Araştırma Makalesi
BibTex RIS Kaynak Göster

Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi

Yıl 2022, Cilt: 3 Sayı: 1, 117 - 128, 06.06.2022
https://doi.org/10.55546/jmm.1109990

Öz

Bu çalışmada, havacılık, otomotiv ve uzay gibi mühendislik alanlarında düşük yoğunluklu malzeme olarak sıklıkla tercih edilen alüminyum (Al) ve cam elyaf takviyeli kompozit (GFRP) malzemelerinin tek bindirmeli bağlantılarının (SLJ) kayma ve kırılma performanslarına halloysit nanotüp (HNT) parçacık katkısının etkileri incelenmiştir. Bu amaçla, HNT parçacıkları beş farklı oranda (ağırlıkça %1.0, %1.5, %2.0, %2.5 ve %3.0) Araldite 2014-2 epoksi tabanlı yapıştırıcıya eklenmiş, hazırlanan numuneler bindirme kesme testine tabi tutulmuştur. Elde edilen sonuçlar, %3.0 HNT katkılı numuneler dışında bütün katkı oranlarında numunelerin saf numunelere göre daha yüksek kayma dayanımı sonuçları verdiğini göstermiştir. Maksimum kayma dayanımı sergileyen %2.0 HNT katkılı numunelerin (11.76 MPa) saf numunelere (9.02 MPa) kıyasla dayanımının %30.4 arttığı bulunmuştur. Ayrıca, %2.0’den daha fazla miktarda HNT katkısı, nano parçacıkların topaklanmasından (agglomeration) kaynaklanan yerel gerilme konsantrasyonları oluşumu nedeniyle düşüş eğilimi göstermiştir. Öte yandan HNT katkılarının yapıştırma bağlantılarının performanslarının arttırmasını sağlayan çatlak köprüleme ve çatlak pinlenmesi gibi tokluk mekanizmaları gösterdiği SEM görüntüleri ile belirlenmiştir. Sonuç olarak HNT katkısının belli miktarlarda yapıştırma bağlantılarında kullanılması, bu yapıların kayma dayanımlarını arttırarak daha dayanımlı malzemeler türetildiğini kanıtlamaktadır.

Destekleyen Kurum

Kilis 7 Aralık Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

21-13272

Teşekkür

Bu çalışma, Kilis 7 Aralık Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından “21-13272” kodlu proje ile desteklenmiştir.

Kaynakça

  • Arslan M. H., Yazman Ş., Hamad A. A., Aksoylu C., Özkılıç Y. O., Gemi L., Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics. In Structures 39, 527-542, 2022.
  • Ayatollahi M. R., Nemati Giv A., Razavi S. M. J. Khoramishad H., Mechanical properties of adhesively single lap-bonded joints reinforced with multi-walled carbon nanotubes and silica nanoparticles. The Journal of Adhesion 93(11), 896-913, 2017.
  • Banea M. D., da Silva L. F., Adhesively bonded joints in composite materials: an overview. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 223(1), 1-18, 2009.
  • Bulut M., Mechanical characterization of Basalt/epoxy composite laminates containing graphene nanopellets. Composites Part B: Engineering 122, 71-78, 2017.
  • Cakir M. V., Kinay D., MWCNT, nano‐silica, and nano‐clay additives effects on adhesion performance of dissimilar materials bonded joints. Polymer Composites 42(11), 5880-5892, 2021.
  • Ceritbinmez F., Yapici A., An investigation on cutting of the MWCNTs-doped composite plates by AWJ. Arabian Journal for Science and Engineering 45(7), 5129-5141, 2020.
  • Çakır M. V., Erkliğ A., Ahmed B. F., Graphene nanoparticle effect on flexural and shear behaviors of adhesively bonded single lap joints of GFRP composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43(4), 1-11, 2021.
  • Çakır M. V., Özbek, Ö., Mechanical performance and damage analysis of GNP-reinforced adhesively bonded joints under shear and bending loads. The Journal of Adhesion 1-24, 2022.
  • De Cicco D., Asaee Z., Taheri, F., Use of nanoparticles for enhancing the interlaminar properties of fiber-reinforced composites and adhesively bonded joints-A review. Nanomaterials 7(11), 360, 2017.
  • Deng S., Zhang J., Ye L., Wu, J., Toughening epoxies with halloysite nanotubes. Polymer 49(23), 5119-5127, 2008.
  • Doğan N. F., Özbek Ö., Erkliğ A., Effect of graphene nanoplatelets on mechanical and impact properties of an aramid/glass-reinforced epoxy composite. Materials Testing 64(4), 490-501, 2022.
  • Galińska A., Mechanical joining of fibre reinforced polymer composites to metals-A review. Part I: Bolted joining. Polymers 12(10), 2252, 2020.
  • Gemi D. S., Şahin Ö. S., Gemi L., Experimental investigation of axial compression behavior after low velocity impact of glass fiber reinforced filament wound pipes with different diameter. Composite Structures 280, 114929, 2022.
  • Gemi L., Madenci E., Özkılıç Y. O., Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete. Engineering Structures 244, 112790, 2021.
  • Hanid N. A., Wahit M. U., Guo Q., Mahmoodian S., Soheilmoghaddam M., Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydrate polymers 99, 91-97, 2014.
  • Jiang B., Chen Q., Yang J., Advances in joining technology of carbon fiber-reinforced thermoplastic composite materials and aluminum alloys. The International Journal of Advanced Manufacturing Technology 110(9), 2631-2649, 2020.
  • Kaw A. K., Mechanics of composite materials. CRC press, Taylor & Francis Group, Boca Raton, FL, USA, 2005.
  • Kaybal H. B., Ulus H., Avcı A., Seawater Aged Basalt/Epoxy Composites: Improved Bearing Performance with Halloysite Nanotube Reinforcement. Fibers and Polymers 22(6), 1643-1652, 2021.
  • Lange F. F., Radford K. C. Fracture energy of an epoxy composite system. Journal of Materials Science 6(9), 1197-1203, 1971.
  • Liu P. F., Liu J. W., Finite element analysis of competitive damage mechanisms of composite scarf adhesive joints by considering thickness effect. Theoretical and Applied Fracture Mechanics 103347, 2022.
  • Masson J., Gigliotti M., Grandidier J. C., Delozanne J., Albouy W., Dagorn N., Numerical method to assess the stress state and gradients induced by thermo-oxidation in adhesively bonded joints for aircraft engine applications. International Journal of Adhesion and Adhesives 113, 103063, 2022.
  • Nagaraja K. C., Rajanna S., Prakash G. S., Rajeshkumar G., Improvement of mechanical and thermal properties of hybrid composites through addition of halloysite nanoclay for light weight structural applications. Journal of Industrial Textiles 1528083720936624, 2020.
  • NajiMehr H., Shariati M., Zamani P., Da Silva L. F., Ghahremani Moghadam D., Investigating on the influence of multi‐walled carbon nanotube and graphene nanoplatelet additives on residual strength of bonded joints subjected to partial fatigue loading. Journal of Applied Polymer Science 139(18), 52069, 2022.
  • Oguz Z. A., Erklig A., Bozkurt Ö. Y., Degradation of hybrid aramid/glass/epoxy composites hydrothermally aged in distilled water. Journal of Composite Materials 55(15), 2043-2060, 2021.
  • Oğuz Z. A., Erkliğ A., Water absorption parameters of glass/epoxy composites based on dimension effect. International Advanced Researches and Engineering Journal 5(2), 202-208, 2021.
  • Razavi S. M. J., Ayatollahi M. R., Giv A. N., Khoramishad H., Single lap joints bonded with structural adhesives reinforced with a mixture of silica nanoparticles and multi walled carbon nanotubes. International Journal of Adhesion and Adhesives 80, 76-86, 2018.
  • Romanov V. S., Lomov S. V., Verpoest I., Gorbatikh L., Stress magnification due to carbon nanotube agglomeration in composites. Composite Structures 133, 246-256, 2015.
  • Soltannia B., Taheri F., Influence of nano-reinforcement on the mechanical behavior of adhesively bonded single-lap joints subjected to static, quasi-static, and impact loading. Journal of adhesion Science and Technology 29(5), 424-442, 2015.
  • Ulus H., Kaybal H. B., Eskizeybek V., Avcı A., Enhanced salty water durability of halloysite nanotube reinforced epoxy/basalt fiber hybrid composites. Fibers and Polymers 20(10), 2184-2199, 2019.
  • Ulus H., Kaybal H. B., Eskizeybek V., Avcı A., Halloysite nanotube reinforcement endows ameliorated fracture resistance of seawater aged basalt/epoxy composites. Journal of composite materials 54(20), 2761-2779, 2020.
  • Ye Y., Chen H., Wu J., Chan C. M., Interlaminar properties of carbon fiber composites with halloysite nanotube-toughened epoxy matrix. Composites Science and Technology 71(5), 717-723, 2011.
  • Yuan P., Tan D., Annabi-Bergaya F., Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science 112, 75-93, 2015.

Effect of Halloysite Nanotube Additive on Shear Strength in Al-GFRP Single Lap Adhesive Joint

Yıl 2022, Cilt: 3 Sayı: 1, 117 - 128, 06.06.2022
https://doi.org/10.55546/jmm.1109990

Öz

In this study, the effects of halloysite nanotube (HNT) particle on the shear and fracture performance of single lap joints (SLJ) of aluminum (Al) and glass fiber reinforced composite (GFRP) materials, which are frequently preferred as low-density materials in engineering fields such as aerospace, aviation and automotive, were investigated. To this end, HNT particles were added to Araldite 2014-2 epoxy-based adhesive in five different ratios (1%, 1.5%, 2%, 2.5%, and 3% by weight), and the prepared samples were subjected to lap-shear tests. The obtained results showed that the samples gave higher shear strength results than the pure samples at all additive ratios except the samples with 3 wt.% HNT. It was found that the 2 wt.% HNT added samples (11.76 MPa) exhibiting the maximum shear strength provided an improvement of 30.4% compared to the pure samples (9.02 MPa). Furthermore, HNT additions of more than 2 wt.% amount resulted in a decreasing trend in results due to local stress concentrations caused by the agglomeration of nanoparticles. Also, SEM images showed that HNT particles showed toughening mechanisms such as crack bridging and crack pinning, which increases the performance of adhesive joints. In conclusion, the use of HNT particles at certain amounts in adhesive joints proved that more durable materials are derived by increasing the shear performance of these structures.

Proje Numarası

21-13272

Kaynakça

  • Arslan M. H., Yazman Ş., Hamad A. A., Aksoylu C., Özkılıç Y. O., Gemi L., Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics. In Structures 39, 527-542, 2022.
  • Ayatollahi M. R., Nemati Giv A., Razavi S. M. J. Khoramishad H., Mechanical properties of adhesively single lap-bonded joints reinforced with multi-walled carbon nanotubes and silica nanoparticles. The Journal of Adhesion 93(11), 896-913, 2017.
  • Banea M. D., da Silva L. F., Adhesively bonded joints in composite materials: an overview. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 223(1), 1-18, 2009.
  • Bulut M., Mechanical characterization of Basalt/epoxy composite laminates containing graphene nanopellets. Composites Part B: Engineering 122, 71-78, 2017.
  • Cakir M. V., Kinay D., MWCNT, nano‐silica, and nano‐clay additives effects on adhesion performance of dissimilar materials bonded joints. Polymer Composites 42(11), 5880-5892, 2021.
  • Ceritbinmez F., Yapici A., An investigation on cutting of the MWCNTs-doped composite plates by AWJ. Arabian Journal for Science and Engineering 45(7), 5129-5141, 2020.
  • Çakır M. V., Erkliğ A., Ahmed B. F., Graphene nanoparticle effect on flexural and shear behaviors of adhesively bonded single lap joints of GFRP composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43(4), 1-11, 2021.
  • Çakır M. V., Özbek, Ö., Mechanical performance and damage analysis of GNP-reinforced adhesively bonded joints under shear and bending loads. The Journal of Adhesion 1-24, 2022.
  • De Cicco D., Asaee Z., Taheri, F., Use of nanoparticles for enhancing the interlaminar properties of fiber-reinforced composites and adhesively bonded joints-A review. Nanomaterials 7(11), 360, 2017.
  • Deng S., Zhang J., Ye L., Wu, J., Toughening epoxies with halloysite nanotubes. Polymer 49(23), 5119-5127, 2008.
  • Doğan N. F., Özbek Ö., Erkliğ A., Effect of graphene nanoplatelets on mechanical and impact properties of an aramid/glass-reinforced epoxy composite. Materials Testing 64(4), 490-501, 2022.
  • Galińska A., Mechanical joining of fibre reinforced polymer composites to metals-A review. Part I: Bolted joining. Polymers 12(10), 2252, 2020.
  • Gemi D. S., Şahin Ö. S., Gemi L., Experimental investigation of axial compression behavior after low velocity impact of glass fiber reinforced filament wound pipes with different diameter. Composite Structures 280, 114929, 2022.
  • Gemi L., Madenci E., Özkılıç Y. O., Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete. Engineering Structures 244, 112790, 2021.
  • Hanid N. A., Wahit M. U., Guo Q., Mahmoodian S., Soheilmoghaddam M., Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydrate polymers 99, 91-97, 2014.
  • Jiang B., Chen Q., Yang J., Advances in joining technology of carbon fiber-reinforced thermoplastic composite materials and aluminum alloys. The International Journal of Advanced Manufacturing Technology 110(9), 2631-2649, 2020.
  • Kaw A. K., Mechanics of composite materials. CRC press, Taylor & Francis Group, Boca Raton, FL, USA, 2005.
  • Kaybal H. B., Ulus H., Avcı A., Seawater Aged Basalt/Epoxy Composites: Improved Bearing Performance with Halloysite Nanotube Reinforcement. Fibers and Polymers 22(6), 1643-1652, 2021.
  • Lange F. F., Radford K. C. Fracture energy of an epoxy composite system. Journal of Materials Science 6(9), 1197-1203, 1971.
  • Liu P. F., Liu J. W., Finite element analysis of competitive damage mechanisms of composite scarf adhesive joints by considering thickness effect. Theoretical and Applied Fracture Mechanics 103347, 2022.
  • Masson J., Gigliotti M., Grandidier J. C., Delozanne J., Albouy W., Dagorn N., Numerical method to assess the stress state and gradients induced by thermo-oxidation in adhesively bonded joints for aircraft engine applications. International Journal of Adhesion and Adhesives 113, 103063, 2022.
  • Nagaraja K. C., Rajanna S., Prakash G. S., Rajeshkumar G., Improvement of mechanical and thermal properties of hybrid composites through addition of halloysite nanoclay for light weight structural applications. Journal of Industrial Textiles 1528083720936624, 2020.
  • NajiMehr H., Shariati M., Zamani P., Da Silva L. F., Ghahremani Moghadam D., Investigating on the influence of multi‐walled carbon nanotube and graphene nanoplatelet additives on residual strength of bonded joints subjected to partial fatigue loading. Journal of Applied Polymer Science 139(18), 52069, 2022.
  • Oguz Z. A., Erklig A., Bozkurt Ö. Y., Degradation of hybrid aramid/glass/epoxy composites hydrothermally aged in distilled water. Journal of Composite Materials 55(15), 2043-2060, 2021.
  • Oğuz Z. A., Erkliğ A., Water absorption parameters of glass/epoxy composites based on dimension effect. International Advanced Researches and Engineering Journal 5(2), 202-208, 2021.
  • Razavi S. M. J., Ayatollahi M. R., Giv A. N., Khoramishad H., Single lap joints bonded with structural adhesives reinforced with a mixture of silica nanoparticles and multi walled carbon nanotubes. International Journal of Adhesion and Adhesives 80, 76-86, 2018.
  • Romanov V. S., Lomov S. V., Verpoest I., Gorbatikh L., Stress magnification due to carbon nanotube agglomeration in composites. Composite Structures 133, 246-256, 2015.
  • Soltannia B., Taheri F., Influence of nano-reinforcement on the mechanical behavior of adhesively bonded single-lap joints subjected to static, quasi-static, and impact loading. Journal of adhesion Science and Technology 29(5), 424-442, 2015.
  • Ulus H., Kaybal H. B., Eskizeybek V., Avcı A., Enhanced salty water durability of halloysite nanotube reinforced epoxy/basalt fiber hybrid composites. Fibers and Polymers 20(10), 2184-2199, 2019.
  • Ulus H., Kaybal H. B., Eskizeybek V., Avcı A., Halloysite nanotube reinforcement endows ameliorated fracture resistance of seawater aged basalt/epoxy composites. Journal of composite materials 54(20), 2761-2779, 2020.
  • Ye Y., Chen H., Wu J., Chan C. M., Interlaminar properties of carbon fiber composites with halloysite nanotube-toughened epoxy matrix. Composites Science and Technology 71(5), 717-723, 2011.
  • Yuan P., Tan D., Annabi-Bergaya F., Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science 112, 75-93, 2015.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Özkan Özbek 0000-0003-1532-4262

Mehmet Veysel Çakır 0000-0001-9225-0389

Nurettin Furkan Doğan 0000-0002-2728-8660

Proje Numarası 21-13272
Yayımlanma Tarihi 6 Haziran 2022
Gönderilme Tarihi 27 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 1

Kaynak Göster

APA Özbek, Ö., Çakır, M. V., & Doğan, N. F. (2022). Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi. Journal of Materials and Mechatronics: A, 3(1), 117-128. https://doi.org/10.55546/jmm.1109990
AMA Özbek Ö, Çakır MV, Doğan NF. Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi. J. Mater. Mechat. A. Haziran 2022;3(1):117-128. doi:10.55546/jmm.1109990
Chicago Özbek, Özkan, Mehmet Veysel Çakır, ve Nurettin Furkan Doğan. “Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi”. Journal of Materials and Mechatronics: A 3, sy. 1 (Haziran 2022): 117-28. https://doi.org/10.55546/jmm.1109990.
EndNote Özbek Ö, Çakır MV, Doğan NF (01 Haziran 2022) Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi. Journal of Materials and Mechatronics: A 3 1 117–128.
IEEE Ö. Özbek, M. V. Çakır, ve N. F. Doğan, “Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi”, J. Mater. Mechat. A, c. 3, sy. 1, ss. 117–128, 2022, doi: 10.55546/jmm.1109990.
ISNAD Özbek, Özkan vd. “Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi”. Journal of Materials and Mechatronics: A 3/1 (Haziran 2022), 117-128. https://doi.org/10.55546/jmm.1109990.
JAMA Özbek Ö, Çakır MV, Doğan NF. Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi. J. Mater. Mechat. A. 2022;3:117–128.
MLA Özbek, Özkan vd. “Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi”. Journal of Materials and Mechatronics: A, c. 3, sy. 1, 2022, ss. 117-28, doi:10.55546/jmm.1109990.
Vancouver Özbek Ö, Çakır MV, Doğan NF. Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi. J. Mater. Mechat. A. 2022;3(1):117-28.