Araştırma Makalesi
BibTex RIS Kaynak Göster

Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi

Yıl 2023, Cilt: 4 Sayı: 2, 355 - 372, 26.12.2023
https://doi.org/10.55546/jmm.1295748

Öz

Son dönemde, Dikey Eksenli Rüzgâr türbinlerinin (DERT) kullanımı kentsel alan uygulamalarında artmasından dolayı, DERT performansının geliştirilmesi üzerine pasif kontrol çalışmaları yaygınlaşmaktadır. Bu çalışmada, DERT’in güç katsayısı (CP) performansını geliştirmek için sağlamlık oranı optimizasyonu gerçekleştirmiştir. Optimizasyon, Taguchi metodu sayesinde elde edilmiştir. Türbin kanat sayısı (N), türbin kanadı veter uzunluğu (v), türbin çapını (D) içeren 3 kontrol faktörü ile çalışmalar yürütülmüştür. Belirlenen faktörler ile L9 (33) ortogonal dizisi dizayn edilmiştir. Tüm modeller 2.62 kanat uç hız oranı (λ) ile hesaplamalı akışkanlar dinamiği (HAD) kullanılarak elde edilmiştir. Varyant analizi (ANOVA) yöntemiyle her bir kontrol faktörünün performansa olan katkı miktarları elde edilmiştir. Daha sonra Regresyon analiziyle, kontrol faktörlerini içeren lineer denklem oluşturularak, DERT’in tahmini CP değerleri geliştirilmiştir. Sonuçlarda, sistem performansının optimal olmasını sağlayan parametre konfigürasyon N=2, v=60 mm, D=1.2 m, olarak elde edilmiştir. Optimal modelin CP değeri, geleneksel DERT’e göre %9.96 daha yüksek olduğu tespit edilmiştir. ANOVA yöntemiyle parametrelerin DERT’in CP’ye olan katkı sıralaması D>N>v olarak elde edilmiştir. Bu sonuçlara, göre D parametresi, %62.11 ile en majör etkiyi, v parametresi ise %1.73 ile en az etkiyi sağlamıştır. Doğrulama testi ile regresyon analizinden (RA) elde edilen tahmini sonuçların, nümerik sonuçlar ile oldukça uyumlu olduğu gözlemlenmiştir.

Kaynakça

  • Abu-El-Yazied T.G., Ali A.M., Al-Ajmi M.S, Hassan M.I., Effect of number of blades and blade chord length on the performance of Darrieus wind turbine. Journal of Mechanical Engineering and Automation 2(1), 16-25, 2015.
  • Athreya S., Venkatesh Y.D., Application of taguchi method for optimization of process parameters in improving the surface roughness of lathe facing operation. International Refereed Journal of Engineering and Science (IRJES) 1(3), 9-13, 2012.
  • Balduzzi F., Bianchini A., Maleci R., Ferrara G., Ferrari L., Critical issues in the CFD simulation of darrieus wind turbines. Renewable Energy 85, 419-435, 2016.
  • Bedon G., Castelli M.R., Benini E., Evaluation of the effect of rotor solidity on the performance of a H-Darrieus turbine adopting a blade element-momentum algorithm. World Academy of Science, Engineering and Technology International Journal of Aerospace and Mechanical Engineering 6(9), 1989-1194, 2012.
  • Bhutta M.M.A, Hayat N., Farooq A.U., Ali Z., Jamil S.R., Hussain Z. Vertical Axis Wind Turbine – A Review of Various Configurations and Design Techniques. Renewable and Sustainable Energy Reviews 16(4), 1926-1939, 2012.
  • Castelli M.R., Betta S.D., Benini E., Effect of blade number on a straight-bladed Vertical-Axis Darreius wind turbine. World Academy of Science, Engineering and Technology 61, 305-11, 2012.
  • Castelli M.R., Englaro A., Benini E., The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 36(8), 4919-4934, 2011.
  • Chen W.H., Chen C.Y., Huang C.Y., Hwang C.J., Power output analysis and optimization of two straight-bladed vertical-axis wind turbines. Applied Energy 185, 223-232, 2017.
  • Çakıroğlu, R., Tanürün, H.E., Acır, A., Üçgül, F., Olkun, S., Optimization of NACA 4412 augmented with a gurney flap by using grey relational analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering 45(3), 167, 2023.
  • Dar'oczy L., Janiga G., Petrasch K., Webner M., Th ́evenin D. Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors. Energy 90(1), 680-690, 2015.
  • Delafin P.L., Nishino T., Wang L., Kolios A., Effect of the number of blades and solidity on the performance of a vertical axis wind türbine, The Science of Making Torque from Wind (TORQUE 2016), 753(2), October 4-7, 2016, pp. 1-8, Munih, Germany.
  • Du L., Ingram G., Dominy R.G., A review of H-Darrieus wind turbine aerodynamic research. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233(23-24), 7590-7616, 2019.
  • Elkhoury M., Kiwata T., Aoun E., Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. Journal of Wind Engineering and Industrial Aerodynamics 139, 111–123, 2015.
  • Evran, S., Yıldır S.Z. Numerical and Statistical Aerodynamic Performance Analysis of NACA0009 and NACA4415 Airfoils. Journal of Polytechnic, 1-1, (2023). (Early view)
  • Hao W., Bashir M., Li C., Sun C.,Flow control for high-solidity vertical axis wind turbine based on adaptive flap. Energy Conversion and Management 249, 114845, 2021.
  • Hassanpour M., Azadani L.N., Aerodynamic optimization of the configuration of a pair of vertical axis wind turbines. Energy Conversion and Management 238, 114069, 2021.
  • Howell R., Qin N., Edwards J., Durrani N., Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable. Energy 35(2), 412-422, 2010.
  • Hu Y., Rao S.S., Robust design of horizontal axis wind turbines using taguchi method. Journal of Mechanical Design 133(11), 111009, 2011.
  • Jiang Z.C, Doi Y., Zhang S.Y., Numerical investigation on the flow and power of small-sized multi-bladed straight Darrieus wind turbine. Journal of Zhejiang University-SCIENCE A 8(9), 1414-1421, 2007.
  • Jones W.P., Launder B.E. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer 16(6), 1119–1130, 1973.
  • Joo S., Choi H., Lee J., Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds. Energy 90, 439-451, 2015.
  • Kaya A.F., Tanürün H.E., Acır A., Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines. Journal Of Polytechnic 25(3), 1007-1019, 2022.
  • Kaya, A.F., Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil. Journal of Polytechnic 1-1, 2023. (Eaerly view)
  • Lee Y.T., Lim H.C., Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine. Renewable Energy 83, 407-415, 2015.
  • Li Q., Maeda T., Kamada Y., Murata J., Furukawa K., Yamamoto M., Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind türbine, Energy 90(1), 784-795, 2015.
  • Li S., Li Y., Numerical study on the performance effect of solidity on the straight-bladed vertical axis wind turbine. 2010 Asia-Pacific power and energy engineering conference (IEEE), March 28-31, 2010, pp. 1-4, Chengdu, China.
  • Liang C., Xi D., Zhang S., Yang Q., Effects of Solidity on Aerodynamic Performance of H-Type Vertical Axis Wind Turbine. 2nd International Symposium on Resource Exploration and Environmental Science 170(4), 042061, April 28-29, Ordos, China, 2018.
  • Liu, S., Ong M.C., Obhrai C., Gatin I., Vukcevic V., Influences of free surface jump conditions and different k-ω SST turbulence models on breaking wave modelling. Ocean Engineering 217, 107746, 2020.
  • Parra T., Uzarraga C., Gallegos A., Castro F., Influence of solidity on vertical Axis wind turbines. International Journal of Applied Mathematics, Electronics and Computers 3(3),215-207, 2015.
  • Qasemi K., Azadani L.N., Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector. Energy 202:117745, 2020.
  • Roh S.C., Kang S.H., Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine. Journal of Mechanical Science and Technology 27(11), 3299-3307, 2013.
  • Sengupta, A.R., Biswas, A., Gupta, R., Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renewable Energy 93:536-547, 2016.
  • Şahin İ., Acir, A., Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil. International Journal of Materials, Mechanics and Manufacturing, 3: 22-25, (2015).
  • Tangler J.L., The evolution of rotor and blade design. Presented at the American Wind Energy Association WindPower 2000 April 30-May 4, 2000, California.
  • Tanürün H.E, Acır A., Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi, Politeknik Dergisi 22(1), 185-195, 2019.
  • Tanürün H.E., Acır A., Investigation of the hydrogen production potential of the H-Darrieus turbines combined with various wind-lens. International Journal of Hydrogen Energy 47(55), 23118-23138, 2022.
  • Tanürün H.E., Ata İ., Canlı M.E., Acır A., Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi, Politeknik Dergisi 23(2), 371-381, 2020.
  • Tanürün, H.E., Akın A.G., Acır A., Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi, Politeknik Dergisi 24(3), 1219-1226, 2021.
  • Wang L., Tan A.C.C., Cholette M., Gu Y., Comparison of the effectiveness of analytical wake models for wind farm with constant and variable hub heights. Energy Conversion and Management 124:189-202, 2016.
  • Wang Z., Ozbay A., Tian W., Hu H., An Experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine. Energy 147, 94-109, 2018.
  • Wang Z., Tian W., Hu H., A comparative study on the aeromechanic performances of upwind and downwind horizontal-axis wind turbines. Energy Conversion and Management 163, 100–110, 2018.
  • Wang Z., Wang Y., Zhuanga M., Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method. Energy Conversion and Management 177, 107-121, 2018.
  • Wilcox D.C., Reassessment of the scale-determining equation for advanced turbulence models. American Institute of Aeronautics and Astronautics (AIAA) 26(11), 1299–1310, 1998.
  • Zuo W., Wang X., Kang S., Numerical simulations on the wake effect of H-type vertical axis wind turbines. Energy 106, 691–700, 2016.

Numerical Investigation of the Effect of Solidity on Vertical Axis Wind Turbine Performance by Taguchi Method

Yıl 2023, Cilt: 4 Sayı: 2, 355 - 372, 26.12.2023
https://doi.org/10.55546/jmm.1295748

Öz

Recently, since the use of Vertical Axis Wind Turbines (VAWT) has increased in urban applications, passive control studies on improving VAWT performance have become widespread. In this study, solidity optimization was performed to improve the power coefficient (CP) performance of VAWT. Optimization was achieved by the Taguchi method. Studies were carried out with 3 control factors including turbine blade number (N), turbine blade chord length (v), turbine diameter (D). The L9 (33) orthogonal array was designed with the determined factors. All models are obtained using computational fluid dynamics (CFD) with a blade tip speed ratio (λ) of 2.62. The contribution amounts of each control factor to the performance were obtained by the analysis of variant (ANOVA) method. Then, the estimated CP of VAWT were developed by creating a linear equation containing control factors with Regression analysis. In the results, parameter configuration N=2, v=60 mm, D=1.2 m, which ensures optimal system performance, was obtained. The CP value of the optimal model was found to be 9.96% higher than the traditional DERT. With the ANOVA method, the contribution order of the parameters DERT to CP was obtained as D>N>v. According to these results, the D parameter had the most major effect with 62.11%, and the v parameter had the least effect with 1.73%. It has been observed that the estimated results obtained from the regression analysis (RA) with the confirmation test are in good agreement with the numerical results.

Kaynakça

  • Abu-El-Yazied T.G., Ali A.M., Al-Ajmi M.S, Hassan M.I., Effect of number of blades and blade chord length on the performance of Darrieus wind turbine. Journal of Mechanical Engineering and Automation 2(1), 16-25, 2015.
  • Athreya S., Venkatesh Y.D., Application of taguchi method for optimization of process parameters in improving the surface roughness of lathe facing operation. International Refereed Journal of Engineering and Science (IRJES) 1(3), 9-13, 2012.
  • Balduzzi F., Bianchini A., Maleci R., Ferrara G., Ferrari L., Critical issues in the CFD simulation of darrieus wind turbines. Renewable Energy 85, 419-435, 2016.
  • Bedon G., Castelli M.R., Benini E., Evaluation of the effect of rotor solidity on the performance of a H-Darrieus turbine adopting a blade element-momentum algorithm. World Academy of Science, Engineering and Technology International Journal of Aerospace and Mechanical Engineering 6(9), 1989-1194, 2012.
  • Bhutta M.M.A, Hayat N., Farooq A.U., Ali Z., Jamil S.R., Hussain Z. Vertical Axis Wind Turbine – A Review of Various Configurations and Design Techniques. Renewable and Sustainable Energy Reviews 16(4), 1926-1939, 2012.
  • Castelli M.R., Betta S.D., Benini E., Effect of blade number on a straight-bladed Vertical-Axis Darreius wind turbine. World Academy of Science, Engineering and Technology 61, 305-11, 2012.
  • Castelli M.R., Englaro A., Benini E., The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 36(8), 4919-4934, 2011.
  • Chen W.H., Chen C.Y., Huang C.Y., Hwang C.J., Power output analysis and optimization of two straight-bladed vertical-axis wind turbines. Applied Energy 185, 223-232, 2017.
  • Çakıroğlu, R., Tanürün, H.E., Acır, A., Üçgül, F., Olkun, S., Optimization of NACA 4412 augmented with a gurney flap by using grey relational analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering 45(3), 167, 2023.
  • Dar'oczy L., Janiga G., Petrasch K., Webner M., Th ́evenin D. Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors. Energy 90(1), 680-690, 2015.
  • Delafin P.L., Nishino T., Wang L., Kolios A., Effect of the number of blades and solidity on the performance of a vertical axis wind türbine, The Science of Making Torque from Wind (TORQUE 2016), 753(2), October 4-7, 2016, pp. 1-8, Munih, Germany.
  • Du L., Ingram G., Dominy R.G., A review of H-Darrieus wind turbine aerodynamic research. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233(23-24), 7590-7616, 2019.
  • Elkhoury M., Kiwata T., Aoun E., Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. Journal of Wind Engineering and Industrial Aerodynamics 139, 111–123, 2015.
  • Evran, S., Yıldır S.Z. Numerical and Statistical Aerodynamic Performance Analysis of NACA0009 and NACA4415 Airfoils. Journal of Polytechnic, 1-1, (2023). (Early view)
  • Hao W., Bashir M., Li C., Sun C.,Flow control for high-solidity vertical axis wind turbine based on adaptive flap. Energy Conversion and Management 249, 114845, 2021.
  • Hassanpour M., Azadani L.N., Aerodynamic optimization of the configuration of a pair of vertical axis wind turbines. Energy Conversion and Management 238, 114069, 2021.
  • Howell R., Qin N., Edwards J., Durrani N., Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable. Energy 35(2), 412-422, 2010.
  • Hu Y., Rao S.S., Robust design of horizontal axis wind turbines using taguchi method. Journal of Mechanical Design 133(11), 111009, 2011.
  • Jiang Z.C, Doi Y., Zhang S.Y., Numerical investigation on the flow and power of small-sized multi-bladed straight Darrieus wind turbine. Journal of Zhejiang University-SCIENCE A 8(9), 1414-1421, 2007.
  • Jones W.P., Launder B.E. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer 16(6), 1119–1130, 1973.
  • Joo S., Choi H., Lee J., Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds. Energy 90, 439-451, 2015.
  • Kaya A.F., Tanürün H.E., Acır A., Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines. Journal Of Polytechnic 25(3), 1007-1019, 2022.
  • Kaya, A.F., Investigation of a Rib Structure Effect on the Aerodynamic Performance of a Plain Flapped Symmetrical Airfoil. Journal of Polytechnic 1-1, 2023. (Eaerly view)
  • Lee Y.T., Lim H.C., Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine. Renewable Energy 83, 407-415, 2015.
  • Li Q., Maeda T., Kamada Y., Murata J., Furukawa K., Yamamoto M., Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind türbine, Energy 90(1), 784-795, 2015.
  • Li S., Li Y., Numerical study on the performance effect of solidity on the straight-bladed vertical axis wind turbine. 2010 Asia-Pacific power and energy engineering conference (IEEE), March 28-31, 2010, pp. 1-4, Chengdu, China.
  • Liang C., Xi D., Zhang S., Yang Q., Effects of Solidity on Aerodynamic Performance of H-Type Vertical Axis Wind Turbine. 2nd International Symposium on Resource Exploration and Environmental Science 170(4), 042061, April 28-29, Ordos, China, 2018.
  • Liu, S., Ong M.C., Obhrai C., Gatin I., Vukcevic V., Influences of free surface jump conditions and different k-ω SST turbulence models on breaking wave modelling. Ocean Engineering 217, 107746, 2020.
  • Parra T., Uzarraga C., Gallegos A., Castro F., Influence of solidity on vertical Axis wind turbines. International Journal of Applied Mathematics, Electronics and Computers 3(3),215-207, 2015.
  • Qasemi K., Azadani L.N., Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector. Energy 202:117745, 2020.
  • Roh S.C., Kang S.H., Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine. Journal of Mechanical Science and Technology 27(11), 3299-3307, 2013.
  • Sengupta, A.R., Biswas, A., Gupta, R., Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renewable Energy 93:536-547, 2016.
  • Şahin İ., Acir, A., Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil. International Journal of Materials, Mechanics and Manufacturing, 3: 22-25, (2015).
  • Tangler J.L., The evolution of rotor and blade design. Presented at the American Wind Energy Association WindPower 2000 April 30-May 4, 2000, California.
  • Tanürün H.E, Acır A., Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi, Politeknik Dergisi 22(1), 185-195, 2019.
  • Tanürün H.E., Acır A., Investigation of the hydrogen production potential of the H-Darrieus turbines combined with various wind-lens. International Journal of Hydrogen Energy 47(55), 23118-23138, 2022.
  • Tanürün H.E., Ata İ., Canlı M.E., Acır A., Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi, Politeknik Dergisi 23(2), 371-381, 2020.
  • Tanürün, H.E., Akın A.G., Acır A., Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi, Politeknik Dergisi 24(3), 1219-1226, 2021.
  • Wang L., Tan A.C.C., Cholette M., Gu Y., Comparison of the effectiveness of analytical wake models for wind farm with constant and variable hub heights. Energy Conversion and Management 124:189-202, 2016.
  • Wang Z., Ozbay A., Tian W., Hu H., An Experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine. Energy 147, 94-109, 2018.
  • Wang Z., Tian W., Hu H., A comparative study on the aeromechanic performances of upwind and downwind horizontal-axis wind turbines. Energy Conversion and Management 163, 100–110, 2018.
  • Wang Z., Wang Y., Zhuanga M., Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method. Energy Conversion and Management 177, 107-121, 2018.
  • Wilcox D.C., Reassessment of the scale-determining equation for advanced turbulence models. American Institute of Aeronautics and Astronautics (AIAA) 26(11), 1299–1310, 1998.
  • Zuo W., Wang X., Kang S., Numerical simulations on the wake effect of H-type vertical axis wind turbines. Energy 106, 691–700, 2016.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Himmet Erdi Tanürün 0000-0001-7814-7043

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 26 Aralık 2023
Gönderilme Tarihi 11 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 2

Kaynak Göster

APA Tanürün, H. E. (2023). Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi. Journal of Materials and Mechatronics: A, 4(2), 355-372. https://doi.org/10.55546/jmm.1295748
AMA Tanürün HE. Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi. J. Mater. Mechat. A. Aralık 2023;4(2):355-372. doi:10.55546/jmm.1295748
Chicago Tanürün, Himmet Erdi. “Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi”. Journal of Materials and Mechatronics: A 4, sy. 2 (Aralık 2023): 355-72. https://doi.org/10.55546/jmm.1295748.
EndNote Tanürün HE (01 Aralık 2023) Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi. Journal of Materials and Mechatronics: A 4 2 355–372.
IEEE H. E. Tanürün, “Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi”, J. Mater. Mechat. A, c. 4, sy. 2, ss. 355–372, 2023, doi: 10.55546/jmm.1295748.
ISNAD Tanürün, Himmet Erdi. “Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi”. Journal of Materials and Mechatronics: A 4/2 (Aralık 2023), 355-372. https://doi.org/10.55546/jmm.1295748.
JAMA Tanürün HE. Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi. J. Mater. Mechat. A. 2023;4:355–372.
MLA Tanürün, Himmet Erdi. “Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi”. Journal of Materials and Mechatronics: A, c. 4, sy. 2, 2023, ss. 355-72, doi:10.55546/jmm.1295748.
Vancouver Tanürün HE. Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi. J. Mater. Mechat. A. 2023;4(2):355-72.