Araştırma Makalesi
BibTex RIS Kaynak Göster

Seasonal Changes in Proximate and Bioactive Compounds of Brown and Red Seaweeds from İskenderun Bay, the North-Eastern Mediterranean Sea

Yıl 2023, Cilt: 6 Sayı: 1, 33 - 43, 04.07.2023
https://doi.org/10.46384/jmsf.1265503

Öz

Proximate and bioactive compounds (total phenolic, flavonoid, chlorophyll-a and total carotenoid contents) of three brown seaweeds (Dictyota dichotoma, Padina pavonica, Stypopodium schimperi) and a red seaweed (Jania rubens) from the north-eastern Mediterranean Sea (İskenderun Bay) were investigated seasonally at three sampling sites. Seasonal variations were found for all of the parameters studied. The highest ash content was in J. rubens (77.7%) in the spring. The results showed that J. rubens is a rich source with respect to mineral content. D. dichotoma had the highest crude protein content, whereas S. schimperi contained the most lipids. Phenolics ranged between 34.6 - 107.0 mg GAE/g dw. The highest total phenolics were found in S. schimperi in the summer, and the lowest in P. pavonica in the spring. The flavonoid contents (9.05-10.6 mg QE/g dw) were higher in brown seaweeds than that in the red seaweed. Moreover, chlorophyll-a and carotenoids levels were highest in D. dichotoma (4.53 and 2.83 mg/g, respectively) during the autumn. The results revealed that the biochemical composition of the examined seaweeds showed significant changes depending on the species, location and seasons.

Destekleyen Kurum

Scientific Research Project Fund of Cukurova University

Proje Numarası

SÜF2013YL4

Teşekkür

This study was produced from İbrahim Gür's MSc Thesis. The authors are grateful to the Scientific Research Project Fund of Cukurova University for their support of Research Project.

Kaynakça

  • AOAC (1990). Official Methods of Analysis of AOAC International.15th ed. Association of Official Analytical Chemists, Method 950.46, Moisture in Meat. Washington, DC: USA.
  • AOAC (1998a). Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists. Method 938.08, Ash of seafood: Fish and other marine products. Gaithersburg, MD: USA.
  • AOAC (1998b). Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists. Method 955.04, Nitrogen (Total) in Seafood. Fish and Other Marine Products. Gaithersburg, MD: USA.
  • Arnon, D.I. (1949). Copper enzymes in isolated chloroplast, polyphenol oxidase in Beta Vulgarise, Plant Physiology, 2, 1-15.
  • Aysel, V., Erdugan, H.  Okudan, E.Ş. (2006a). Marine algae and seagrasses of Adana (Mediterranean, Turkey), Journal of Black Sea/Mediterranean Environment, 12, 35-57.
  • Aysel, V., Erdugan, H.  Okudan, E.Ş. (2006b). Marine algae and seagrasses of Hatay Mediterranean, Turkey), Journal of Black Sea/Mediterranean Environment, 12, 159-179.
  • Bligh, E.G.  Dyer, W.J. (1959). A rapid method of total lipid extraction and purification, Canadian Journal Biochemistry Physiology, 37, 911-917.
  • Boominathan, M.  Mahesh, A. (2015). Seaweed carotenoids for cancer therapeutics. In: Handbook of Anticancer Drugs from Marine Origin (edited by S.K. Kim) (pp.185-203). Cham, Switzerland: Springer.
  • Caf, F., Şen Özdemir, N., Yılmaz, Ö., Durucan, F. & Ak, İ. (2019). Fatty acid and lipophilic vitamin composition of seaweeds from Antalya and Çanakkale (Turkey), Grasas Y Aceites 70 (3), 1-7. doi:10.3989/gya.0704182
  • Chakraborty, S.  Bhattacharya, T. (2012). Nutrient composition of marine benthic algae found in the Gulf of Kutch coastline, Gujarat India, Journal Algal Biomass, 3, 32-38.
  • Chauhan, V.  Chauhan, A. (2006). Oxidative stress in Alzheimer’s disease, Pathophysiology, 13, 195-208. doi.org/10.1016/j.pathophys.2006.05.004
  • Chang, C.C., Yang, M.H., Wen, H.M.  Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods, Journal of Food Drug Analysis, 10, 178-182. doi.org/10.38212/2224-6614.2748 Chinnadurai, S., Karthik, G., Chermapandi P.  Hemalatha, A. (2013). Estimation of Major Pigment Content in Seaweeds Collected from Pondicherry Coast, The Experiment, 9 (1), 522-525.
  • Connan, S., Deslandes, E.  Gall, E.A. (2007). Influence of day–night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds, Journal of Experimental Marine Biology and Ecology, 349, 359-369. doi.org/10.1016/j.jembe.2007.05.028
  • Dixit, D. & Reddy, C. R. K. (2017). Non-Targeted Secondary Metabolite Profile Study for Deciphering the Cosmeceutical Potential of Red Marine Macro Alga Jania rubens-An LCMS-Based Approach" Cosmetics, 4(4), 45. doi.org/10.3390/cosmetics4040045
  • Etemadian, Y., Shabanpour, B., Ghaemi, V.  Kordjazi.M. (2017). Compare the chlorophyll amount in three brown algae species of the Persian Gulf by using three solvents and applying two formulas, International Journal of Biochemistry, Biophysics & Molecular Biology, 2 (6), 77-79. doi: 10.11648/j.ijbbmb.20170206.14
  • Fleurence, J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses, Trends in Food Science Technology, 10, 25-28. doi.org/10.1016/S0924-2244(99)00015-1
  • Fox, J.  Weisberg, S. (2011). An R Companion to Applied Regression. Second Edition. Thousand Oaks CA: Sage URL: http://socserv.socsci.mcmaster.ca/jfox/Books/
  • Gámez-Meza, N., Noriega-Rodriguez, J.A., Medina-Juarez, L.A. et al. (1999). Antioxidant activity in soybean oil of extracts from Thompson grape bagasse, Journal of American Oil Chemists' Society, 76, 1445-1447. doi.org/10.1007/s11746-999-0182-4
  • Godinez-Ortega, J.L., Snooeijis, P., Robledo, D., Freile-Pelegrin, Y.  Pedersen M. (2008). Growth and pigment composition in the red alga Halymenia floresii cultured under different light qualities, Journal of Applied Phycology, 20, 253-260. doi.org/10.1007%2Fs10811-007-9241-0
  • Güner, A.  Yavasoglu, N.K. (2018). Evaluation of antioxidant, antimicrobial and antimutagenic activity with irritation effects of Ceramium rubrum (Red Algae) extract, International Journal of Secondary Metabolites, 5, 279-287. doi.org/10.21448/ijsm.432654
  • Haroon, A., Szaniawska, A., Normant, M.  Janas, U. (2000). The biochemical composition of Enteromorpha spp. from the Gulf of Gdansk coast on the southern Baltic Sea, Oceanologia, 116/117, 513-516.
  • Hothorn, T., Bretz, F.  Westfall, P. (2008). Simultaneous inference in general parametric Models, Biometrical Journal, 50, 346-363. doi.org/10.1002/bimj.200810425
  • İrkin, L.C. & Erdugan, H. (2016). Seasonal variation in ash, lipid and protein contents of Scytosiphon lomentaria Lyngbye and Palisada perforata Bory de Saint-Vincent along Çanakkale Strait (Dardanelles), Turkey, Marine Science and Technology Bulletin, 4 (2), 1-4.
  • İrkin, L.C.  Erduğan, H. (2017). Investigation of seasonal variations in biochemical composition of some red algae distributed in the Strait of Çanakkale (Dardanelles), Turkey, Archive of Applied Science Research, 9, 1-8.
  • Kalasariya, H.S., Yadav, V.K., Yadav, K.K., Tirth, V., Algahtani, A., Islam, S., Gupta, N.  Jeon, B-H. (2021). Seaweed-based molecules and their potential biological activities: An eco-sustainablecosmetics, Molecules, 26, 5313. doi.org/10.3390/molecules26175313
  • Kirk, J.T.O.  Allen, R.L. (1965). Dependence of chloroplast pigments synthesis on protein synthetic effect on actilion, Biochemical and Biophysical Research, 27, 523-530.
  • Kostetsky, E.Y., Goncharova, S.N., Sanina, N.M.  Shnyrov, V.L. (2004). Season influence on lipid composition of marine macrophytes, Botanica Marina, 47, 134-139. doi.org/10.1515/BOT.2004.013
  • Kumar, C.S., Ganesan, P., Suresh, P.V.  Bhaskar N. (2008). Seaweeds as a source of nutritionally beneficial compounds - A review, Journal of Food Science and Technology, 45, 1-13.
  • Kumar, M., Gupta, V., Kumari, P., Reddy, C.R.K.  Jha, B. (2011). Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds, Journal of Food Composition Analysis, 24, 270-278. doi.org/10.1016/j.jfca.2010.07.007
  • Machu, L., Misurcova, L., Ambrozova, J.V., Orsavova, J., Mlcek, J., Sochor, J., Jurikova, T. (2015). Phenolic content and antioxidant capacity in algal food products, Molecules, 20, 1118-1133. doi.org/10.3390/molecules20011118
  • Marinho, G.S., Sørensen, A.D.M.; Safafar, H., Pedersen, A.H., Holdt, S.L. (2019). Antioxidant content and activity of the seaweed Saccharina latissima: A seasonal perspective. Journal of Applied Phycology, 31, 1343–1354. doi: 10.1007/s10811-018-1650-8
  • Marsham, S., Scott, G.W.  Tobin, M.L. (2007). Comparison of nutritive chemistry of a range of temperate seaweeds, Food Chemistry, 100, 1331-1336. doi.org/10.1016/j.foodchem.2005.11.029
  • Matanjun, P., Mohamed, S., Mustapha, N.M., Muhammad, K.  Ming, C.H. (2008). Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo, Journal of Applied Phycology, 20, 367-373.doi:10.1007/s10811-007-9264-6
  • Necchi, O.  Zucchi, M.R. (2001). Effects of temperature, irradiance and photoperiod on growth and pigment content in some freshwater red algae in culture, Phycological Research, 49, 103-114. doi.org/10.1111/j.1440-1835.2001.tb00240.x
  • Nedumaran, T.  Arulbalachandran, D. (2015). Seaweeds: A Promising Source for Sustainable Development. In: Thangavel P, Sridevi G (Eds.) Environmental Sustainability (pp. 65-88).
  • Nelson, M.M., Phleger, C.F.  Nichols, P.D. (2002). Seasonal lipid composition in macroalgae of the Northeastern Pacific Ocean, Botanica Marina, 45, 58-65. doi.org/10.1515/BOT.2002.007
  • Palanivelu, A., Darsis, A.  Arunkumar, K. (2012). Nutraceutical values of seaweeds found along the Coast of Thondi (Palk Bay, India) with specific investigation on fatty acids methyl esters through GC/MS, Journal of Green Bioenergy, 1, 3-18.
  • Peñalver, R., Lorenzo, J.M., Ros, G., Amarowicz, R., Pateiro, M.  Nieto, G. (2020). Seaweeds as a functional ingredient for a healthy diet, Marine Drugs, 18, 1-27. doi.org/10.3390/md18060301
  • Parthiban, C., Saranya, C., Gırija, K., Hemalatha, A., Suresh, M.  Anantharaman, P. (2013). Biochemical composition of some selected seaweeds from Tuticorin coast, Advances in Applied Science Research, 4, 362-366.
  • Polat, S.  Özoğul, Y. (2008). Biochemical composition of some red and Brown macroalgae from the Northeastern Mediterranean Sea. International Journal of Food Science and Nutrition, 59, 566-572. doi.org/10.1080/09637480701446524
  • Polat, S.  Özoğul, Y. (2009). Fatty acid, mineral and proximate composition of some seaweeds from the northeastern Mediterranean coast, Italian Journal Food Science, 21, 317-324.
  • Polat, S., Özoğul Y.  Küley Boğa, E. (2012). Protein, lipid and fatty acid composition of some brown and red seaweeds from the coast of İskenderun Bay (Northeastern Mediterranean), Journal of FisheriesSciences.com, 6, 107-113. doi: 10.3153/jfscom.2012014
  • Polat, S.  Özoğul, Y. (2013). Seasonal proximate and fatty acid variations of some seaweeds from the northeastern Mediterranean coast, Oceanologia, 55, 375-391. doi.org/10.5697/oc.55-2.375
  • R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria. https://www.R-project.org/
  • Radha, P. (2018). Proximate analysis and mineral composition of seaweeds of Manamelkudi coast, Pudukkottai District, India, International Journal of Current Microbiology and Applied Sciences, 7(8): 3121-3128. doi.org/10.20546/ijcmas.2018.708.333
  • Ratana-arporn, P.A.  Chirapart, A. (2006). Nutritional evaluation of tropical green seaweeds Caulerpa lentillifera and Ulva reticulate, Kasetsart Journal Natural Science, 40, 75-83.
  • Renaud, S.M.  Luong-Van, J.T. (2006). Seasonal variation in the chemical composition of tropical Australian marine macroalgae, Journal of Applied Phycology, 18, 381-387. doi.org/10.1007/s10811-006-9034-x
  • Rupérez, P. (2002). Mineral content of edible marine seaweeds, Food Chemistry, 79, 23-26. doi.org/10.1016/S0308-8146(02)00171-1
  • Sahayaraj, K., Asharaja, A.C., Rajesh, S.  Martin Rathi, J.A. (2014). Qualitative and quantitative profiles of secondary metabolites of chosen Chlorophyta and Ochrophyta from Gulf of Mannor, Cahiers de Biologie Marine, 55, 69-76.
  • Saygılı, E. I., Naz, M., Okudan, E. S., Çetin, Z., Benlier, N., Öğüt, E., Güngör, M., Bakır, S.B., Karadeniz, P.G., Veziroglu, S., Gülses, A., Depci, T., Aktas, O.C.  Sayın, S. (2022). The determination of the molecular weight profiles and biochemical compositions eight macroalgae species from Turkey, International Aquatic Research, 14(2), 117-125. doi:10.22034/iar.2022.1949245.1226
  • Sukalyan, C.  Santra, S.C. (2008). Biochemical composition of eight benthic algae collected from Sunderban, Indian Journal of Marine Sciences, 37, 329-332.
  • Tabarsa, M., Rezai, M., Ramezanpour, Z., Waaland, J.R.  Rabirei, R. (2012). Fatty acids, amino acids, mineral contents and proximate composition of some brown seaweeds, Journal of Phycology, 48, 285-292. doi.org/10.1111/j.1529-8817.2012.01122.x
  • Taşkın, E. (2014). Comparison of the brown algal diversity between four sea coasts of Turkey, Journal of Academic Documents for Fisheries and Aquaculture. 3, 145-150.
  • Turan, F., Özgun, S., Sayın, S.  Özyılmaz, G. (2015). Biochemical composition of some red and green seaweeds from Iskenderun Bay, the northeastern Mediterranean coast of Turkey, Journal of Black Sea/Mediterranean Environment, 21, 239-249.
  • Thirumaran, G., Manivannan, K., Karthikai, D.G., Ananthamaran, P.  Balasubramanian, T. (2009). Photosynthetic pigments of different colour strains of the cultured seaweeds Kappaphycus alvarezii (Doty) ex P.Silva in Valler Estuary, Academic Journal of Plant Science, 2, 150-153.
  • Wang, B.G., Zhang, W.W., Duan, X.J.  Li, X.M. (2009). In vitro antioxidative activities of extract and semi-purified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae), Food Chemistry, 113, 1101-1105. doi.org/10.1016/j.foodchem.2008.08.078
  • Yeşilova, K., Balkis, N. & Taşkın, E. (2017). Seasonal investigation of the protein, carbohydrate and lipid contens of dominant macroalgae on the western coast of the Black Sea. Fresenius Environmental Bulletin, 26 (1), 46-55.
  • Yılmaz, M. , Türker, G. & Ak, İ. (2021). The Effect of Different Solvents on Antioxidant Properties of Gongolaria barbata (Phaeophyceae) . Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 4(2), 197-201 . doi: 10.46384/jmsf.1021387
  • Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators, Journal of Statistical Software, 11, 1-17. doi.org/10.18637/jss.v011.i10

İskenderun Körfezi'ndeki (Kuzeydoğu Akdeniz) Kahverengi ve Kırmızı Makroalglerin Temel Besin Maddesi ve Biyoaktif Bileşiklerindeki Mevsimsel Değişimler

Yıl 2023, Cilt: 6 Sayı: 1, 33 - 43, 04.07.2023
https://doi.org/10.46384/jmsf.1265503

Öz

Kuzeydoğu Akdeniz'de (İskenderun Körfezi) dağılım gösteren üç kahverengi (Dictyota dichotoma, Padina pavonica, Stypopodium schimperi) ve bir kırmızı makroalgin (Jania rubens) temel besin maddesi ve biyoaktif bileşikleri (toplam fenolik, flavonoid, klorofil-a ve toplam karotenoid içerikleri) üç örnekleme istasyonunda mevsimsel olarak incelenmiştir. İncelenen tüm parametrelerin mevsimsel değişimler gösterdiği belirlenmiştir. En yüksek kül içeriği ilkbaharda J. rubens türünde (%77.7) bulunmuştur. Sonuçlar, bu türün zengin bir mineral kaynağı olduğunu göstermiştir. D. dichotoma en yüksek ham protein içeriğine, S. schimperi ise en fazla lipit içeriğine sahip tür olmuştur. Makroalglerde fenolik madde içeriği 34.6 ile 107.0 mg GAE/g kuru ağ. arasında değişmiştir. Toplam fenolik madde miktarı yazın S. schimperi türünde en yüksek düzeye ulaşırken, en düşük değer ilkbaharda P. pavonica türünde bulunmuştur. Flavonoid içerikleri (9.05-10.6 mg QE/g kuru ağ.) kahverengi deniz yosunlarında kırmızı deniz yosunundan daha yüksek bulunmuştur. Klorofil-a ve karotenoid içeriği ise D. dichotoma türünde sonbahar mevsiminde en yüksek düzeylerde (sırasıyla 4.53 ve 2.83 mg/g) bulunmuştur. Sonuçlar, incelenen makroalg türlerinin biyokimyasal kompozisyonunun türe, lokaliteye ve mevsimlere bağlı olarak belirgin değişimler gösterebileceğini ortaya koymuştur.

Proje Numarası

SÜF2013YL4

Kaynakça

  • AOAC (1990). Official Methods of Analysis of AOAC International.15th ed. Association of Official Analytical Chemists, Method 950.46, Moisture in Meat. Washington, DC: USA.
  • AOAC (1998a). Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists. Method 938.08, Ash of seafood: Fish and other marine products. Gaithersburg, MD: USA.
  • AOAC (1998b). Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists. Method 955.04, Nitrogen (Total) in Seafood. Fish and Other Marine Products. Gaithersburg, MD: USA.
  • Arnon, D.I. (1949). Copper enzymes in isolated chloroplast, polyphenol oxidase in Beta Vulgarise, Plant Physiology, 2, 1-15.
  • Aysel, V., Erdugan, H.  Okudan, E.Ş. (2006a). Marine algae and seagrasses of Adana (Mediterranean, Turkey), Journal of Black Sea/Mediterranean Environment, 12, 35-57.
  • Aysel, V., Erdugan, H.  Okudan, E.Ş. (2006b). Marine algae and seagrasses of Hatay Mediterranean, Turkey), Journal of Black Sea/Mediterranean Environment, 12, 159-179.
  • Bligh, E.G.  Dyer, W.J. (1959). A rapid method of total lipid extraction and purification, Canadian Journal Biochemistry Physiology, 37, 911-917.
  • Boominathan, M.  Mahesh, A. (2015). Seaweed carotenoids for cancer therapeutics. In: Handbook of Anticancer Drugs from Marine Origin (edited by S.K. Kim) (pp.185-203). Cham, Switzerland: Springer.
  • Caf, F., Şen Özdemir, N., Yılmaz, Ö., Durucan, F. & Ak, İ. (2019). Fatty acid and lipophilic vitamin composition of seaweeds from Antalya and Çanakkale (Turkey), Grasas Y Aceites 70 (3), 1-7. doi:10.3989/gya.0704182
  • Chakraborty, S.  Bhattacharya, T. (2012). Nutrient composition of marine benthic algae found in the Gulf of Kutch coastline, Gujarat India, Journal Algal Biomass, 3, 32-38.
  • Chauhan, V.  Chauhan, A. (2006). Oxidative stress in Alzheimer’s disease, Pathophysiology, 13, 195-208. doi.org/10.1016/j.pathophys.2006.05.004
  • Chang, C.C., Yang, M.H., Wen, H.M.  Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods, Journal of Food Drug Analysis, 10, 178-182. doi.org/10.38212/2224-6614.2748 Chinnadurai, S., Karthik, G., Chermapandi P.  Hemalatha, A. (2013). Estimation of Major Pigment Content in Seaweeds Collected from Pondicherry Coast, The Experiment, 9 (1), 522-525.
  • Connan, S., Deslandes, E.  Gall, E.A. (2007). Influence of day–night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds, Journal of Experimental Marine Biology and Ecology, 349, 359-369. doi.org/10.1016/j.jembe.2007.05.028
  • Dixit, D. & Reddy, C. R. K. (2017). Non-Targeted Secondary Metabolite Profile Study for Deciphering the Cosmeceutical Potential of Red Marine Macro Alga Jania rubens-An LCMS-Based Approach" Cosmetics, 4(4), 45. doi.org/10.3390/cosmetics4040045
  • Etemadian, Y., Shabanpour, B., Ghaemi, V.  Kordjazi.M. (2017). Compare the chlorophyll amount in three brown algae species of the Persian Gulf by using three solvents and applying two formulas, International Journal of Biochemistry, Biophysics & Molecular Biology, 2 (6), 77-79. doi: 10.11648/j.ijbbmb.20170206.14
  • Fleurence, J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses, Trends in Food Science Technology, 10, 25-28. doi.org/10.1016/S0924-2244(99)00015-1
  • Fox, J.  Weisberg, S. (2011). An R Companion to Applied Regression. Second Edition. Thousand Oaks CA: Sage URL: http://socserv.socsci.mcmaster.ca/jfox/Books/
  • Gámez-Meza, N., Noriega-Rodriguez, J.A., Medina-Juarez, L.A. et al. (1999). Antioxidant activity in soybean oil of extracts from Thompson grape bagasse, Journal of American Oil Chemists' Society, 76, 1445-1447. doi.org/10.1007/s11746-999-0182-4
  • Godinez-Ortega, J.L., Snooeijis, P., Robledo, D., Freile-Pelegrin, Y.  Pedersen M. (2008). Growth and pigment composition in the red alga Halymenia floresii cultured under different light qualities, Journal of Applied Phycology, 20, 253-260. doi.org/10.1007%2Fs10811-007-9241-0
  • Güner, A.  Yavasoglu, N.K. (2018). Evaluation of antioxidant, antimicrobial and antimutagenic activity with irritation effects of Ceramium rubrum (Red Algae) extract, International Journal of Secondary Metabolites, 5, 279-287. doi.org/10.21448/ijsm.432654
  • Haroon, A., Szaniawska, A., Normant, M.  Janas, U. (2000). The biochemical composition of Enteromorpha spp. from the Gulf of Gdansk coast on the southern Baltic Sea, Oceanologia, 116/117, 513-516.
  • Hothorn, T., Bretz, F.  Westfall, P. (2008). Simultaneous inference in general parametric Models, Biometrical Journal, 50, 346-363. doi.org/10.1002/bimj.200810425
  • İrkin, L.C. & Erdugan, H. (2016). Seasonal variation in ash, lipid and protein contents of Scytosiphon lomentaria Lyngbye and Palisada perforata Bory de Saint-Vincent along Çanakkale Strait (Dardanelles), Turkey, Marine Science and Technology Bulletin, 4 (2), 1-4.
  • İrkin, L.C.  Erduğan, H. (2017). Investigation of seasonal variations in biochemical composition of some red algae distributed in the Strait of Çanakkale (Dardanelles), Turkey, Archive of Applied Science Research, 9, 1-8.
  • Kalasariya, H.S., Yadav, V.K., Yadav, K.K., Tirth, V., Algahtani, A., Islam, S., Gupta, N.  Jeon, B-H. (2021). Seaweed-based molecules and their potential biological activities: An eco-sustainablecosmetics, Molecules, 26, 5313. doi.org/10.3390/molecules26175313
  • Kirk, J.T.O.  Allen, R.L. (1965). Dependence of chloroplast pigments synthesis on protein synthetic effect on actilion, Biochemical and Biophysical Research, 27, 523-530.
  • Kostetsky, E.Y., Goncharova, S.N., Sanina, N.M.  Shnyrov, V.L. (2004). Season influence on lipid composition of marine macrophytes, Botanica Marina, 47, 134-139. doi.org/10.1515/BOT.2004.013
  • Kumar, C.S., Ganesan, P., Suresh, P.V.  Bhaskar N. (2008). Seaweeds as a source of nutritionally beneficial compounds - A review, Journal of Food Science and Technology, 45, 1-13.
  • Kumar, M., Gupta, V., Kumari, P., Reddy, C.R.K.  Jha, B. (2011). Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds, Journal of Food Composition Analysis, 24, 270-278. doi.org/10.1016/j.jfca.2010.07.007
  • Machu, L., Misurcova, L., Ambrozova, J.V., Orsavova, J., Mlcek, J., Sochor, J., Jurikova, T. (2015). Phenolic content and antioxidant capacity in algal food products, Molecules, 20, 1118-1133. doi.org/10.3390/molecules20011118
  • Marinho, G.S., Sørensen, A.D.M.; Safafar, H., Pedersen, A.H., Holdt, S.L. (2019). Antioxidant content and activity of the seaweed Saccharina latissima: A seasonal perspective. Journal of Applied Phycology, 31, 1343–1354. doi: 10.1007/s10811-018-1650-8
  • Marsham, S., Scott, G.W.  Tobin, M.L. (2007). Comparison of nutritive chemistry of a range of temperate seaweeds, Food Chemistry, 100, 1331-1336. doi.org/10.1016/j.foodchem.2005.11.029
  • Matanjun, P., Mohamed, S., Mustapha, N.M., Muhammad, K.  Ming, C.H. (2008). Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo, Journal of Applied Phycology, 20, 367-373.doi:10.1007/s10811-007-9264-6
  • Necchi, O.  Zucchi, M.R. (2001). Effects of temperature, irradiance and photoperiod on growth and pigment content in some freshwater red algae in culture, Phycological Research, 49, 103-114. doi.org/10.1111/j.1440-1835.2001.tb00240.x
  • Nedumaran, T.  Arulbalachandran, D. (2015). Seaweeds: A Promising Source for Sustainable Development. In: Thangavel P, Sridevi G (Eds.) Environmental Sustainability (pp. 65-88).
  • Nelson, M.M., Phleger, C.F.  Nichols, P.D. (2002). Seasonal lipid composition in macroalgae of the Northeastern Pacific Ocean, Botanica Marina, 45, 58-65. doi.org/10.1515/BOT.2002.007
  • Palanivelu, A., Darsis, A.  Arunkumar, K. (2012). Nutraceutical values of seaweeds found along the Coast of Thondi (Palk Bay, India) with specific investigation on fatty acids methyl esters through GC/MS, Journal of Green Bioenergy, 1, 3-18.
  • Peñalver, R., Lorenzo, J.M., Ros, G., Amarowicz, R., Pateiro, M.  Nieto, G. (2020). Seaweeds as a functional ingredient for a healthy diet, Marine Drugs, 18, 1-27. doi.org/10.3390/md18060301
  • Parthiban, C., Saranya, C., Gırija, K., Hemalatha, A., Suresh, M.  Anantharaman, P. (2013). Biochemical composition of some selected seaweeds from Tuticorin coast, Advances in Applied Science Research, 4, 362-366.
  • Polat, S.  Özoğul, Y. (2008). Biochemical composition of some red and Brown macroalgae from the Northeastern Mediterranean Sea. International Journal of Food Science and Nutrition, 59, 566-572. doi.org/10.1080/09637480701446524
  • Polat, S.  Özoğul, Y. (2009). Fatty acid, mineral and proximate composition of some seaweeds from the northeastern Mediterranean coast, Italian Journal Food Science, 21, 317-324.
  • Polat, S., Özoğul Y.  Küley Boğa, E. (2012). Protein, lipid and fatty acid composition of some brown and red seaweeds from the coast of İskenderun Bay (Northeastern Mediterranean), Journal of FisheriesSciences.com, 6, 107-113. doi: 10.3153/jfscom.2012014
  • Polat, S.  Özoğul, Y. (2013). Seasonal proximate and fatty acid variations of some seaweeds from the northeastern Mediterranean coast, Oceanologia, 55, 375-391. doi.org/10.5697/oc.55-2.375
  • R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria. https://www.R-project.org/
  • Radha, P. (2018). Proximate analysis and mineral composition of seaweeds of Manamelkudi coast, Pudukkottai District, India, International Journal of Current Microbiology and Applied Sciences, 7(8): 3121-3128. doi.org/10.20546/ijcmas.2018.708.333
  • Ratana-arporn, P.A.  Chirapart, A. (2006). Nutritional evaluation of tropical green seaweeds Caulerpa lentillifera and Ulva reticulate, Kasetsart Journal Natural Science, 40, 75-83.
  • Renaud, S.M.  Luong-Van, J.T. (2006). Seasonal variation in the chemical composition of tropical Australian marine macroalgae, Journal of Applied Phycology, 18, 381-387. doi.org/10.1007/s10811-006-9034-x
  • Rupérez, P. (2002). Mineral content of edible marine seaweeds, Food Chemistry, 79, 23-26. doi.org/10.1016/S0308-8146(02)00171-1
  • Sahayaraj, K., Asharaja, A.C., Rajesh, S.  Martin Rathi, J.A. (2014). Qualitative and quantitative profiles of secondary metabolites of chosen Chlorophyta and Ochrophyta from Gulf of Mannor, Cahiers de Biologie Marine, 55, 69-76.
  • Saygılı, E. I., Naz, M., Okudan, E. S., Çetin, Z., Benlier, N., Öğüt, E., Güngör, M., Bakır, S.B., Karadeniz, P.G., Veziroglu, S., Gülses, A., Depci, T., Aktas, O.C.  Sayın, S. (2022). The determination of the molecular weight profiles and biochemical compositions eight macroalgae species from Turkey, International Aquatic Research, 14(2), 117-125. doi:10.22034/iar.2022.1949245.1226
  • Sukalyan, C.  Santra, S.C. (2008). Biochemical composition of eight benthic algae collected from Sunderban, Indian Journal of Marine Sciences, 37, 329-332.
  • Tabarsa, M., Rezai, M., Ramezanpour, Z., Waaland, J.R.  Rabirei, R. (2012). Fatty acids, amino acids, mineral contents and proximate composition of some brown seaweeds, Journal of Phycology, 48, 285-292. doi.org/10.1111/j.1529-8817.2012.01122.x
  • Taşkın, E. (2014). Comparison of the brown algal diversity between four sea coasts of Turkey, Journal of Academic Documents for Fisheries and Aquaculture. 3, 145-150.
  • Turan, F., Özgun, S., Sayın, S.  Özyılmaz, G. (2015). Biochemical composition of some red and green seaweeds from Iskenderun Bay, the northeastern Mediterranean coast of Turkey, Journal of Black Sea/Mediterranean Environment, 21, 239-249.
  • Thirumaran, G., Manivannan, K., Karthikai, D.G., Ananthamaran, P.  Balasubramanian, T. (2009). Photosynthetic pigments of different colour strains of the cultured seaweeds Kappaphycus alvarezii (Doty) ex P.Silva in Valler Estuary, Academic Journal of Plant Science, 2, 150-153.
  • Wang, B.G., Zhang, W.W., Duan, X.J.  Li, X.M. (2009). In vitro antioxidative activities of extract and semi-purified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae), Food Chemistry, 113, 1101-1105. doi.org/10.1016/j.foodchem.2008.08.078
  • Yeşilova, K., Balkis, N. & Taşkın, E. (2017). Seasonal investigation of the protein, carbohydrate and lipid contens of dominant macroalgae on the western coast of the Black Sea. Fresenius Environmental Bulletin, 26 (1), 46-55.
  • Yılmaz, M. , Türker, G. & Ak, İ. (2021). The Effect of Different Solvents on Antioxidant Properties of Gongolaria barbata (Phaeophyceae) . Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 4(2), 197-201 . doi: 10.46384/jmsf.1021387
  • Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators, Journal of Statistical Software, 11, 1-17. doi.org/10.18637/jss.v011.i10
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrobiyoloji
Bölüm Araştırma Makaleleri
Yazarlar

İbrahim Gür 0000-0002-6941-8785

Sevim Polat 0000-0002-4756-1177

Proje Numarası SÜF2013YL4
Yayımlanma Tarihi 4 Temmuz 2023
Gönderilme Tarihi 15 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 1

Kaynak Göster

APA Gür, İ., & Polat, S. (2023). Seasonal Changes in Proximate and Bioactive Compounds of Brown and Red Seaweeds from İskenderun Bay, the North-Eastern Mediterranean Sea. Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 6(1), 33-43. https://doi.org/10.46384/jmsf.1265503