Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental Analysis of GO-Al2O3/Water Nanofluid in A Concentric Tube Heat Exchanger

Yıl 2023, Cilt: 4 Sayı: 1, 211 - 223, 26.06.2023
https://doi.org/10.55546/jmm.1246253

Öz

Heat exchangers are frequently used in many industrial applications such as heating and cooling systems. Increasing the thermal performance of heat exchangers, adding nano-sized particles to enhance thermophysical properties of the working fluid can be a good solution. Moreover, in recent years, it is seen that higher improvement in thermal performance of nanofluids obtained by utilizing two or more nanoparticles known as hybrid nanofluids. In this experimental work, it is aimed to increase the thermal efficiency of a tube heat exchanger by applying graphene oxide (GO) -aluminum oxide (Al2O3) /water hybrid nanofluid. In this context, GO-Al2O3/water hybrid nanofluid was tested in two different modes (parallel flow and cross flow) in the tubular heat exchanger and the results were compared. The concentration ratio of the GO-Al2O3/water hybrid nanofluid was chosen as 1%. The experimental results of this study proved that utilization of GO-Al2O3/water hybrid nanofluid in the heat exchanger significantly improved the thermal performance. In the system that GO-Al2O3/water hybrid nanofluid was used at 1% concentration, as increase of 9.8% and 10.7% were recorded in the total heat transfer coefficient in parallel and counter flow, respectively.

Kaynakça

  • Afshari F., Comakli O., Karagoz S., Zavaragh H. G., A thermodynamic comparison between heat pump and refrigeration device using several refrigerants. Energy and Buildings, 168, 272-283,2018.
  • Afshari F., Comakli O., Lesani A., Karagoz S., Characterization of lubricating oil effects on the performance of reciprocating compressors in air–water heat pumps. International Journal of Refrigeration, 74, 505-516,2017.
  • Afshari F., Muratçobanoğlu B., Thermal analysis of Fe3O4/water nanofluid in spiral and serpentine mini channels by using experimental and theoretical models. International Journal of Environmental Science and Technology, 1-16,2022.
  • Avramenko A. A., Shevchuk I. V., Moskalenko A. A., Lohvynenko P. N., Kovetska Y. Y., Instability of a vapor layer on a vertical surface at presence of nanoparticles. Applied Thermal Engineering, 139, 87-98,2018.
  • Avramenko A. A., Shevchuk I. V., Tyrinov A. I., Blinov D. G., Heat transfer at film condensation of stationary vapor with nanoparticles near a vertical plate. Applied Thermal Engineering, 73(1), 391-398,2014.
  • Aytaç İ., Tuncer A. D., Khanlari A., Variyenli H. İ., Mantıcı S., Güngör L., Ünvar S., Investigating the effects of using MgO-CuO/water hybrid nanofluid in an evacuated solar water collector: A comprehensive survey. Thermal Science and Engineering Progress, 101688,2023.
  • Bahiraei M., Berahmand M., Shahsavar A., Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger. Applied Thermal Engineering, 125, 1083-1093,2017.
  • Bahiraei M., Rahmani R., Yaghoobi A., Khodabandeh E., Mashayekhi R., Amani M., Recent research contributions concerning use of nanofluids in heat exchangers: a critical review. Applied Thermal Engineering, 133, 137-159,2018.
  • Choi S. U., Eastman J. A., Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States),1995.
  • Darzi A. R., Farhadi M., Sedighi K., Heat transfer and flow characteristics of Al2O3–water nanofluid in a double tube heat exchanger. International Communications in Heat and Mass Transfer, 47, 105-112,2013.
  • Göltaş M., Gürel B., Keçebaş A., Akkaya V. R., Güler O. V., Kurtuluş K., Gürbüz E. Y., Thermo-hydraulic performance improvement with nanofluids of a fish-gill-inspired plate heat exchanger. Energy, 253, 124207,2022.
  • Gürbüz E. Y., Keçebaş A., Sözen A., Exergy and thermoeconomic analyses of the diffusion absorption refrigeration system with various nanoparticles and their different ratios as work fluid. Energy, 248, 123579,2022.
  • Gürel B., Akkaya V. R., Göltaş M., Şen Ç. N., Güler O. V., Koşar M. İ., Keçebaş A., Investigation on flow and heat transfer of compact brazed plate heat exchanger with lung pattern. Applied Thermal Engineering, 175, 115309,2020.
  • Gürel B., Keçebaş A., Akkaya V. R., Göltaş M., Güler O. V., Kurtuluş K., Modeling and Assessment of the Thermo-Hydraulic Performance for a Fish Gill Patterned Plate Heat Exchanger in Biomimetic Approach. Heat Transfer Engineering, 1-15,2022.
  • Khairul M. A., Alim M. A., Mahbubul I. M., Saidur R., Hepbasli A., Hossain, A., Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. International Communications in Heat and Mass Transfer, 50, 8-14,2014.
  • Khanlari A., Sözen A., Variyenl, H. İ., Simulation and experimental analysis of heat transfer characteristics in the plate type heat exchangers using TiO2/water nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow,2018.
  • Khanlari A., Yılmaz Aydın, D., Sözen A., Gürü M., Variyenli, H. İ., Investigation of the influences of kaolin-deionized water nanofluid on the thermal behavior of concentric type heat exchanger. Heat and Mass Transfer, 56, 1453-1462,2020b.
  • Khanlari A.,The effect of utilizing Al2O3-SiO2/Deionized water hybrid nanofluid in a tube-type heat exchanger. Heat Transfer Research, 51(11), 991-1005,2020a.
  • Prasad P. D., Gupta A. V. S. S. K. S., Experimental investigation on enhancement of heat transfer using Al2O3/water nanofluid in a u-tube with twisted tape inserts. International Communications in Heat and Mass Transfer, 75, 154-161,2016.
  • Sadeghinezhad E., Togun H., Mehrali M., Nejad P. S., Latibari S. T., Abdulrazzaq T., Kazi S.N., Metselaar H. S. C., An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. International Journal of Heat and Mass Transfer, 81, 41-51,2015.
  • Sajid M. U., Ali H. M., Thermal conductivity of hybrid nanofluids: a critical review. International Journal of Heat and Mass Transfer, 126, 211-234,2018.
  • Sonawane S. S., Khedkar R. S., Wasewar K. L., Study on concentric tube heat exchanger heat transfer performance using Al2O3–water based nanofluids. International communications in heat and mass transfer, 49, 60-68,2013.
  • Tuncer A. D., Khanlari A., Afshari F., Sözen A., Çiftçi E., Kusun B., Şahinkesen İ., Experimental and numerical analysis of a grooved hybrid photovoltaic-thermal solar drying system. Applied Thermal Engineering, 218, 119288,2023.
  • Tuncer A. D., Khanlari A., Sözen, A., Gürbüz E. Y., Variyenli H. İ., Upgrading the performance of shell and helically coiled heat exchangers with new flow path by using TiO2/water and CuO–TiO2/water nanofluids. International Journal of Thermal Sciences, 183, 107831,2023.
  • Variyenli H. İ., Amini A., Tuncer A. D., Khanlari A., Kolay Ş., Experimental and numerical analysis of a helically-coiled solar water collector at various angular placements. International Journal of Thermal Sciences, 188, 108177,2023.

Eş Merkezli İç İçe Borulu Isı Değiştiricisinde GO-Al2O3/Su Hibrit Nanoakışkanının Deneysel Analizi

Yıl 2023, Cilt: 4 Sayı: 1, 211 - 223, 26.06.2023
https://doi.org/10.55546/jmm.1246253

Öz

Isı değiştiricileri, ısıtma ve soğutma sistemleri gibi birçok endüstriyel uygulamada sıklıkla kullanılmaktadır. Isı değiştiricilerin ısıl performanslarının arttırılması için, çalışma akışkanının termofiziksel özelliklerini iyileştirecek nano boyutlu parçacıklar eklenmesi iyi bir çözüm olabilir. Bunun yanında, son yıllarda hibrit nanoakışkanlar olarak bilinen iki veya daha fazla farklı nanopartikül kullanılarak elde edilen nanoakışkanların ısıl performanslarında daha yüksek iyileştirme elde edildiği görülmektedir. Bu deneysel çalışmada grafen oksit (GO) – alüminyum oksit (Al2O3)/su hibrit nanoakışkanı GO-Al2O3 /su hibrit nanoakışkan kullanılarak, borulu bir ısı değiştiricisinin termal veriminin arttırılması amaçlanmıştır. Bu kapsamda GO-Al2O3 /su hibrit nanoakışkanı, ısı değiştiricide iki farklı modda (paralel ve karşıt) olarak denenmiş ve sonuçlar karşılaştırılmıştır. Kullanılan GO-Al2O3 /su hibrit nanoakışkanının konsantrasyon oranı %1 olarak seçilmiştir. Bu çalışmanın deneysel sonuçları, ısı değiştiricide GO-Al2O3 /su hibrit nanoakışkanının kullanılmasının ısıl performansı önemli ölçüde iyileştirdiğini göstermiştir. GO-Al2O3 /su hibrit nanoakışkanının %1 konsantrasyon oranında kullanıldığı sistemde toplam ısı transfer katsayısında paralel ve karşıt akışlı durumda sırasıyla %9.8 ve %10.7 artış değerleri kaydedilmiştir.

Kaynakça

  • Afshari F., Comakli O., Karagoz S., Zavaragh H. G., A thermodynamic comparison between heat pump and refrigeration device using several refrigerants. Energy and Buildings, 168, 272-283,2018.
  • Afshari F., Comakli O., Lesani A., Karagoz S., Characterization of lubricating oil effects on the performance of reciprocating compressors in air–water heat pumps. International Journal of Refrigeration, 74, 505-516,2017.
  • Afshari F., Muratçobanoğlu B., Thermal analysis of Fe3O4/water nanofluid in spiral and serpentine mini channels by using experimental and theoretical models. International Journal of Environmental Science and Technology, 1-16,2022.
  • Avramenko A. A., Shevchuk I. V., Moskalenko A. A., Lohvynenko P. N., Kovetska Y. Y., Instability of a vapor layer on a vertical surface at presence of nanoparticles. Applied Thermal Engineering, 139, 87-98,2018.
  • Avramenko A. A., Shevchuk I. V., Tyrinov A. I., Blinov D. G., Heat transfer at film condensation of stationary vapor with nanoparticles near a vertical plate. Applied Thermal Engineering, 73(1), 391-398,2014.
  • Aytaç İ., Tuncer A. D., Khanlari A., Variyenli H. İ., Mantıcı S., Güngör L., Ünvar S., Investigating the effects of using MgO-CuO/water hybrid nanofluid in an evacuated solar water collector: A comprehensive survey. Thermal Science and Engineering Progress, 101688,2023.
  • Bahiraei M., Berahmand M., Shahsavar A., Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger. Applied Thermal Engineering, 125, 1083-1093,2017.
  • Bahiraei M., Rahmani R., Yaghoobi A., Khodabandeh E., Mashayekhi R., Amani M., Recent research contributions concerning use of nanofluids in heat exchangers: a critical review. Applied Thermal Engineering, 133, 137-159,2018.
  • Choi S. U., Eastman J. A., Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States),1995.
  • Darzi A. R., Farhadi M., Sedighi K., Heat transfer and flow characteristics of Al2O3–water nanofluid in a double tube heat exchanger. International Communications in Heat and Mass Transfer, 47, 105-112,2013.
  • Göltaş M., Gürel B., Keçebaş A., Akkaya V. R., Güler O. V., Kurtuluş K., Gürbüz E. Y., Thermo-hydraulic performance improvement with nanofluids of a fish-gill-inspired plate heat exchanger. Energy, 253, 124207,2022.
  • Gürbüz E. Y., Keçebaş A., Sözen A., Exergy and thermoeconomic analyses of the diffusion absorption refrigeration system with various nanoparticles and their different ratios as work fluid. Energy, 248, 123579,2022.
  • Gürel B., Akkaya V. R., Göltaş M., Şen Ç. N., Güler O. V., Koşar M. İ., Keçebaş A., Investigation on flow and heat transfer of compact brazed plate heat exchanger with lung pattern. Applied Thermal Engineering, 175, 115309,2020.
  • Gürel B., Keçebaş A., Akkaya V. R., Göltaş M., Güler O. V., Kurtuluş K., Modeling and Assessment of the Thermo-Hydraulic Performance for a Fish Gill Patterned Plate Heat Exchanger in Biomimetic Approach. Heat Transfer Engineering, 1-15,2022.
  • Khairul M. A., Alim M. A., Mahbubul I. M., Saidur R., Hepbasli A., Hossain, A., Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. International Communications in Heat and Mass Transfer, 50, 8-14,2014.
  • Khanlari A., Sözen A., Variyenl, H. İ., Simulation and experimental analysis of heat transfer characteristics in the plate type heat exchangers using TiO2/water nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow,2018.
  • Khanlari A., Yılmaz Aydın, D., Sözen A., Gürü M., Variyenli, H. İ., Investigation of the influences of kaolin-deionized water nanofluid on the thermal behavior of concentric type heat exchanger. Heat and Mass Transfer, 56, 1453-1462,2020b.
  • Khanlari A.,The effect of utilizing Al2O3-SiO2/Deionized water hybrid nanofluid in a tube-type heat exchanger. Heat Transfer Research, 51(11), 991-1005,2020a.
  • Prasad P. D., Gupta A. V. S. S. K. S., Experimental investigation on enhancement of heat transfer using Al2O3/water nanofluid in a u-tube with twisted tape inserts. International Communications in Heat and Mass Transfer, 75, 154-161,2016.
  • Sadeghinezhad E., Togun H., Mehrali M., Nejad P. S., Latibari S. T., Abdulrazzaq T., Kazi S.N., Metselaar H. S. C., An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. International Journal of Heat and Mass Transfer, 81, 41-51,2015.
  • Sajid M. U., Ali H. M., Thermal conductivity of hybrid nanofluids: a critical review. International Journal of Heat and Mass Transfer, 126, 211-234,2018.
  • Sonawane S. S., Khedkar R. S., Wasewar K. L., Study on concentric tube heat exchanger heat transfer performance using Al2O3–water based nanofluids. International communications in heat and mass transfer, 49, 60-68,2013.
  • Tuncer A. D., Khanlari A., Afshari F., Sözen A., Çiftçi E., Kusun B., Şahinkesen İ., Experimental and numerical analysis of a grooved hybrid photovoltaic-thermal solar drying system. Applied Thermal Engineering, 218, 119288,2023.
  • Tuncer A. D., Khanlari A., Sözen, A., Gürbüz E. Y., Variyenli H. İ., Upgrading the performance of shell and helically coiled heat exchangers with new flow path by using TiO2/water and CuO–TiO2/water nanofluids. International Journal of Thermal Sciences, 183, 107831,2023.
  • Variyenli H. İ., Amini A., Tuncer A. D., Khanlari A., Kolay Ş., Experimental and numerical analysis of a helically-coiled solar water collector at various angular placements. International Journal of Thermal Sciences, 188, 108177,2023.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Emine Yağız Gürbüz 0000-0002-5200-8536

Erken Görünüm Tarihi 23 Haziran 2023
Yayımlanma Tarihi 26 Haziran 2023
Gönderilme Tarihi 1 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 1

Kaynak Göster

APA Gürbüz, E. Y. (2023). Eş Merkezli İç İçe Borulu Isı Değiştiricisinde GO-Al2O3/Su Hibrit Nanoakışkanının Deneysel Analizi. Journal of Materials and Mechatronics: A, 4(1), 211-223. https://doi.org/10.55546/jmm.1246253
AMA Gürbüz EY. Eş Merkezli İç İçe Borulu Isı Değiştiricisinde GO-Al2O3/Su Hibrit Nanoakışkanının Deneysel Analizi. J. Mater. Mechat. A. Haziran 2023;4(1):211-223. doi:10.55546/jmm.1246253
Chicago Gürbüz, Emine Yağız. “Eş Merkezli İç İçe Borulu Isı Değiştiricisinde GO-Al2O3/Su Hibrit Nanoakışkanının Deneysel Analizi”. Journal of Materials and Mechatronics: A 4, sy. 1 (Haziran 2023): 211-23. https://doi.org/10.55546/jmm.1246253.
EndNote Gürbüz EY (01 Haziran 2023) Eş Merkezli İç İçe Borulu Isı Değiştiricisinde GO-Al2O3/Su Hibrit Nanoakışkanının Deneysel Analizi. Journal of Materials and Mechatronics: A 4 1 211–223.
IEEE E. Y. Gürbüz, “Eş Merkezli İç İçe Borulu Isı Değiştiricisinde GO-Al2O3/Su Hibrit Nanoakışkanının Deneysel Analizi”, J. Mater. Mechat. A, c. 4, sy. 1, ss. 211–223, 2023, doi: 10.55546/jmm.1246253.
ISNAD Gürbüz, Emine Yağız. “Eş Merkezli İç İçe Borulu Isı Değiştiricisinde GO-Al2O3/Su Hibrit Nanoakışkanının Deneysel Analizi”. Journal of Materials and Mechatronics: A 4/1 (Haziran 2023), 211-223. https://doi.org/10.55546/jmm.1246253.
JAMA Gürbüz EY. Eş Merkezli İç İçe Borulu Isı Değiştiricisinde GO-Al2O3/Su Hibrit Nanoakışkanının Deneysel Analizi. J. Mater. Mechat. A. 2023;4:211–223.
MLA Gürbüz, Emine Yağız. “Eş Merkezli İç İçe Borulu Isı Değiştiricisinde GO-Al2O3/Su Hibrit Nanoakışkanının Deneysel Analizi”. Journal of Materials and Mechatronics: A, c. 4, sy. 1, 2023, ss. 211-23, doi:10.55546/jmm.1246253.
Vancouver Gürbüz EY. Eş Merkezli İç İçe Borulu Isı Değiştiricisinde GO-Al2O3/Su Hibrit Nanoakışkanının Deneysel Analizi. J. Mater. Mechat. A. 2023;4(1):211-23.