP-2023-MMF-03
Gönderilme Tarihi 7 Ekim 2025
Kabul Tarihi 12 Aralık 2025
Yayımlanma Tarihi 26 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Ergün, R. K., Bayar, İ., & Köse, H. (2025). Data-Driven Prediction and Experimental Analysis of Wear in Micro/Nano SiO2-Reinforced Aramid Composites. Journal of Materials and Mechatronics: A, 6(2), 425-441. https://doi.org/10.55546/jmm.1797773
AMA Ergün RK, Bayar İ, Köse H. Data-Driven Prediction and Experimental Analysis of Wear in Micro/Nano SiO2-Reinforced Aramid Composites. J. Mater. Mechat. A. Aralık 2025;6(2):425-441. doi:10.55546/jmm.1797773
Chicago Ergün, Raşit Koray, İsmail Bayar, ve Hüseyin Köse. “Data-Driven Prediction and Experimental Analysis of Wear in Micro/Nano SiO2-Reinforced Aramid Composites”. Journal of Materials and Mechatronics: A 6, sy. 2 (Aralık 2025): 425-41. https://doi.org/10.55546/jmm.1797773.
EndNote Ergün RK, Bayar İ, Köse H (01 Aralık 2025) Data-Driven Prediction and Experimental Analysis of Wear in Micro/Nano SiO2-Reinforced Aramid Composites. Journal of Materials and Mechatronics: A 6 2 425–441.
IEEE R. K. Ergün, İ. Bayar, ve H. Köse, “Data-Driven Prediction and Experimental Analysis of Wear in Micro/Nano SiO2-Reinforced Aramid Composites”, J. Mater. Mechat. A, c. 6, sy. 2, ss. 425–441, 2025, doi: 10.55546/jmm.1797773.
ISNAD Ergün, Raşit Koray vd. “Data-Driven Prediction and Experimental Analysis of Wear in Micro/Nano SiO2-Reinforced Aramid Composites”. Journal of Materials and Mechatronics: A 6/2 (Aralık2025), 425-441. https://doi.org/10.55546/jmm.1797773.
JAMA Ergün RK, Bayar İ, Köse H. Data-Driven Prediction and Experimental Analysis of Wear in Micro/Nano SiO2-Reinforced Aramid Composites. J. Mater. Mechat. A. 2025;6:425–441.
MLA Ergün, Raşit Koray vd. “Data-Driven Prediction and Experimental Analysis of Wear in Micro/Nano SiO2-Reinforced Aramid Composites”. Journal of Materials and Mechatronics: A, c. 6, sy. 2, 2025, ss. 425-41, doi:10.55546/jmm.1797773.
Vancouver Ergün RK, Bayar İ, Köse H. Data-Driven Prediction and Experimental Analysis of Wear in Micro/Nano SiO2-Reinforced Aramid Composites. J. Mater. Mechat. A. 2025;6(2):425-41.