Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Cold Compaction Pressure on Porous NiAl Articles Produced by Using Space Holder Urea via VCS

Yıl 2024, Cilt: 5 Sayı: 1, 106 - 116, 26.06.2024
https://doi.org/10.55546/jmm.1460140

Öz

Porous NiAl samples were obtained by using 20, 40, 60 vol.% space holder urea particles. The urea particle size was in the range of 150-300 µm. Pressures of 50, 100, 200 and 300 MPa were applied by cold press to the mixtures formed by nickel, aluminum, preformed NiAl powders and urea particles. The dimensions, macrostructure, microstructure and compressive strength of the parts produced with different cold compaction pressures were analyzed after volume combustion synthesis (VCS). The aim of the study is to determine the cold compaction pressure which provides the closest dimensional changes after VCS, in samples having different urea amounts. These samples will be used for forming a multi-stack article in a further study. Since a high difference in dimensional change of different layers during VCS will lead to cracking and separation, similar dimensional change is required for different layers in a multi-stack sample design. The samples which were cold pressed with 300 MPa pressure sometimes contained cracks after they were taken out of the die after cold pressing or after VCS. Therefore, they could not be subjected to characterization. The closest dimensional change and higher compressive strength values after VCS were obtained in samples having different urea contents, when they were cold pressed at 200 MPa. The highest mean compressive strength (218.8±29.5 MPa) was attained in the sample which was prepared with 20% urea particles and which was cold compacted with 200 MPa.

Proje Numarası

FDK-2021-5653.

Teşekkür

Authors thank to Akdeniz University Scientific Research Projects Coordination Unit for supporting this study with Project No: FDK-2021-5653.

Kaynakça

  • Dessai R.R., Desa J.A.E., Sen D., Mazumder S., Effects of pressure and temperature on pore structure of ceramic synthesized from rice husk: A small angle neutron scattering investigation. Journal of Alloys and Compounds 564, 125-129, 2013.
  • Dey G.K., Physical metallurgy of nickel aluminides. Sadhana 28, 247-262, 2003.
  • Eisenmann M. and Morgan R., Porous powder metallurgy technology, in ASM Handbook Volume 7: Powde Metallurgy, ASM International, 2015.
  • Gao H.Y., He Y.H., Shen P.Z., Jiang Y., Liu C.T., Effect of pressure on pore structure of porous FeAl intermetallics. Advanced Powder Technology 26(3),882-886, 2015.
  • Gülsoy H.Ö., German R.M., Production of micro-porous austenitic stainless steel by powder injection molding. Scripta Materialia 58(4), 295-298, 2008.
  • Huang Y., Zhang L., Wei S., Double-pore structure porous Mo–Si–B intermetallics fabricated by elemental powder metallurgy method using NH4HCO3 as pore-forming agent. Materials Research Express 7(9), 096518, 2020.
  • Jiang Y., He Y., Gao H., Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties. Journal of Materials Science & Technology, 74, 89-104, 2021.
  • Jiao X., Liu Y., Cai X., Wang J., Feng P., Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: a review, Journal of Materials Science, 56, 11605 11630,2021.
  • Jie W., Cui H.Z., Cao L.L., Gu Z.Z. Open-celled porous NiAl intermetallics prepared by replication of carbamide space-holders. Transactions of Nonferrous Metals Society of China 21(8), 1750-1754, 2011.
  • Kanetake N., Kobashi M., Innovative processing of porous and cellular materials by chemical reaction. Scripta Materialia 54(4), 521-525, 2006.
  • Lenel F.V., Powder metallurgy: principles and applications, Metal Powder Industry, 1980.
  • Lepage G., Albernaz F.O., Perrier G., Merlin G. Characterization of amicrobial fuel cell with reticulated carbon foam electrodes. Bioresource technology, 124: 199-207, 2012.
  • Michailidis N., Stergioudi F., Establishment of process parameters for producing Al-foam by dissolution and powder sintering method. Materials & Design 32(3), 1559-1564, 2011.
  • Qin J., Chen Q., Yang C., Huang Y., Research process on property and application of metal porous materials. Journal of Alloys and Compounds 654, 39-44, 2016.
  • German R.M., Powder Metallurgy and Particulate Materials Processing: The Processes, Materials, Products, Properties and Applications, Metal Powder Industries Federation, 2005.
  • Salamon M., Mehrer H., Interdiffusion, Kirkendall effect, and Al self-diffusion in iron-aluminium alloys, International Journal of Materials Research. 96 (1), 4–16, 2005
  • Sarıyer G., Çamurlu H.E., Effect of Diluent Amount on Properties of Porous NiAl. Gazi University Journal of Science Part A: Engineering and Innovation 9(4), 429-438, 2022.
  • Sarıyer G., Çamurlu H.E., Production and Characterization of Ni0.50 Al0.50 and Ni0.55 Al0.45 Powders by Volume Combustion Synthesis. Cumhuriyet Science Journal 45(1), 94-99, 2024.
  • Shu, Y., Suzuki, A., Takata, N.,Kobashi, M., Fabrication of porous NiAl intermetallic compounds with a hierarchical open-cell structure by combustion synthesis reaction and space holder method. Journal of Materials Processing Technology, 264, 182-189, 2019.
  • Smith, D. W. and Brown, E., Characterization of Controlled Density P/M Structures for Filtration Applications. Progress in Powder Metallurgy, 41, 653-667,1985.
  • Wu J., Yang Z.T., Cui H.Z., Wei N., Song X.J., Fabrication, Pore Structures and Mechanical Properties of (TiB2–Al2O3)/NiAl Porous Composites. Acta Metallurgica Sinica (English Letters) 30(12), 1145-1154, 2017.

VCS ile Yer Tutucu Üre Kullanılarak Üretilen Gözenekli NiAl Parçalara Soğuk Sıkıştırma Basıncının Etkisi

Yıl 2024, Cilt: 5 Sayı: 1, 106 - 116, 26.06.2024
https://doi.org/10.55546/jmm.1460140

Öz

Gözenekli NiAl parçalar hacimce %20, 40, 60 oranında yer tutucu üre parçacıkları kullanılarak elde edilmiştir. Kullanılan üre partikül boyutu 150-300 µm aralığındadır. Nikel, alüminyum, önceden oluşturulmuş NiAl tozları ve üre partiküllerinden oluşan karışımlara soğuk presle 50, 100, 200 ve 300 MPa basınçlar uygulanmıştır. Farklı soğuk sıkıştırma basıncıyla üretilen parçaların boyutları, makro yapısı, mikro yapısı ve basma dayanımı hacim yanma sentezi (HYS) sonrasında analiz edilmiştir. Çalışmanın amacı farklı üre miktarlarına sahip numunelerde HYS sonrası en yakın boyutsal değişimi sağlayan soğuk sıkıştırma basıncını belirlemektir. Bu numuneler daha sonraki bir çalışmada çok katmanlı bir parça oluşturmak için kullanılacaktır. VCS sırasında farklı katmanların boyut değişimindeki yüksek fark, çatlamaya ve ayrılmaya yol açacağından, çok katmanlı parça tasarımında farklı katmanlar için benzer boyut değişikliği gereklidir. 300 MPa basınçla soğuk preslenen numunelerin bazen soğuk presleme veya VCS sonrası kalıptan çıkarıldıktan sonra çatlaklar içerdiği görülmüştür. Bu nedenle bu parçalar karakterizasyona tabi tutulamamıştır. VCS sonrası en yakın boyut değişimi ve daha yüksek basınç dayanımı değerleri, farklı üre içerikli numunelerde 200 MPa'da soğuk preslendiğinde elde edilmiştir. En yüksek ortalama basınç dayanımı (218,8±29,5 MPa), %20 üre parçacıklarıyla hazırlanan ve 200 MPa ile soğuk sıkıştırılan numunede elde edilmiştir.

Etik Beyan

Yukarıda bilgisi verilen çalışmamızın yazım sürecinde uluslararası bilimsel, etik ve alıntı kurallarına uyulmuş, toplanan veriler üzerinde herhangi bir tahrifat yapılmamıştır, karşılaşılacak tüm etik ihlallerde Journal of Materials and Mechatronics: A (JournalMM) Dergisinin ve editör kurulunun hiçbir sorumluluğu yoktur. Tüm sorumluluğun bana ait olduğunu ve bu çalışmanın Journal of Materials and Mechatronics: A (JournalMM) Dergisinden başka hiçbir akademik yayın ortamında değerlendirilmemiş olduğunu taahhüt ederim.

Destekleyen Kurum

Akdeniz University Scientific Research Projects Coordination Unit

Proje Numarası

FDK-2021-5653.

Teşekkür

Authors thank to Akdeniz University Scientific Research Projects Coordination Unit for supporting this study with Project No: FDK-2021-5653.

Kaynakça

  • Dessai R.R., Desa J.A.E., Sen D., Mazumder S., Effects of pressure and temperature on pore structure of ceramic synthesized from rice husk: A small angle neutron scattering investigation. Journal of Alloys and Compounds 564, 125-129, 2013.
  • Dey G.K., Physical metallurgy of nickel aluminides. Sadhana 28, 247-262, 2003.
  • Eisenmann M. and Morgan R., Porous powder metallurgy technology, in ASM Handbook Volume 7: Powde Metallurgy, ASM International, 2015.
  • Gao H.Y., He Y.H., Shen P.Z., Jiang Y., Liu C.T., Effect of pressure on pore structure of porous FeAl intermetallics. Advanced Powder Technology 26(3),882-886, 2015.
  • Gülsoy H.Ö., German R.M., Production of micro-porous austenitic stainless steel by powder injection molding. Scripta Materialia 58(4), 295-298, 2008.
  • Huang Y., Zhang L., Wei S., Double-pore structure porous Mo–Si–B intermetallics fabricated by elemental powder metallurgy method using NH4HCO3 as pore-forming agent. Materials Research Express 7(9), 096518, 2020.
  • Jiang Y., He Y., Gao H., Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties. Journal of Materials Science & Technology, 74, 89-104, 2021.
  • Jiao X., Liu Y., Cai X., Wang J., Feng P., Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: a review, Journal of Materials Science, 56, 11605 11630,2021.
  • Jie W., Cui H.Z., Cao L.L., Gu Z.Z. Open-celled porous NiAl intermetallics prepared by replication of carbamide space-holders. Transactions of Nonferrous Metals Society of China 21(8), 1750-1754, 2011.
  • Kanetake N., Kobashi M., Innovative processing of porous and cellular materials by chemical reaction. Scripta Materialia 54(4), 521-525, 2006.
  • Lenel F.V., Powder metallurgy: principles and applications, Metal Powder Industry, 1980.
  • Lepage G., Albernaz F.O., Perrier G., Merlin G. Characterization of amicrobial fuel cell with reticulated carbon foam electrodes. Bioresource technology, 124: 199-207, 2012.
  • Michailidis N., Stergioudi F., Establishment of process parameters for producing Al-foam by dissolution and powder sintering method. Materials & Design 32(3), 1559-1564, 2011.
  • Qin J., Chen Q., Yang C., Huang Y., Research process on property and application of metal porous materials. Journal of Alloys and Compounds 654, 39-44, 2016.
  • German R.M., Powder Metallurgy and Particulate Materials Processing: The Processes, Materials, Products, Properties and Applications, Metal Powder Industries Federation, 2005.
  • Salamon M., Mehrer H., Interdiffusion, Kirkendall effect, and Al self-diffusion in iron-aluminium alloys, International Journal of Materials Research. 96 (1), 4–16, 2005
  • Sarıyer G., Çamurlu H.E., Effect of Diluent Amount on Properties of Porous NiAl. Gazi University Journal of Science Part A: Engineering and Innovation 9(4), 429-438, 2022.
  • Sarıyer G., Çamurlu H.E., Production and Characterization of Ni0.50 Al0.50 and Ni0.55 Al0.45 Powders by Volume Combustion Synthesis. Cumhuriyet Science Journal 45(1), 94-99, 2024.
  • Shu, Y., Suzuki, A., Takata, N.,Kobashi, M., Fabrication of porous NiAl intermetallic compounds with a hierarchical open-cell structure by combustion synthesis reaction and space holder method. Journal of Materials Processing Technology, 264, 182-189, 2019.
  • Smith, D. W. and Brown, E., Characterization of Controlled Density P/M Structures for Filtration Applications. Progress in Powder Metallurgy, 41, 653-667,1985.
  • Wu J., Yang Z.T., Cui H.Z., Wei N., Song X.J., Fabrication, Pore Structures and Mechanical Properties of (TiB2–Al2O3)/NiAl Porous Composites. Acta Metallurgica Sinica (English Letters) 30(12), 1145-1154, 2017.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metaller ve Alaşım Malzemeleri
Bölüm Araştırma Makaleleri
Yazarlar

Gülizar Sarıyer 0000-0001-7754-4549

Hasan Erdem Çamurlu 0000-0003-3170-4492

Proje Numarası FDK-2021-5653.
Yayımlanma Tarihi 26 Haziran 2024
Gönderilme Tarihi 27 Mart 2024
Kabul Tarihi 12 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 1

Kaynak Göster

APA Sarıyer, G., & Çamurlu, H. E. (2024). Effect of Cold Compaction Pressure on Porous NiAl Articles Produced by Using Space Holder Urea via VCS. Journal of Materials and Mechatronics: A, 5(1), 106-116. https://doi.org/10.55546/jmm.1460140
AMA Sarıyer G, Çamurlu HE. Effect of Cold Compaction Pressure on Porous NiAl Articles Produced by Using Space Holder Urea via VCS. J. Mater. Mechat. A. Haziran 2024;5(1):106-116. doi:10.55546/jmm.1460140
Chicago Sarıyer, Gülizar, ve Hasan Erdem Çamurlu. “Effect of Cold Compaction Pressure on Porous NiAl Articles Produced by Using Space Holder Urea via VCS”. Journal of Materials and Mechatronics: A 5, sy. 1 (Haziran 2024): 106-16. https://doi.org/10.55546/jmm.1460140.
EndNote Sarıyer G, Çamurlu HE (01 Haziran 2024) Effect of Cold Compaction Pressure on Porous NiAl Articles Produced by Using Space Holder Urea via VCS. Journal of Materials and Mechatronics: A 5 1 106–116.
IEEE G. Sarıyer ve H. E. Çamurlu, “Effect of Cold Compaction Pressure on Porous NiAl Articles Produced by Using Space Holder Urea via VCS”, J. Mater. Mechat. A, c. 5, sy. 1, ss. 106–116, 2024, doi: 10.55546/jmm.1460140.
ISNAD Sarıyer, Gülizar - Çamurlu, Hasan Erdem. “Effect of Cold Compaction Pressure on Porous NiAl Articles Produced by Using Space Holder Urea via VCS”. Journal of Materials and Mechatronics: A 5/1 (Haziran 2024), 106-116. https://doi.org/10.55546/jmm.1460140.
JAMA Sarıyer G, Çamurlu HE. Effect of Cold Compaction Pressure on Porous NiAl Articles Produced by Using Space Holder Urea via VCS. J. Mater. Mechat. A. 2024;5:106–116.
MLA Sarıyer, Gülizar ve Hasan Erdem Çamurlu. “Effect of Cold Compaction Pressure on Porous NiAl Articles Produced by Using Space Holder Urea via VCS”. Journal of Materials and Mechatronics: A, c. 5, sy. 1, 2024, ss. 106-1, doi:10.55546/jmm.1460140.
Vancouver Sarıyer G, Çamurlu HE. Effect of Cold Compaction Pressure on Porous NiAl Articles Produced by Using Space Holder Urea via VCS. J. Mater. Mechat. A. 2024;5(1):106-1.