Araştırma Makalesi
BibTex RIS Kaynak Göster

Sıvı Alg Özütünün Treptacantha barbata’nın (Phaeophyceae) Büyüme ve Biyokimyasal Kompozisyonuna Etkisi

Yıl 2020, Cilt: 3 Sayı: 2, 111 - 119, 21.12.2020
https://doi.org/10.46384/jmsf.819485

Öz

Bu çalışmada esmer alglerden Colpomenia sinuosa sıvı özütünün Treptacantha barbata’nın büyüme hızı ve biyokimyasal kompozisyonu üzerine etkileri araştırılmıştır. C. sinuosa sıvı özütü iki farklı konsantrasyonda (1ml l-1(C1), 2 ml l-1(C2)) kullanılmıştır. Ayrıca denemelerde Conway ortamının kullanıldığı bir kontrol grubu da oluşturulmuştur. 35 gün süren denemelerde en yüksek büyüme hızı ve biyomas verimi C1 grubunda saptanmıştır (p<0,05). Grupların ham yağ içerikleri %1,18±0,03 ile %2,19±0,06 arasında değişim göstermiştir. En yüksek ham protein içeriği ise kontrol ve C1 gruplarında saptanmıştır. Tüm grupların kül içerikleri arasında istatistiksel açıdan önemli farklılıkların olduğu belirlenmiştir (p<0,05). Tüm grupların yağ asidi içeriklerinin yarısından fazlasını doymuş yağ asitlerinin (SFA) oluşturduğu gözlemlenmiştir. Deneme gruplarımızın tekli doymamış yağ asitleri (MUFA) içeriği %23,51±0,23 ile 25,36±0,22 arasında değişim göstermiştir. Çalışmada C1 konsantrasyonundaki C. sinuosa sıvı özütü kullanılarak yetiştirilen T. barbata talluslarının diğer deneme gruplarına göre daha fazla çoklu doymamış yağ asidi içeriğine sahip olduğu belirlenmiştir. Çalışma sonucunda T. barbata yetiştiriciliğinde C. sinuosa sıvı özütlerinin besin tuzu olarak kullanılabileceği saptanmıştır.

Destekleyen Kurum

Çanakkale Onsekiz Mart Üniversitesi BAP

Proje Numarası

FYL-2014-294

Teşekkür

Bu çalışma, ÇOMU BAP tarafından FYL-2014-294 numaralı proje kapsamında desteklenmiştir. Çalışma, Doç. Dr. İlknur AK’ın danışmanlığında yürütülen ve Merve KÜNİLİ tarafından hazırlanan “Makro alglerden elde edilen gübrelerin Cystoseira barbata (Phaeophyceae) yetiştiriciliğinde kullanılması” başlıklı yüksek lisans tezi kapsamında gerçekleştirilmiştir.

Kaynakça

  • Abdel-Kareem, M. S., Mohy El.Din, S. M., & Ibrahim, E.-S. M. (2020). Optimization of Growth Conditions and Biochemical Composition of Microchloropsis salina, Cultured with Three Macroalgal Aqueous Extracts. Thalassas: An International Journal of Marine Sciences, 36, 415-429. doi: 10.1007/s41208-020-00218-8
  • Ajansı, A. (2018). İzmir Körfezi’nde şaşırtan görüntü. NTV. Erişim tarihi: 29.10, 2020, adres: https://www.ntv.com.tr/galeri/turkiye/izmir-korfezinde-sasirtan-goruntu, TyDExybnFUSXxV_RepQa2Q/2e3SfQO8hEGQ_u4Cez8Mjw
  • Ajansı, D. H. (2020). İzmir’de korkutan görüntü! Sahil ‘deniz marulu’ doldu! Erişim tarihi: 29.10, 2020, adres: https://www.denizhaber.net/izmirde-korkutan-goruntu-sahil-deniz-marulu-doldu-haber-97981.htm
  • Ak, İ. (2015). Sucul ortamın ekonomik bitkileri; makro algler. Dünya Gıda Dergisi, Aralık 2015, 88-97.
  • Ak, İ., Çetin, Z., Cirik, Ş., & Göksan, T. (2011). Gracilaria verrucosa (Hudson) Papenfuss culture using an agricultural organic fertilizer. Fresenius Environmental Bulletin, 20(8a), 2156-2162.
  • Ak, İ., Öztaşkent, C., Özüdoğru, Y., & Göksan, T. (2015). Effect of sodium acetate and sodium nitrate on biochemical composition of green algae Ulva rigida. Aquaculture International, 23(1), 1-11. doi: 10.1007/s10499-014-9793-3
  • Ak, İ., & Türker, G. (2018). Antioxidant properties and phytochemicals of three brown macro algae from the Dardanelles (Çanakkale) strait. Agricultural Science and Technology, 10(4), 354-357. doi: 10.15547/ast.2018.04.065
  • Alishah Aratboni, H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., & Morones-Ramírez, J. R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18(1), 178. doi: 10.1186/s12934-019-1228-4
  • AOAC (2000). Official methods of analysis of AOAC (Association of Official Analytical Chemists) International (17th ed.) (pp. 1298): AOAC International,Gaithersburg, MD.
  • Baghdadli, D., Tremblin, G., & Ducher, M. (1994). The Effects of Light Quality on Growth, Photosynthesis and Development in Cultivated Thalli of Cystoseira barbata C. Ag. f. aurantia (Kütz.) Giaccone (Phaeophyceae, Fucales). 37(1), 43. doi:10.1515/botm.1994.37.1.43
  • Bastos, G. F. P. C. (2019). Cultivation of the wild seaweed Gracilaria gracilis under laboratory scale: The Effect of Light Intensity and Nutrients on Growth, Pigment and Total Soluble Protein Content. (Master's Degree), Politécnico de Leiria, Peniche, Portugal. Bollen, M., Pilditch, C. A., Battershill, C. N., & Bischof, K. (2016). Salinity and temperature tolerance of the invasive alga Undaria pinnatifida and native New Zealand kelps: Implications for competition. Marine Biology, 163(9), 194. doi: 10.1007/s00227-016-2954-3
  • Borges, D., Araujo, R., Azevedo, I., & Pinto, I. S. (2020). Sustainable management of economically valuable seaweed stocks at the limits of their range of distribution: Ascophyllum nodosum (Phaeophyceae) and its southernmost population in Europe. Journal of Applied Phycology, 32(2), 1365-1375. doi: 10.1007/s10811-019-02002-5
  • Caf, F., Şen Özdemir, N., Yılmaz, Ö., Durucan, F., & Ak, İ. (2019). Fatty acid and lipophilic vitamin composition of seaweeds from Antalya and Çanakkale (Turkey). Grasas Y Aceites(3), 1-7. doi: 10.3989/gya.0704182
  • Casas-Beltrán, D. A., Gallaher, C. M., Hernandez Yac, E., Febles Moreno, K., Voglesonger, K., Leal-Bautista, R. M., & Lenczewski, M. (2020). Seaweed Invasion! Temporal Changes in Beach Conditions Lead to Increasing Cenote Usage and Contamination in the Riviera Maya. Sustainability, 12(6), 2474.
  • Chen, C. Y., & Durbin, E. G. (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology Progress Series, 109(1), 83-94.
  • Cirik, Ş., Şen, E., & Ak, İ. (2010). Brown algae Cystoseira barbata (Stackhouse) C. Agardh culture and changes in it chemical composition. Journal of fisheriessciences.com, 4(4), 354-361. doi: 10.3153/jfscom.2010038
  • Dawczynski, C., Schubert, R., & Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 103(3), 891-899. doi:10.1016/j.foodchem.2006.09.041
  • Engin, Y. O., Yağmur, B., Cirik, S., Okur, B., Eşiyok, D., & Gökpınar, Ş. (2019). Ulva rigida (C. Agardh) Makroalginin Fasulye Bitkisinin Üretiminde Organik Madde Kaynağı Olarak Kullanımının Araştırılması. Acta Aquatica Turcica, 15(2), 151-162. doi: 10.22392/actaquatr.577506
  • Eşiyok, D., & Bozokalfa, M. K. (2007). Fasulye yetiştiriciliği. Dünya Yayıncılık, Gıda Dergisi, 6, 88-90.
  • FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action (pp. 224). Rome: FAO Fisheries and Aquaculture Department.
  • Floreto, E. A. T., Hirata, H., Ando, S., & Yamasaki, S. (1993). Effects of Temperature, Light Intensity, Salinity and Source of Nitrogen on the Growth, Total Lipid and Fatty Acid Composition of Ulva pertusa Kjellman (Chlorophyta). Botanica Marina,36(2),149. doi:10.1515/botm.1993.36.2.149
  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 226(1), 497-509.
  • Gómez Pinchetti, J. L., del Campo Fernández, E., Moreno Díez, P., & Reina, G. G. (1998). Nitrogen availability influences the biochemical composition and photosynthesis of tank-cultivated Ulva rigida (Chlorophyta). Journal of Applied Phycology,10(4),383. doi:10.1023/a:1008008912991
  • Gong, J., Liu, Z., & Zou, D. (2020). Growth and photosynthetic characteristics of Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta) cultured under fluorescent light and different LED light. Journal of Applied Phycology, 32, 3265-3272. doi: 10.1007/s10811-020-02151-y
  • Jones, A. G., Quillien, N., Fabvre, A., Grall, J., Schaal, G., & Le Bris, H. (2020). Green macroalgae blooms (Ulva spp.) influence trophic ecology of juvenile flatfish differently in sandy beach nurseries. Marine Environmental Research, 154, 104843. doi: https://doi.org/10.1016/j.marenvres.2019.104843
  • Kaladharan, P., Gireesh, R., & Smitha, K. S. (2002). Cost effective medium for the laboratory culture of live feed micro algae. Seaweed Research and Utilisation, 24(1), 35-40.
  • Kumari, P., Bijo, A. J., Mantri, V. A., Reddy, C. R., & Jha, B. (2013). Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry, 86, 44-56.
  • Künili, M., & Ak, İ. (2020). Ulva rigida (Ulvophyceae) sıvı özütünün Treptacantha barbata (Phaeophyceae) yetiştiriciliğinde algin büyümesi ve biyokimyasal içeriği üzerine etkisi. EJONS International Journal on Mathematic, Engineering and Natural Sciences, 15(September), 687-698. doi:10.38063/ejons.314
  • Li, X., Fan, X., Han, L., & Lou, Q. (2002). Fatty acids of some algae from the Bohai Sea. Phytochemistry, 59(2),157-161.doi:10.1016/S0031-9422(01)00437-X
  • López-López, I., Cofrades, S., & Jiménez-Colmenero, F. (2009). Low-fat frankfurters enriched with n-3 PUFA and edible seaweed: Effects of olive oil and chilled storage on physicochemical, sensory and microbial characteristics. Meat Sci, 83(1), 148-154.
  • Loureiro, R. R., Reis, R. P., & Critchley, A. T. (2010). In vitro cultivation of three Kappaphycus alvarezii (Rhodophyta, Areschougiaceae) variants (green, red and brown) exposed to a commercial extract of the brown alga Ascophyllum nodosum (Fucaceae, Ochrophyta). Journal of Applied Phycology, 22(1), 101-104. doi: 10.1007/s10811-009-9412-2
  • Manev, Z., Iliev, A., & Vachkova, V. (2013). Chemical characterization of brown seaweed - Cystoseira barbata. Bulgarian Journal of Agricultural Science, 19, 12-15.
  • NMKL (2007). Nordisk Metodikkomité for Næringsmidler-NMKL. Nordic Committee on Food Analysis: method no. 186. Lyngby, Danmark.
  • Özdamar, K. (1997). Paket programlar ile istatistiksel veri analizi I. Eskişehir: Kaan Yayın evi.
  • Pacheco-Ruíz, I., Zertuche-González, J. A., Arroyo-Ortega, E., & Valenzuela-Espinoza, E. (2004). Agricultural fertilizers as alternative culture media for biomass production of Chondracanthus squarrulosus (Rhodophyta, Gigartinales) under semi-controlled conditions. Aquaculture, 240(1), 201-209. doi:10.1016/j.aquaculture.2004.05.044
  • Panayotova, V., & Stancheva, M. (2013). Fat soluble vitamins and fatty acids composition of Black Sea Cystoseira barbata. Paper presented at the CBU International conference on integration and innovation in science and education, Prague, Czech Republic.
  • Raoof, B., Kaushik, B. D., & Prasanna, R. (2006). Formulation of a low-cost medium for mass production of Spirulina. Biomass and Bioenergy, 30(6),537-542. doi:10.1016/j.biombioe.2005.09.006
  • Robertson-Andersson, D. V., Leitao, D., Bolton, J. J., Anderson, R. J., Njobeni, A., & Ruck, K. (2006). Can kelp extract (KELPAK®) be useful in seaweed mariculture? Journal of Applied Phycology, 18, 315-321. doi: 10.1007/978-1-4020-5670-3_12
  • Schiener, P., Black, K., Stanley, M., & Green, D. (2015). The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. Journal Applied Phycology, 27(1), 363-373. doi: 10.1007/s10811-014-0327-1
  • Sivasankari, S., Venkatesalu, V., Anantharaj, M., & Chandrasekaran, M. (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresource Technology, 97(14), 1745-1751. doi:10.1016/j.biortech.2005.06.016
  • Smith, F. A., & Walker, N. A. (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3- and to carbon isotopic discrimination. New Phytologist, 86(3), 245-259. doi: 10.1111/j.1469-8137.1980.tb00785.x
  • Tompkins, J., Deville, M. M., Day, J. G., & Turner, M. F. (1995). Catalogue of strains. Culture Collection of Algae and Protozoa, Ambleside, UK.
  • Thomson, S. J., Askari, A., & Bishop-Bailey, D. (2012). Anti-inflammatory effects of epoxyeicosatrienoic acids. International journal of vascular medicine, 2012, 605101-605101. doi: 10.1155/2012/605101
  • Toth, G. B., Harrysson, H., Wahlström, N., Olsson, J., Oerbekke, A., Steinhagen, S., Kinnby, A., White, J., Albers, E., Edlund, U., Undeland, I., Pavia, H. (2020). Effects of irradiance, temperature, nutrients, and pCO2 on the growth and biochemical composition of cultivated Ulva fenestrata. Journal of Applied Phycology, 32, 3243-3245. doi: 10.1007/s10811-020-02155-8
  • Troell, M., Halling, C., Nilsson, A., Buschmann, A. H., Kautsky, N., & Kautsky, L. (1997). Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture, 156(1), 45-61. doi:10.1016/S0044-8486(97)00080-X
  • Turan, M., & Köse, C. (2004). Seaweed extracts improve copper uptake of grapevine. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 54(4), 213-220. doi: 10.1080/09064710410030311
  • UIPAC (1979). Standards methods for the analysis of oils, fats ad derivatives: Pergamon Press, Oxford.
  • Vizetto-Duarte, C., Pereira, H., Bruno de Sousa, C., Pilar Rauter, A., Albericio, F., Custódio, L., Barreira, L., & Varela, J. (2015). Fatty acid profile of different species of algae of the Cystoseira genus: a nutraceutical perspective. Natural Product Research, 29(13), 1264-1270. doi: 10.1080/14786419.2014.992343
  • Werlinger, C., Mansilla, A., Villarroel, A., & Palacios, M. (2009). Effects of photon flux density and agricultural fertilizers on the development of Sarcothalia crispata tetraspores (Rhodophyta, Gigartinales) from the Strait of Magellan, Chile. In M. A. Borowitzka, A. T. Critchley, S. Kraan, A. Peters, K. Sjøtun & M. Notoya (Eds.), Nineteenth International Seaweed Symposium: Proceedings of the 19th International Seaweed Symposium, held in Kobe, Japan, 26-31 March, 2007. (pp. 307-315). Dordrecht: Springer Netherlands.
  • Zavodnik, N., & Juranic, L. J. (1982). Content of Phosphorus and Protein in Seaweeds from the Area of Fazana (Nort Adriatic Sea). Acta Adriatica, 23, 271-279.

Effect of Liquid Seaweed Extract on Growth and Biochemical Composition of Treptacantha barbata (Phaeophyceae)

Yıl 2020, Cilt: 3 Sayı: 2, 111 - 119, 21.12.2020
https://doi.org/10.46384/jmsf.819485

Öz

In this study, the effects of liquid extract from brown seaweed Colpomenia sinuosa on growth rate and biochemical composition of Treptacantha barbata were investigated. Liquid extract of C. sinuosa was used in two different concentrations (1ml l-1(C1), 2 ml l-1(C2)). Also, the Conway medium was used in the control group. The experiments were carried out for 35 days, and the highest growth rate and biomass yield was determined in C1 (p<0.05). The crude lipid of the groups varied from 1.18±0.03% ile 2.19±0.06%. The highest crude protein content was found in the control and C1 groups. It was determined that there are statistically significant differences between the ash contents of all groups (p<0.05). Our results showed that saturated fatty acids (SFA) constituted more than half of all groups' fatty acid contents. Monounsaturated fatty acids (MUFA) content of groups varied between 23.51 ± 0.23% and 25.36 ± 0.22%. In the study, it was determined that the C1 group had higher polyunsaturated fatty acid content compared to other experimental groups. As a result of the study, it was determined that C. sinuosa liquid extracts could be used as a nutrient medium in T. barbata cultivation.

Proje Numarası

FYL-2014-294

Kaynakça

  • Abdel-Kareem, M. S., Mohy El.Din, S. M., & Ibrahim, E.-S. M. (2020). Optimization of Growth Conditions and Biochemical Composition of Microchloropsis salina, Cultured with Three Macroalgal Aqueous Extracts. Thalassas: An International Journal of Marine Sciences, 36, 415-429. doi: 10.1007/s41208-020-00218-8
  • Ajansı, A. (2018). İzmir Körfezi’nde şaşırtan görüntü. NTV. Erişim tarihi: 29.10, 2020, adres: https://www.ntv.com.tr/galeri/turkiye/izmir-korfezinde-sasirtan-goruntu, TyDExybnFUSXxV_RepQa2Q/2e3SfQO8hEGQ_u4Cez8Mjw
  • Ajansı, D. H. (2020). İzmir’de korkutan görüntü! Sahil ‘deniz marulu’ doldu! Erişim tarihi: 29.10, 2020, adres: https://www.denizhaber.net/izmirde-korkutan-goruntu-sahil-deniz-marulu-doldu-haber-97981.htm
  • Ak, İ. (2015). Sucul ortamın ekonomik bitkileri; makro algler. Dünya Gıda Dergisi, Aralık 2015, 88-97.
  • Ak, İ., Çetin, Z., Cirik, Ş., & Göksan, T. (2011). Gracilaria verrucosa (Hudson) Papenfuss culture using an agricultural organic fertilizer. Fresenius Environmental Bulletin, 20(8a), 2156-2162.
  • Ak, İ., Öztaşkent, C., Özüdoğru, Y., & Göksan, T. (2015). Effect of sodium acetate and sodium nitrate on biochemical composition of green algae Ulva rigida. Aquaculture International, 23(1), 1-11. doi: 10.1007/s10499-014-9793-3
  • Ak, İ., & Türker, G. (2018). Antioxidant properties and phytochemicals of three brown macro algae from the Dardanelles (Çanakkale) strait. Agricultural Science and Technology, 10(4), 354-357. doi: 10.15547/ast.2018.04.065
  • Alishah Aratboni, H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., & Morones-Ramírez, J. R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18(1), 178. doi: 10.1186/s12934-019-1228-4
  • AOAC (2000). Official methods of analysis of AOAC (Association of Official Analytical Chemists) International (17th ed.) (pp. 1298): AOAC International,Gaithersburg, MD.
  • Baghdadli, D., Tremblin, G., & Ducher, M. (1994). The Effects of Light Quality on Growth, Photosynthesis and Development in Cultivated Thalli of Cystoseira barbata C. Ag. f. aurantia (Kütz.) Giaccone (Phaeophyceae, Fucales). 37(1), 43. doi:10.1515/botm.1994.37.1.43
  • Bastos, G. F. P. C. (2019). Cultivation of the wild seaweed Gracilaria gracilis under laboratory scale: The Effect of Light Intensity and Nutrients on Growth, Pigment and Total Soluble Protein Content. (Master's Degree), Politécnico de Leiria, Peniche, Portugal. Bollen, M., Pilditch, C. A., Battershill, C. N., & Bischof, K. (2016). Salinity and temperature tolerance of the invasive alga Undaria pinnatifida and native New Zealand kelps: Implications for competition. Marine Biology, 163(9), 194. doi: 10.1007/s00227-016-2954-3
  • Borges, D., Araujo, R., Azevedo, I., & Pinto, I. S. (2020). Sustainable management of economically valuable seaweed stocks at the limits of their range of distribution: Ascophyllum nodosum (Phaeophyceae) and its southernmost population in Europe. Journal of Applied Phycology, 32(2), 1365-1375. doi: 10.1007/s10811-019-02002-5
  • Caf, F., Şen Özdemir, N., Yılmaz, Ö., Durucan, F., & Ak, İ. (2019). Fatty acid and lipophilic vitamin composition of seaweeds from Antalya and Çanakkale (Turkey). Grasas Y Aceites(3), 1-7. doi: 10.3989/gya.0704182
  • Casas-Beltrán, D. A., Gallaher, C. M., Hernandez Yac, E., Febles Moreno, K., Voglesonger, K., Leal-Bautista, R. M., & Lenczewski, M. (2020). Seaweed Invasion! Temporal Changes in Beach Conditions Lead to Increasing Cenote Usage and Contamination in the Riviera Maya. Sustainability, 12(6), 2474.
  • Chen, C. Y., & Durbin, E. G. (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology Progress Series, 109(1), 83-94.
  • Cirik, Ş., Şen, E., & Ak, İ. (2010). Brown algae Cystoseira barbata (Stackhouse) C. Agardh culture and changes in it chemical composition. Journal of fisheriessciences.com, 4(4), 354-361. doi: 10.3153/jfscom.2010038
  • Dawczynski, C., Schubert, R., & Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 103(3), 891-899. doi:10.1016/j.foodchem.2006.09.041
  • Engin, Y. O., Yağmur, B., Cirik, S., Okur, B., Eşiyok, D., & Gökpınar, Ş. (2019). Ulva rigida (C. Agardh) Makroalginin Fasulye Bitkisinin Üretiminde Organik Madde Kaynağı Olarak Kullanımının Araştırılması. Acta Aquatica Turcica, 15(2), 151-162. doi: 10.22392/actaquatr.577506
  • Eşiyok, D., & Bozokalfa, M. K. (2007). Fasulye yetiştiriciliği. Dünya Yayıncılık, Gıda Dergisi, 6, 88-90.
  • FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action (pp. 224). Rome: FAO Fisheries and Aquaculture Department.
  • Floreto, E. A. T., Hirata, H., Ando, S., & Yamasaki, S. (1993). Effects of Temperature, Light Intensity, Salinity and Source of Nitrogen on the Growth, Total Lipid and Fatty Acid Composition of Ulva pertusa Kjellman (Chlorophyta). Botanica Marina,36(2),149. doi:10.1515/botm.1993.36.2.149
  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 226(1), 497-509.
  • Gómez Pinchetti, J. L., del Campo Fernández, E., Moreno Díez, P., & Reina, G. G. (1998). Nitrogen availability influences the biochemical composition and photosynthesis of tank-cultivated Ulva rigida (Chlorophyta). Journal of Applied Phycology,10(4),383. doi:10.1023/a:1008008912991
  • Gong, J., Liu, Z., & Zou, D. (2020). Growth and photosynthetic characteristics of Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta) cultured under fluorescent light and different LED light. Journal of Applied Phycology, 32, 3265-3272. doi: 10.1007/s10811-020-02151-y
  • Jones, A. G., Quillien, N., Fabvre, A., Grall, J., Schaal, G., & Le Bris, H. (2020). Green macroalgae blooms (Ulva spp.) influence trophic ecology of juvenile flatfish differently in sandy beach nurseries. Marine Environmental Research, 154, 104843. doi: https://doi.org/10.1016/j.marenvres.2019.104843
  • Kaladharan, P., Gireesh, R., & Smitha, K. S. (2002). Cost effective medium for the laboratory culture of live feed micro algae. Seaweed Research and Utilisation, 24(1), 35-40.
  • Kumari, P., Bijo, A. J., Mantri, V. A., Reddy, C. R., & Jha, B. (2013). Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry, 86, 44-56.
  • Künili, M., & Ak, İ. (2020). Ulva rigida (Ulvophyceae) sıvı özütünün Treptacantha barbata (Phaeophyceae) yetiştiriciliğinde algin büyümesi ve biyokimyasal içeriği üzerine etkisi. EJONS International Journal on Mathematic, Engineering and Natural Sciences, 15(September), 687-698. doi:10.38063/ejons.314
  • Li, X., Fan, X., Han, L., & Lou, Q. (2002). Fatty acids of some algae from the Bohai Sea. Phytochemistry, 59(2),157-161.doi:10.1016/S0031-9422(01)00437-X
  • López-López, I., Cofrades, S., & Jiménez-Colmenero, F. (2009). Low-fat frankfurters enriched with n-3 PUFA and edible seaweed: Effects of olive oil and chilled storage on physicochemical, sensory and microbial characteristics. Meat Sci, 83(1), 148-154.
  • Loureiro, R. R., Reis, R. P., & Critchley, A. T. (2010). In vitro cultivation of three Kappaphycus alvarezii (Rhodophyta, Areschougiaceae) variants (green, red and brown) exposed to a commercial extract of the brown alga Ascophyllum nodosum (Fucaceae, Ochrophyta). Journal of Applied Phycology, 22(1), 101-104. doi: 10.1007/s10811-009-9412-2
  • Manev, Z., Iliev, A., & Vachkova, V. (2013). Chemical characterization of brown seaweed - Cystoseira barbata. Bulgarian Journal of Agricultural Science, 19, 12-15.
  • NMKL (2007). Nordisk Metodikkomité for Næringsmidler-NMKL. Nordic Committee on Food Analysis: method no. 186. Lyngby, Danmark.
  • Özdamar, K. (1997). Paket programlar ile istatistiksel veri analizi I. Eskişehir: Kaan Yayın evi.
  • Pacheco-Ruíz, I., Zertuche-González, J. A., Arroyo-Ortega, E., & Valenzuela-Espinoza, E. (2004). Agricultural fertilizers as alternative culture media for biomass production of Chondracanthus squarrulosus (Rhodophyta, Gigartinales) under semi-controlled conditions. Aquaculture, 240(1), 201-209. doi:10.1016/j.aquaculture.2004.05.044
  • Panayotova, V., & Stancheva, M. (2013). Fat soluble vitamins and fatty acids composition of Black Sea Cystoseira barbata. Paper presented at the CBU International conference on integration and innovation in science and education, Prague, Czech Republic.
  • Raoof, B., Kaushik, B. D., & Prasanna, R. (2006). Formulation of a low-cost medium for mass production of Spirulina. Biomass and Bioenergy, 30(6),537-542. doi:10.1016/j.biombioe.2005.09.006
  • Robertson-Andersson, D. V., Leitao, D., Bolton, J. J., Anderson, R. J., Njobeni, A., & Ruck, K. (2006). Can kelp extract (KELPAK®) be useful in seaweed mariculture? Journal of Applied Phycology, 18, 315-321. doi: 10.1007/978-1-4020-5670-3_12
  • Schiener, P., Black, K., Stanley, M., & Green, D. (2015). The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. Journal Applied Phycology, 27(1), 363-373. doi: 10.1007/s10811-014-0327-1
  • Sivasankari, S., Venkatesalu, V., Anantharaj, M., & Chandrasekaran, M. (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresource Technology, 97(14), 1745-1751. doi:10.1016/j.biortech.2005.06.016
  • Smith, F. A., & Walker, N. A. (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3- and to carbon isotopic discrimination. New Phytologist, 86(3), 245-259. doi: 10.1111/j.1469-8137.1980.tb00785.x
  • Tompkins, J., Deville, M. M., Day, J. G., & Turner, M. F. (1995). Catalogue of strains. Culture Collection of Algae and Protozoa, Ambleside, UK.
  • Thomson, S. J., Askari, A., & Bishop-Bailey, D. (2012). Anti-inflammatory effects of epoxyeicosatrienoic acids. International journal of vascular medicine, 2012, 605101-605101. doi: 10.1155/2012/605101
  • Toth, G. B., Harrysson, H., Wahlström, N., Olsson, J., Oerbekke, A., Steinhagen, S., Kinnby, A., White, J., Albers, E., Edlund, U., Undeland, I., Pavia, H. (2020). Effects of irradiance, temperature, nutrients, and pCO2 on the growth and biochemical composition of cultivated Ulva fenestrata. Journal of Applied Phycology, 32, 3243-3245. doi: 10.1007/s10811-020-02155-8
  • Troell, M., Halling, C., Nilsson, A., Buschmann, A. H., Kautsky, N., & Kautsky, L. (1997). Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture, 156(1), 45-61. doi:10.1016/S0044-8486(97)00080-X
  • Turan, M., & Köse, C. (2004). Seaweed extracts improve copper uptake of grapevine. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 54(4), 213-220. doi: 10.1080/09064710410030311
  • UIPAC (1979). Standards methods for the analysis of oils, fats ad derivatives: Pergamon Press, Oxford.
  • Vizetto-Duarte, C., Pereira, H., Bruno de Sousa, C., Pilar Rauter, A., Albericio, F., Custódio, L., Barreira, L., & Varela, J. (2015). Fatty acid profile of different species of algae of the Cystoseira genus: a nutraceutical perspective. Natural Product Research, 29(13), 1264-1270. doi: 10.1080/14786419.2014.992343
  • Werlinger, C., Mansilla, A., Villarroel, A., & Palacios, M. (2009). Effects of photon flux density and agricultural fertilizers on the development of Sarcothalia crispata tetraspores (Rhodophyta, Gigartinales) from the Strait of Magellan, Chile. In M. A. Borowitzka, A. T. Critchley, S. Kraan, A. Peters, K. Sjøtun & M. Notoya (Eds.), Nineteenth International Seaweed Symposium: Proceedings of the 19th International Seaweed Symposium, held in Kobe, Japan, 26-31 March, 2007. (pp. 307-315). Dordrecht: Springer Netherlands.
  • Zavodnik, N., & Juranic, L. J. (1982). Content of Phosphorus and Protein in Seaweeds from the Area of Fazana (Nort Adriatic Sea). Acta Adriatica, 23, 271-279.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hidrobiyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Merve Künili Bu kişi benim 0000-0002-6146-5472

İlknur Ak 0000-0002-0233-0025

Proje Numarası FYL-2014-294
Yayımlanma Tarihi 21 Aralık 2020
Gönderilme Tarihi 1 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 2

Kaynak Göster

APA Künili, M., & Ak, İ. (2020). Sıvı Alg Özütünün Treptacantha barbata’nın (Phaeophyceae) Büyüme ve Biyokimyasal Kompozisyonuna Etkisi. Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 3(2), 111-119. https://doi.org/10.46384/jmsf.819485