Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı LED Işık Kaynaklarının Dunaliella salina Teodoresco (Chlorophyceae) Büyüme ve Pigment İçeriğine Etkisi

Yıl 2022, , 19 - 25, 20.07.2022
https://doi.org/10.46384/jmsf.1023978

Öz

Bu çalışmada Ayvalık (Balıkesir) tuz üretim tesisinden izole edilen yeşil alglerden D. salina Teodoresco’nın kırmızı, mavi, sarı LED (Light Emitting Diode) ışık kaynakları kullanılarak Değiştirilmiş Johnson (DJ) ortamında yetiştiriciliği yapılmıştır. Deneme gruplarının büyüme hızı, pigment ve yağ içeriklerinde meydana gelen değişimler izlenmiştir. Denemeler süresince en yüksek hücre sayısı ve büyüme hızı kırmızı LED lamba altında sırasıyla 335,3 x 104 hc ml-1 ve 4,30 gün-1 olarak elde edilmiştir. Dunaliella salina hücrelerinin en yüksek klorofil a ve β-karoten içerikleri sırasıyla 10,70 ve 3,49 mg l-1 olarak kontrol grubunda tespit edilmiştir. En yüksek ham yağ içeriği ise, sarı LED lamba uygulamasında %18 olarak bulunmuştur. Yapılan çalışma sonucunda LED lambaların D. salina’nın büyümesi ve biyokimyasal kompozisyonu üzerine olumlu etkilerinin olduğu saptanmıştır.

Destekleyen Kurum

ÇOMU BAP

Proje Numarası

FYL-2014-419

Teşekkür

Bu çalışma, ÇOMU BAP tarafından FYL-2014-419 numaralı proje kapsamında desteklenmiştir. Çalışma, İlknur AK’ın danışmanlığında yürütülen ve Koray BENAS tarafından hazırlanan “Farklı LED Işık Kaynaklarının Dunalıella salina Teodoresco (chlorophyceae) Büyüme ve Pigment İçeriğine Etkisi” başlıklı yüksek lisans tezi kapsamında gerçekleştirilmiştir.

Kaynakça

  • Ak, İ., Cirik, S., & Göksan, T. (2008). Effects of Light Intensity, Salinity and Temperature on Growth in Çamaltı Strain of Dunaliella viridis Teodoresco from Turkey. Journal of Biological Sciences, 8(8), 1356-1359. doi:10.3923/jbs.2008.1356.1359
  • Blanken, W., Cuaresma, M., Wijffels René, H., & Janssen, M. (2013). Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2, 333-340. doi:10.1016/j.algal.2013.09.004
  • Ben-Amotz, A., Sussman, I., & Avron, M. (1982). Glycerol production by Dunaliella. Experientia, 38, 49-52. doi:10.1007/BF01944527
  • Ben-Amotz, A., & Avron, M. (1983). On the Factors Which Determine Massive Beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil. Plant Physiology, 72 (3), 593-597. doi:10.1104/pp.72.3.593
  • Ben-Amotz, A., & Shaish, A. (1992). Carotene bio-synthesis. In: Avron, M., Ben-Amotz, A. (Eds.), Dunaliella: Physiology, Biochemistry and Biotechnology. Boca Raton, FL: CRC Press, 206-216.
  • Ben-Amotz, A. (2004). Industrial Production of Microalgal Cell-mass and Secondary Products-Major Industrial Species: Dunaliella. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology A. Richmond (eds.), Blackwell Synergy, 120-128.
  • Borowitzka, M.A., & Borowitzka, L.J. (1992). Microalgal biotechnology, Cambridge University press, Vol :1, Cambridge, 477.
  • Borowitzka, M.A., & Siva, C.J. (2007). The taksonomy of the genus Dunaliella (Chlorophyta, 32 Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 10017/10811. doi:10.1007/s10811-007-9171-x
  • Bosma, R., & Wijffels, R.H. (2003). Marine biotechnology in education; a competitive approach. Biomolecular Engineering, 20(4-6), 125-131. doi:10.1016/S1389-0344(03)00035-2
  • Can, S.S., Cirik, S., Koru, E., Turan, G., Tekoğul, H., & Subakan, T. (2016). Effects of salinity, light and nitrogen concentration on growth and lipid accumulation of the green algae Dunaliella bardawil. Fresenius Environmental Bulletin, 25 (5), 1437-1447.
  • Chappelle, E.W., Kim, M.S., & McMurtrey, J.E. (1992). Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment, 39, 239-247. doi: 10.1016/0034-4257(92)90089-3
  • Chen, Y., Tang, X., Kapoore, R. V., Xu, C., & Vaidyanathan, S. (2015). Influence of nutrient status on the accumulation of biomass and lipid in Nannochloropsis salina and Dunaliella salina. Energy Conversion and Management, 106, 61-72. doi:10.1016/j.enconman.2015.09.025
  • Coesel, S.N., Baumgartner, A.C., Teles, L.M., Ramos, A.A., Henriques, N.M., Cancela, L., & Varela, J.C. (2008). Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Marine Biotechnology, 10, 602-611. doi: 10.1007/s10126-008-9100-2
  • Cuaresma, M., Janssen, M., Vílchez, C., & Wijffels, R. (2009). Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnology and Bioengineering, 104(2), 352-359. doi:10.1002/bit.22394
  • Dudu, E.Ü., Kanlıtepe, Ç., Çıracı, C., & Dönmez, G. (2001). Tuz Gölünden (Konya-Türkiye) Izole Edilen Dunaliella Türlerinin Gliserol Üretim Kapasitesinin Belirlenmesi. Ege Üniversitesi, Su Ürünleri Dergisi I. Algal Teknoloji Sempozyumu, 225-232.
  • Durmaz, Y., & Pirinç, P. (2017). Bazı deniz mikroalglerinin (Nannochloropsis oculata, Tetraselmis chuii ve Dunaliella salina) kültüründe tuzluluk konsantrasyonunun büyüme ve pigment yapısına etkisinin araştırılması. Ege Journal of Fisheries and Aquatic Sciences, 34(1), 75-80. doi:10.12714/egejfas.2017.34.1.11
  • Falkowski, P.G. (1983). Light-Shade adaptation and vertical mixing of marine phytoplankton: A comparative field study. Journal of Marine Research, 41, 215-237. doi: 10.1357/002224083788520199
  • Folch, J., Lees, M., & Sloane-Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497-509.
  • Fu, W., Gudmundsson, O., Feist, A.M., Herjolfsson, G., Brynjolfsson, S., & Palsson, BØ. (2012). Maximizing biomass productivity and cell density of Chlorella vulgaris by using light- emitting diode-based photobioreactor. Journal of Biotechnology, 161(3), 242-249. doi:10.1016/j.jbiotec.2012.07.004
  • Fu, W., Guðmundsson, Ó., Paglia, G., Herjólfsson, G., Andrésson, Ó. S., Palsson, B. Ø., & Brynjólfsson, S. (2013). Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Applied Microbiology and Biotechnology, 97(6), 2395-2403. doi:10.1007/s00253-012-4502-5
  • Garcia, F., Freile-Pelegrín, Y., & Robledo, D. (2007). Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresource Technology, 98 (7), 1359-1365. doi:10.1016/j.biortech.2006.05.051
  • Glemser, M., Heining, M., Schmidt, J., Becker, A., Garbe, D., Buchholz, R., & Brück, T. (2016). Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology, 100(3), 1077-1088. doi:10.1007/s00253-015-7144-6
  • Ginzburg, M., & Ginzburg, B.Z. (1981). Interrelationships of light, temperature, sodium chloride and carbon source in growth of halotolerant and halophilic strains of Dunaliella. British Phycological Journal, 16, 313-324. doi:10.1080/00071618100650331
  • Han, S.I., Kim, S., & Lee, C. (2019). Blue-Red LED wavelength shifting strategy for enhancing beta-carotene production from halotolerant microalga, Dunaliella salina. Journal of Microbiology, 57, 101-106. doi:10.1007/s12275-019-8420-4
  • Jimenez, M., Mateo, R., Mateo, J.J., Huerta, T., & Hernandez, E. (1991). Effcet of the incubation conditions on the production of patulin by Penicillium griseofulvum isolated from wheat. Mycopathologia, 115, 163-168.
  • Jin, C., Yu, B., Qian, S., Liu, Q., & Zhou, X. (2021). Impact of combined monochromatic light on the biocomponent productivity of Dunaliella salina. Journal of Renewable and Sustainable Energy, 13(2), 023101. doi:10.1063/5.0041330
  • Johnson, M.K., Johnson, E.J., McElroy, R.D., Speer, H.L., & Bruff, B.S. (1968). Effects of Salts on the Halophilic Alga Dunaliella viridis. Journal of Bacteriology, 95, 1461-8. doi: 10.1128/jb.95.4.1461-1468.1968
  • Kim, S. H., Sunwoo, I. Y., Hong, H. J., Awah, C. C., Jeong, G.T., & Kim, S.K. (2019). Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess and Biosystems Engineering, 9, 1517-1526. doi:10.1007/s00449-019-02149-y
  • Lamers, P.P., Janssen, M., De Vos, R.C.H., Bino, R.J., & Wijffels, R.H. (2008). Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnology, 26, 631-638. doi:10.1016/j.tibtech.2008.07.002
  • Lamers, P.P., Janssen, M., De Vos, R.C.H. Bino, R., & Wijffels, R. (2012). Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. Journal of Biotechnology, 162(1), 21-27. doi:10.1016/j.jbiotec.2012.04.018
  • Li, Y., Li, L., & Liu, J. (2020). Light absorption and growth response of Dunaliella under different light qualities. Journal of Applied Phycology, 32, 1041-1052. doi:10.1007/s10811-020-02057-9
  • Moulton, T. P., Sommer, T. R., Burford, M. A., & Borowitzka, L. J. (1987). Competition between Dunaliella species at high salinity. Hydrobiologia, 151-152(1), 107-116. doi:10.1007/bf00046115
  • Oren, A. (2006). Halophilic Microorganisms and their environments. Kluwer Academic Publishers, 517-537.
  • Oruç, E.A. (2011). Farklı renkteki LED ışık kaynaklarının Chlorella sp.'nin büyümesi ve yağ asitleri kompozisyonuna etkisi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Su Ürünleri Yetiştiriciliği A.B.D., Bornova, İzmir.
  • Özdamar, K. (1997). Paket programlar ile istatistiksel veri analizi I. Eskişehir: Kaan Yayın evi.
  • Öztaşkent, C., & Ak, İ. (2021). Effect of LED light sources on the growth and chemical composition of rown seaweed Treptacantha barbata. Aquaculture International, 29, 193-205. doi: 0.1007/s10499-020-00619-9
  • Paudel, P.R., Kataoka, I., & Mochioka, R. (2008). Effect of red- andblue-light-emittingdiodes on growth and morphogenesis of grapes. Plant Cell, Tissue and Organ Culture, 92, 147-153. doi: 10.1007/s11240-007-9317-1
  • Prieto, A., Cañavate, J.P., & García-González, M. (2011). Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. Journal of Biotechnology, 151, 180-185. doi:10.1016/j.jbiotec.2010.11.011
  • Scor-Unesco, (1966). Determination of photosynthetic pigments in seawater. Monographs on Oceanographic Methodology, UNESCO, Paris, vol. 1, 11-18.
  • Sharma, K.K., Schuhmann, H., & Schenk P.M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5, 1532-1553. doi:10.3390/en5051532
  • Singh, P., Baranwal, M., & Reddy, S. M. (2016). Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharmaceutical Biology, 1-7. doi:10.3109/13880209.2016.1153660
  • Vega, P.J., Balaban, M.O., Sıms, C.A., O’keefe, S.F., & Cornell, J.A. (1996). Supercritical Carbon Dioxide Extraction Efficiency for Carotenes from Carrots by Rsm. Journal of Food Science, 61 (4), 757- 759. doi:10.1111/j.1365-2621.1996.tb12198.x
  • Weldy, C.S., & Huesemann, M. (2007). Lipid production by Dunaliella salina in batch culture: Effects of nitrogen limitation and light intensity. U.S. Department of Energry Journal of Undergraduate Research, 115-122.
  • Wu, Z., Duangmanee, P., Zhao, P., Juntawong, N., & Ma, C. (2016). The effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains form saline soils. Jundishapur Journal of Microbiology, 9(1), e26732. doi: 10.5812/jjm.26732
  • Xi, Y., Wang, J., Chu, Y., Chi, Z., & Xue, S. (2020). Effects of different light regimes on Dunaliella salina growth and β-carotene accumulation. Algal Research, 52, 102111. doi:10.1016/j.algal.2020.102111
  • Xu, Y., & Harvey, P.J. (2019). Red Light Control of β-Carotene Isomerisation to 9-cis β-Carotene and Carotenoid Accumulation in Dunaliella salina. Antioxidants, 8, 148. doi:10.3390/antiox8050148
  • Zhu, C.J., & Lee, Y.K. (1997). Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology, 9, 189-194. doi:10.1023/A:1007914806640.

Effect of Different LED Light Sources on Growth and Pigment Composition of Dunaliella salina Teodoresco (Chlorophyceae)

Yıl 2022, , 19 - 25, 20.07.2022
https://doi.org/10.46384/jmsf.1023978

Öz

In this study, the effects of red, blue, and yellow LED lights on cell number, growth rate, pigment, and crude oil contents of the green algae, Dunaliella salina Teodoresco, isolated from Ayvalık (Balıkesir) saltworks, were investigated. The highest cell number and growth rate were found algae grown in the red LED treatment as 335.3 x 104 cell ml-1 and 4.30 days-1, respectively. The highest chlorophyll a and β-carotene contents of Dunaliella salina cells were determined in the control group as 10.70 and 3.49 mg l-1, respectively. The highest crude oil content was determined as 18% in the yellow LED treatment. Our results showed that LED lamps positively affect the growth and biochemical composition of Dunaliella salina.

Proje Numarası

FYL-2014-419

Kaynakça

  • Ak, İ., Cirik, S., & Göksan, T. (2008). Effects of Light Intensity, Salinity and Temperature on Growth in Çamaltı Strain of Dunaliella viridis Teodoresco from Turkey. Journal of Biological Sciences, 8(8), 1356-1359. doi:10.3923/jbs.2008.1356.1359
  • Blanken, W., Cuaresma, M., Wijffels René, H., & Janssen, M. (2013). Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2, 333-340. doi:10.1016/j.algal.2013.09.004
  • Ben-Amotz, A., Sussman, I., & Avron, M. (1982). Glycerol production by Dunaliella. Experientia, 38, 49-52. doi:10.1007/BF01944527
  • Ben-Amotz, A., & Avron, M. (1983). On the Factors Which Determine Massive Beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil. Plant Physiology, 72 (3), 593-597. doi:10.1104/pp.72.3.593
  • Ben-Amotz, A., & Shaish, A. (1992). Carotene bio-synthesis. In: Avron, M., Ben-Amotz, A. (Eds.), Dunaliella: Physiology, Biochemistry and Biotechnology. Boca Raton, FL: CRC Press, 206-216.
  • Ben-Amotz, A. (2004). Industrial Production of Microalgal Cell-mass and Secondary Products-Major Industrial Species: Dunaliella. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology A. Richmond (eds.), Blackwell Synergy, 120-128.
  • Borowitzka, M.A., & Borowitzka, L.J. (1992). Microalgal biotechnology, Cambridge University press, Vol :1, Cambridge, 477.
  • Borowitzka, M.A., & Siva, C.J. (2007). The taksonomy of the genus Dunaliella (Chlorophyta, 32 Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 10017/10811. doi:10.1007/s10811-007-9171-x
  • Bosma, R., & Wijffels, R.H. (2003). Marine biotechnology in education; a competitive approach. Biomolecular Engineering, 20(4-6), 125-131. doi:10.1016/S1389-0344(03)00035-2
  • Can, S.S., Cirik, S., Koru, E., Turan, G., Tekoğul, H., & Subakan, T. (2016). Effects of salinity, light and nitrogen concentration on growth and lipid accumulation of the green algae Dunaliella bardawil. Fresenius Environmental Bulletin, 25 (5), 1437-1447.
  • Chappelle, E.W., Kim, M.S., & McMurtrey, J.E. (1992). Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment, 39, 239-247. doi: 10.1016/0034-4257(92)90089-3
  • Chen, Y., Tang, X., Kapoore, R. V., Xu, C., & Vaidyanathan, S. (2015). Influence of nutrient status on the accumulation of biomass and lipid in Nannochloropsis salina and Dunaliella salina. Energy Conversion and Management, 106, 61-72. doi:10.1016/j.enconman.2015.09.025
  • Coesel, S.N., Baumgartner, A.C., Teles, L.M., Ramos, A.A., Henriques, N.M., Cancela, L., & Varela, J.C. (2008). Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Marine Biotechnology, 10, 602-611. doi: 10.1007/s10126-008-9100-2
  • Cuaresma, M., Janssen, M., Vílchez, C., & Wijffels, R. (2009). Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnology and Bioengineering, 104(2), 352-359. doi:10.1002/bit.22394
  • Dudu, E.Ü., Kanlıtepe, Ç., Çıracı, C., & Dönmez, G. (2001). Tuz Gölünden (Konya-Türkiye) Izole Edilen Dunaliella Türlerinin Gliserol Üretim Kapasitesinin Belirlenmesi. Ege Üniversitesi, Su Ürünleri Dergisi I. Algal Teknoloji Sempozyumu, 225-232.
  • Durmaz, Y., & Pirinç, P. (2017). Bazı deniz mikroalglerinin (Nannochloropsis oculata, Tetraselmis chuii ve Dunaliella salina) kültüründe tuzluluk konsantrasyonunun büyüme ve pigment yapısına etkisinin araştırılması. Ege Journal of Fisheries and Aquatic Sciences, 34(1), 75-80. doi:10.12714/egejfas.2017.34.1.11
  • Falkowski, P.G. (1983). Light-Shade adaptation and vertical mixing of marine phytoplankton: A comparative field study. Journal of Marine Research, 41, 215-237. doi: 10.1357/002224083788520199
  • Folch, J., Lees, M., & Sloane-Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497-509.
  • Fu, W., Gudmundsson, O., Feist, A.M., Herjolfsson, G., Brynjolfsson, S., & Palsson, BØ. (2012). Maximizing biomass productivity and cell density of Chlorella vulgaris by using light- emitting diode-based photobioreactor. Journal of Biotechnology, 161(3), 242-249. doi:10.1016/j.jbiotec.2012.07.004
  • Fu, W., Guðmundsson, Ó., Paglia, G., Herjólfsson, G., Andrésson, Ó. S., Palsson, B. Ø., & Brynjólfsson, S. (2013). Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Applied Microbiology and Biotechnology, 97(6), 2395-2403. doi:10.1007/s00253-012-4502-5
  • Garcia, F., Freile-Pelegrín, Y., & Robledo, D. (2007). Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresource Technology, 98 (7), 1359-1365. doi:10.1016/j.biortech.2006.05.051
  • Glemser, M., Heining, M., Schmidt, J., Becker, A., Garbe, D., Buchholz, R., & Brück, T. (2016). Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology, 100(3), 1077-1088. doi:10.1007/s00253-015-7144-6
  • Ginzburg, M., & Ginzburg, B.Z. (1981). Interrelationships of light, temperature, sodium chloride and carbon source in growth of halotolerant and halophilic strains of Dunaliella. British Phycological Journal, 16, 313-324. doi:10.1080/00071618100650331
  • Han, S.I., Kim, S., & Lee, C. (2019). Blue-Red LED wavelength shifting strategy for enhancing beta-carotene production from halotolerant microalga, Dunaliella salina. Journal of Microbiology, 57, 101-106. doi:10.1007/s12275-019-8420-4
  • Jimenez, M., Mateo, R., Mateo, J.J., Huerta, T., & Hernandez, E. (1991). Effcet of the incubation conditions on the production of patulin by Penicillium griseofulvum isolated from wheat. Mycopathologia, 115, 163-168.
  • Jin, C., Yu, B., Qian, S., Liu, Q., & Zhou, X. (2021). Impact of combined monochromatic light on the biocomponent productivity of Dunaliella salina. Journal of Renewable and Sustainable Energy, 13(2), 023101. doi:10.1063/5.0041330
  • Johnson, M.K., Johnson, E.J., McElroy, R.D., Speer, H.L., & Bruff, B.S. (1968). Effects of Salts on the Halophilic Alga Dunaliella viridis. Journal of Bacteriology, 95, 1461-8. doi: 10.1128/jb.95.4.1461-1468.1968
  • Kim, S. H., Sunwoo, I. Y., Hong, H. J., Awah, C. C., Jeong, G.T., & Kim, S.K. (2019). Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess and Biosystems Engineering, 9, 1517-1526. doi:10.1007/s00449-019-02149-y
  • Lamers, P.P., Janssen, M., De Vos, R.C.H., Bino, R.J., & Wijffels, R.H. (2008). Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnology, 26, 631-638. doi:10.1016/j.tibtech.2008.07.002
  • Lamers, P.P., Janssen, M., De Vos, R.C.H. Bino, R., & Wijffels, R. (2012). Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. Journal of Biotechnology, 162(1), 21-27. doi:10.1016/j.jbiotec.2012.04.018
  • Li, Y., Li, L., & Liu, J. (2020). Light absorption and growth response of Dunaliella under different light qualities. Journal of Applied Phycology, 32, 1041-1052. doi:10.1007/s10811-020-02057-9
  • Moulton, T. P., Sommer, T. R., Burford, M. A., & Borowitzka, L. J. (1987). Competition between Dunaliella species at high salinity. Hydrobiologia, 151-152(1), 107-116. doi:10.1007/bf00046115
  • Oren, A. (2006). Halophilic Microorganisms and their environments. Kluwer Academic Publishers, 517-537.
  • Oruç, E.A. (2011). Farklı renkteki LED ışık kaynaklarının Chlorella sp.'nin büyümesi ve yağ asitleri kompozisyonuna etkisi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Su Ürünleri Yetiştiriciliği A.B.D., Bornova, İzmir.
  • Özdamar, K. (1997). Paket programlar ile istatistiksel veri analizi I. Eskişehir: Kaan Yayın evi.
  • Öztaşkent, C., & Ak, İ. (2021). Effect of LED light sources on the growth and chemical composition of rown seaweed Treptacantha barbata. Aquaculture International, 29, 193-205. doi: 0.1007/s10499-020-00619-9
  • Paudel, P.R., Kataoka, I., & Mochioka, R. (2008). Effect of red- andblue-light-emittingdiodes on growth and morphogenesis of grapes. Plant Cell, Tissue and Organ Culture, 92, 147-153. doi: 10.1007/s11240-007-9317-1
  • Prieto, A., Cañavate, J.P., & García-González, M. (2011). Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. Journal of Biotechnology, 151, 180-185. doi:10.1016/j.jbiotec.2010.11.011
  • Scor-Unesco, (1966). Determination of photosynthetic pigments in seawater. Monographs on Oceanographic Methodology, UNESCO, Paris, vol. 1, 11-18.
  • Sharma, K.K., Schuhmann, H., & Schenk P.M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5, 1532-1553. doi:10.3390/en5051532
  • Singh, P., Baranwal, M., & Reddy, S. M. (2016). Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharmaceutical Biology, 1-7. doi:10.3109/13880209.2016.1153660
  • Vega, P.J., Balaban, M.O., Sıms, C.A., O’keefe, S.F., & Cornell, J.A. (1996). Supercritical Carbon Dioxide Extraction Efficiency for Carotenes from Carrots by Rsm. Journal of Food Science, 61 (4), 757- 759. doi:10.1111/j.1365-2621.1996.tb12198.x
  • Weldy, C.S., & Huesemann, M. (2007). Lipid production by Dunaliella salina in batch culture: Effects of nitrogen limitation and light intensity. U.S. Department of Energry Journal of Undergraduate Research, 115-122.
  • Wu, Z., Duangmanee, P., Zhao, P., Juntawong, N., & Ma, C. (2016). The effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains form saline soils. Jundishapur Journal of Microbiology, 9(1), e26732. doi: 10.5812/jjm.26732
  • Xi, Y., Wang, J., Chu, Y., Chi, Z., & Xue, S. (2020). Effects of different light regimes on Dunaliella salina growth and β-carotene accumulation. Algal Research, 52, 102111. doi:10.1016/j.algal.2020.102111
  • Xu, Y., & Harvey, P.J. (2019). Red Light Control of β-Carotene Isomerisation to 9-cis β-Carotene and Carotenoid Accumulation in Dunaliella salina. Antioxidants, 8, 148. doi:10.3390/antiox8050148
  • Zhu, C.J., & Lee, Y.K. (1997). Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology, 9, 189-194. doi:10.1023/A:1007914806640.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hidrobiyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Koray Benas 0000-0002-7626-5596

İlknur Ak 0000-0002-0233-0025

Proje Numarası FYL-2014-419
Yayımlanma Tarihi 20 Temmuz 2022
Gönderilme Tarihi 15 Kasım 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Benas, K., & Ak, İ. (2022). Farklı LED Işık Kaynaklarının Dunaliella salina Teodoresco (Chlorophyceae) Büyüme ve Pigment İçeriğine Etkisi. Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 5(1), 19-25. https://doi.org/10.46384/jmsf.1023978