Araştırma Makalesi
BibTex RIS Kaynak Göster

3D Ökzetik Malzemelerde Yükleme Türünün/Yönünün ve Geometrik Ölçü Parametrelerinin Etkilerinin İncelenmesi

Yıl 2025, Cilt: 6 Sayı: 2, 409 - 424, 26.12.2025
https://doi.org/10.55546/jmm.1797776

Öz

Negatif poisson oranına sahip olan ökzetik malzemeler çekme yüklemesi altında enine genişlerken, basma yüklemesi altında ise enine daralmaktadır. Bu deformasyon davranışı nedeniyle uygulamada birçok alanda tercih edilmektedir. Literatürde 3D ökzetik malzemeler üzerine sınırlı çalışmayla karşılaşılmıştır. Ayrıca ökzetik malzemelerde geometrik ölçü etkisinin (Yüzde ±25) incelenmesinin ve yükleme türünün (düzlem içi/dışı)/yönünün (çekme/basma) etkilerinin incelendiği çalışmaya rastlanmadığı için bu parametreler üç farklı (re entrant, modifiye edilmiş re entrant ve star) 3D ökzetik yapıda, sonlu elemanlar yöntemiyle (FEM) incelenmiştir. Çalışma sonucunda incelenen parametrelerin etkilerinin ökzetik ve mekanik özelliklere etkisi enine/boyuna deformasyon, eş değer gerilme ve poisson oranı parametreleriyle araştırılmıştır. Elde edilen veriler ile ölçü artışıyla eş değer gerilme ve deformasyonlarda düşüş gözlemlenirken poisson oranında %2 oranında değişim elde edilmiştir. Ökzetik yapılarda boyut azalmasıyla artan eş değer gerilme olsa da poisson oranında artış kaynaklı daha iyi ökzetik özellikler elde edilmiştir.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Alomarah A., Ruan D., Masood S., Sbarski I., Faisal B., An investigation of in-plane tensile properties of re-entrant chiral auxetic structure. The International Journal of Advanced Manufacturing Technology 96, 2013–2029, 2018.
  • Can H. O., Akıllı Malzemelerin Mekanik Özellikleri, Bursa Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış), 2017.
  • Fu M., Liu F., Hu L., A novel category of 3D chiral material with negative Poisson's ratio. Composites Science and Technology 160, 111-118, 2018.
  • Gao Y., Wei X., Han X., Zhou Z., Xiong J., Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism. International Journal of Solids and Structures 233, 111232, 2021.
  • Gao Y., Li Z., Wei X., Du Y., Zhou Z., Xiong J., Carbon fiber reinforced composite 3D origami-inspired auxetic honeycomb with omni-directional high stiffness. International Journal of Solids and Structures 297, 112860, 2024.
  • Ghavidelnia N.; Bodaghi M., Hedayati, R. Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study. Materials 14, 993, 2021.
  • Kırar E., Modifiye Edilmiş Re-entrant Ökzetik Tasarımın Çekme Yükü Altında İncelenmesi. Harran University Journal of Engineering 10, 26-35, 2025.
  • Logakannan K. P., Ramachandran V., Rengaswamy J., Gao Z., Ruan D., Quasi-static and dynamic compression behaviors of a novel auxetic structure. Composite Structures 254, 112853, 2020.
  • Lu Z., Wang Q., Li X., Yang Z., Elastic properties of two novel auxetic 3D cellular structures. International Journal of Solids and Structures 124, 46–56, 2017.
  • Rad M. S., Ahmad Z., Alias A., Computational Approach in Formulating Mechanical Characteristics of 3D Star Honeycomb Auxetic Structure. Advances in Materials Science and Engineering, Article ID 650769, 2015.
  • Ren X., Shen J., Ghaedizadeh A., Tian H., Xie Y. M., Numerical simulations of 3D metallic auxetic metamaterials in both compression and tension. Applied Mechanics and Materials ISSN: 1662-7482, Vol. 846, pp 565-570, 2016.
  • Shen J., Liu K., Zeng Q., Ge J., Dong Z., Liang J., Design and mechanical property studies of 3D re-entrant lattice auxetic structure. Aerospace Science and Technology 118, 106998, 2021.
  • Subramani P., Rana S., Oliveira D. V., Fangueiro R., Xavier J. Development of novel auxetic structures based on braided composites. Materials and Design 61, 286–295, 2014.
  • Teng X. C., Ren X., Zhang Y., Jiang W., Pan Y., Zhang X. G., Zhang X. Y., Xie Y. M., A simple 3D re-entrant auxetic metamaterial with enhanced energy absorption. International Journal of Mechanical Sciences 229, 107524, 2022.
  • Vyavahare S., Kumar S., Numerical and experimental investigation of FDM fabricated re-entrant auxetic structures of ABS and PLA materials under compressive loading. Rapid Prototyping Journal 27/2, 223–244, 2021.
  • Wang Q., Yang Z., Lu Z., Li X., Mechanical responses of 3D cross-chiral auxetic materials under uniaxial compression. Materials & Design 186, 108226, 2020.
  • Wang F., Systematic design of 3D auxetic lattice materials with programmable Poisson’s ratio for finite strains. Journal of the Mechanics and Physics of Solids 114, 303-318, 2018.
  • Yang H., Wang B., Ma L., Mechanical properties of 3D double-U auxetic structures. International Journal of Solids and Structures 180-181, 13-29, 2019.
  • Zheng X., Guo X., Watanabe I., A mathematically defined 3D auxetic metamaterial with tunable mechanical and conduction properties. Materials and Design 198, 109313, 2021.

Investigation of the Effects of Loading Type/Direction and Geometric Size Parameters on 3D Auxetic Materials

Yıl 2025, Cilt: 6 Sayı: 2, 409 - 424, 26.12.2025
https://doi.org/10.55546/jmm.1797776

Öz

Auxetic materials with a negative Poisson's ratio expand transversely under tensile loading and contract transversely under compressive loading. This deformation behavior makes them preferred in many applications. Limited studies on 3D auxetic materials have been encountered in the literature. Furthermore, since no studies have been found examining the effects of geometric size (±25%) and the effects of loading type (in-plane/out-of-plane)/direction (tension/compression) on auxetic materials, these parameters were investigated in three different 3D auxetic structures (re-entrant, modified re-entrant, and star) using the finite element method (FEM). As a result of the study, the effects of the investigated parameters on auxetic and mechanical properties were examined using the parameters of transverse/longitudinal deformation, equivalent stress, and Poisson's ratio. The obtained data indicate a decrease in equivalent stress and deformation with increasing size, while a 2% change in the Poisson's ratio was obtained. Although the equivalent stress in auxetic structures increases with decreasing size, better auxetic properties are obtained due to the increase in the Poisson ratio. It was determined that the effect of the loading direction in auxetic structures was below 1% and the type of loading in auxetic structures depends on the geometric structure of the auxetic structure. Moreover, the design with the best auxetic properties was found to be the R-coded design in the in-plane direction, while the S-coded design was found to be the the best out-of-plane loading.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Alomarah A., Ruan D., Masood S., Sbarski I., Faisal B., An investigation of in-plane tensile properties of re-entrant chiral auxetic structure. The International Journal of Advanced Manufacturing Technology 96, 2013–2029, 2018.
  • Can H. O., Akıllı Malzemelerin Mekanik Özellikleri, Bursa Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış), 2017.
  • Fu M., Liu F., Hu L., A novel category of 3D chiral material with negative Poisson's ratio. Composites Science and Technology 160, 111-118, 2018.
  • Gao Y., Wei X., Han X., Zhou Z., Xiong J., Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism. International Journal of Solids and Structures 233, 111232, 2021.
  • Gao Y., Li Z., Wei X., Du Y., Zhou Z., Xiong J., Carbon fiber reinforced composite 3D origami-inspired auxetic honeycomb with omni-directional high stiffness. International Journal of Solids and Structures 297, 112860, 2024.
  • Ghavidelnia N.; Bodaghi M., Hedayati, R. Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study. Materials 14, 993, 2021.
  • Kırar E., Modifiye Edilmiş Re-entrant Ökzetik Tasarımın Çekme Yükü Altında İncelenmesi. Harran University Journal of Engineering 10, 26-35, 2025.
  • Logakannan K. P., Ramachandran V., Rengaswamy J., Gao Z., Ruan D., Quasi-static and dynamic compression behaviors of a novel auxetic structure. Composite Structures 254, 112853, 2020.
  • Lu Z., Wang Q., Li X., Yang Z., Elastic properties of two novel auxetic 3D cellular structures. International Journal of Solids and Structures 124, 46–56, 2017.
  • Rad M. S., Ahmad Z., Alias A., Computational Approach in Formulating Mechanical Characteristics of 3D Star Honeycomb Auxetic Structure. Advances in Materials Science and Engineering, Article ID 650769, 2015.
  • Ren X., Shen J., Ghaedizadeh A., Tian H., Xie Y. M., Numerical simulations of 3D metallic auxetic metamaterials in both compression and tension. Applied Mechanics and Materials ISSN: 1662-7482, Vol. 846, pp 565-570, 2016.
  • Shen J., Liu K., Zeng Q., Ge J., Dong Z., Liang J., Design and mechanical property studies of 3D re-entrant lattice auxetic structure. Aerospace Science and Technology 118, 106998, 2021.
  • Subramani P., Rana S., Oliveira D. V., Fangueiro R., Xavier J. Development of novel auxetic structures based on braided composites. Materials and Design 61, 286–295, 2014.
  • Teng X. C., Ren X., Zhang Y., Jiang W., Pan Y., Zhang X. G., Zhang X. Y., Xie Y. M., A simple 3D re-entrant auxetic metamaterial with enhanced energy absorption. International Journal of Mechanical Sciences 229, 107524, 2022.
  • Vyavahare S., Kumar S., Numerical and experimental investigation of FDM fabricated re-entrant auxetic structures of ABS and PLA materials under compressive loading. Rapid Prototyping Journal 27/2, 223–244, 2021.
  • Wang Q., Yang Z., Lu Z., Li X., Mechanical responses of 3D cross-chiral auxetic materials under uniaxial compression. Materials & Design 186, 108226, 2020.
  • Wang F., Systematic design of 3D auxetic lattice materials with programmable Poisson’s ratio for finite strains. Journal of the Mechanics and Physics of Solids 114, 303-318, 2018.
  • Yang H., Wang B., Ma L., Mechanical properties of 3D double-U auxetic structures. International Journal of Solids and Structures 180-181, 13-29, 2019.
  • Zheng X., Guo X., Watanabe I., A mathematically defined 3D auxetic metamaterial with tunable mechanical and conduction properties. Materials and Design 198, 109313, 2021.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları, Sayısal Modelleme ve Mekanik Karakterizasyon
Bölüm Araştırma Makalesi
Yazarlar

Ersan Kırar 0000-0002-7980-4815

Proje Numarası -
Gönderilme Tarihi 6 Ekim 2025
Kabul Tarihi 10 Aralık 2025
Yayımlanma Tarihi 26 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Kırar, E. (2025). Investigation of the Effects of Loading Type/Direction and Geometric Size Parameters on 3D Auxetic Materials. Journal of Materials and Mechatronics: A, 6(2), 409-424. https://doi.org/10.55546/jmm.1797776
AMA Kırar E. Investigation of the Effects of Loading Type/Direction and Geometric Size Parameters on 3D Auxetic Materials. J. Mater. Mechat. A. Aralık 2025;6(2):409-424. doi:10.55546/jmm.1797776
Chicago Kırar, Ersan. “Investigation of the Effects of Loading Type/Direction and Geometric Size Parameters on 3D Auxetic Materials”. Journal of Materials and Mechatronics: A 6, sy. 2 (Aralık 2025): 409-24. https://doi.org/10.55546/jmm.1797776.
EndNote Kırar E (01 Aralık 2025) Investigation of the Effects of Loading Type/Direction and Geometric Size Parameters on 3D Auxetic Materials. Journal of Materials and Mechatronics: A 6 2 409–424.
IEEE E. Kırar, “Investigation of the Effects of Loading Type/Direction and Geometric Size Parameters on 3D Auxetic Materials”, J. Mater. Mechat. A, c. 6, sy. 2, ss. 409–424, 2025, doi: 10.55546/jmm.1797776.
ISNAD Kırar, Ersan. “Investigation of the Effects of Loading Type/Direction and Geometric Size Parameters on 3D Auxetic Materials”. Journal of Materials and Mechatronics: A 6/2 (Aralık2025), 409-424. https://doi.org/10.55546/jmm.1797776.
JAMA Kırar E. Investigation of the Effects of Loading Type/Direction and Geometric Size Parameters on 3D Auxetic Materials. J. Mater. Mechat. A. 2025;6:409–424.
MLA Kırar, Ersan. “Investigation of the Effects of Loading Type/Direction and Geometric Size Parameters on 3D Auxetic Materials”. Journal of Materials and Mechatronics: A, c. 6, sy. 2, 2025, ss. 409-24, doi:10.55546/jmm.1797776.
Vancouver Kırar E. Investigation of the Effects of Loading Type/Direction and Geometric Size Parameters on 3D Auxetic Materials. J. Mater. Mechat. A. 2025;6(2):409-24.