Araştırma Makalesi
BibTex RIS Kaynak Göster

Population Structure of the Tub Gurnard (Chelidonichthys lucerna Linnaeus, 1758) in Türkiye Coasts Using Otolith Chemistry and Shape Analysis

Yıl 2024, Cilt: 7 Sayı: 1, 67 - 85, 10.07.2024
https://doi.org/10.46384/jmsf.1488491

Öz

Chelidonichthys lucerna is an economically important demersal species. It is under excessive fishing pressure and yields from fisheries are in decline in Türkiye. Information about the species' population structure and habitat connections is limited. In this study, otolith chemistry and shape analyses of 160 individuals captured between February 2020 and December 2020, in the four main fishing grounds of Türkiye coasts (Black Sea/Ordu, Marmara Sea/Bandırma, Aegean Sea/Foça, Mediterranean Sea/Mersin) were investigated. Otolith morphology and chemistry (Li:Ca, Na:Ca, Mg:Ca, Mn:Ca, Fe:Ca, Co:Ca, Ni:Ca, Cu:Ca, Zn:Ca, Sr:Ca, Ba:Ca , Pb:Ca, K:Ca, P:Ca) of the individuals with similar length range (19-25 cm, TL) were evaluated by univariate and multivariate statistical analyses. The overall combination of otolith elemental chemistry and morphology techniques revealed the highest re-classification success (75%-90%) of samples to their original location and the existence of significant differences among sampling regions. When otolith shape analysis and otolith chemistry were evaluated together, linear discrimination function analyses fully discriminated C. lucerna individuals from the four sampling regions (Black Sea, Marmara, Aegean, Mediterranean). Moreover, the results of the analyses revealed that there were habitat connections among individuals from the Sea of Marmara and Aegean Sea and that the Black Sea and the Mediterranean Sea were isolated regions in terms of C. lucerna stocks. The shape and chemical signatures suggest that C. lucerna is apparently not a single stock-unit in the Turkish coasts and that these fish stocks should be managed separately for fisheries purposes.

Destekleyen Kurum

BAP Projesi

Proje Numarası

FDK-2020-3428

Teşekkür

Bu çalışma Sibel Atak Sanduvaç’ın doktora tezinin bir bölümünü içermektedir. Bu çalışma finansal olarak FDK-2020-3428 nolu BAP projesi tarafından desteklenmiştir. Çalışmamızda balık temininde yardımcı olan Dr. Öğr. Üyesi Esin Yalçın Kaplama, Prof. Dr. Mehmet Aydın, Dr. Murat Dağtekin’e ve de çalışmanın kimyasal analizlerinde yardımcı olan Öğr. Gör. Dr. Selahattin Erdoğan ve ekibine teşekkürü borç biliriz.

Kaynakça

  • Adelir-Alves, J., Daros, F. A, Spach, H. L., Soeth, M., & Correia, A. T. (2018). Otoliths as a tool to study reef fish population structure from coastal islands of South Brazil. Marine Biology Research, 14, 973–988.
  • Aguirre, H., & Lombarte, A. (1999). Ecomorphologic comparisons of sagittae in Mullus barbatus and M. surmuletus. Journal of Fish Biology, 55, 105–114.
  • Agüera, A, & Brophy, D. (2011). Use of saggital otolith shape analysis to discriminate Northeast Atlantic and western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fisheries Research, 110, 465– 471.
  • Akyol, O., Metin, G., & Unsal, S. (1997). Relationship between otolith to fork lengths of sardine (Sardina pilchardus Walbaum, 1972) in the Bay of Izmir (Aegean Sea). Mediterranean Fisheries Congress 9–11 April 1997, Izmir, Turkey, pp. 925–929 (in Turkish).
  • Amouei, F., Valinassab, T., & Haitov, A. (2014). Aging and morphology of otolith in Alburnus chalcoides (Guldenstaedt, 1772) in the southern Caspian Sea. Caspian Journal of Environmental Sciences, 12, 205–214.
  • Atay, D. (1985). Deniz Balıkları ve Üretim Tekniği. A.Ü. Ziraat Fakültesi Yay. 943 Ders Kitabı No: 268, Ankara, 278s.
  • Avigliano, E., Domanico, A., Sánchez, S., & Volpedo, A. V. (2017). Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fisheries Research, 186, 1-10.
  • Bal, H., & Esen, S. (2021). Preliminary study on otolith chemistry and otolith morphology of two demersal fish species, European hake (Merluccius merluccius Linnaeus, 1758) and striped red mullet (Mullus surmuletus Linnaeus, 1758) in the Sea of Marmara. Ege Journal of Fisheries and Aquatic Sciences, 38(4), 515-521.
  • Başusta, A., Bal, H., & Aslan, E. (2013a). Otolith biometry-total length relationships in the population of Hazar Bleak, Alburnus heckeli (Battalgil, 1943) inhabiting Lake Hazar, Elazig, Turkey. Pakistan Journal of Zoology, 45(1), 1180–1182.
  • Başusta, A., Özer, E. I., & Girgin, H. (2013ab). Munzur Nehri'ndeki kırmızı benekli alabalığın (Salmo trutta macrostigma (Dummeril, 1858)) otolit boyutları- balık boyu arasındaki ilişki. Journal of FisheriesSciences.com, 7(1), 22–29.
  • Başusta, A., Özer, E. I., & Girgin, H. (2013bc). Akdeniz'deki Lepidotrigla dieuzeidei (Blanc & Hureau, 1973) populasyonunda otolit biyometrisi-balık boyu uzunluğu arasındaki ilişki. Yunus Araştırma Bülteni, 3, 3–9.
  • Başusta, A., & Bıyıklı, N. D. (2022). Kuzeydoğu Akdeniz’de Yaşayan Chelidonichthys lucerna (Linnaeus, 1758) Türünün Otolit Biyometrisi. Ecological Life Sciences, 17(4), 187-202.
  • Bath, G. E., Thorrold, S. R., Jones, C. M., Campana, S. E., McLaren, J. W., & Lam, J. W. (2000). Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et cosmochimica acta, 64(10), 1705-1714.
  • Begg, G. A., & Brown, R.W. (2000). Stock identification of Haddock Melanogrammus aeglefinus on Georges Bank based on otolith shape analysis. Transactions of American Fisheries Society, 129, 335-345.
  • Begg, G. A., &Waldman, J. R. (1999). An holistic approach to fish stock identification. Fisheries research, 43(1-3), 35-44.
  • Berg, F., Almeland, O.W., Skadal, J., Slotte, A., Andersson, L., & Folkvord, A. (2018). Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus). PLoS One, 13, e0190995.
  • Bilecenoğlu, M., Kaya, M., Cihangir, B., & Çiçek, E. (2014). An updated checklist of the marine fishes of Turkey. Turkish Journal of Zoology, 38(6), 901-929.
  • Bouchard, C., Thorrold, S.R., & Fortier, L. (2015). Spatial segregation, dispersion and migration in early stages of polar cod Boreogadus saida revealed by otolith chemistry. Marine Biology, 162, 855–868.
  • Bourehail, N., Morat, F., Lecomte-Finiger, R., & Kara, M. H. (2015). Using otolith shape analysis to distinguish barracudas Sphyraena sphyraena and Sphyraena viridensis from the Algerian coast. Cybium 39(4), 271-278.
  • Bostancı, D., Polat, N., Kurucu, G., Yedier, S., Kontaş, S., & Darçin, M. (2015). Using otolith shape and morphometry to identify four Alburnus species (A. chalcoides, A. escherichii, A. mossulensis and A. tarichi) in Turkish inland waters. Journal of Applied Ichthyology, 31(6), 1013-1022.
  • Cadrin, S. X., Karr, L. A., & Mariani, S. (2014). Stock identification methods: an overview. Stock identification methods, 1-5.
  • Campana, S.E., & Casselman, J. M. (1993). Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences, 50, 1062–1083.
  • Campana, S. E., (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188, 263–297.
  • Campana, S. E., Chouinard, G. A., Hanson, J. M., Frechet, A., & Brattey, J. (2000). Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research, 46, 343–357.
  • Campana, S. E., & Thorrold, S. R. (2001). Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?. Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 30-38.
  • Cardinale, M., Doering-Arjes, P., Kastowsky, M., & Mosegaard, H. (2004). Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 61, 158–167.
  • Carvalho, B.M., Vaz-dos-Santos, A.M., Spach, H.L., & Volpedo, A.V. (2015). Ontogenetic development of the sagittal otolith of the anchovy, Anchoa tricolor, in a subtropical estuary. Scientia Marina, 79, 409–418.
  • Castonguay, M., Simard, P., & Cagnon, P. (1991). Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination. Canadian Journal of Fisheries and Aquatic Sciences, 48(2), 296-302.
  • Correia, A.T., Hamer, P., Carocinho, B., & Silva, A. (2014). Evidence for meta-population structure of Sardina pilchardus in the Atlantic Iberian waters from otoliths elemental signatures of a strong cohort. Fisheries Research, 149, 76–85.
  • Çiçek, E., Avsar, D., Ozyurt, C. E., Yeldan, H., & Manasırlı, M. (2008). Age, growth, reproduction and mortality of tub gurnard (Chelidonichthys lucernus (Linnaeus, 1758)) inhabiting in Babadillimani Bight (Northeastern Mediterranean Coast of Turkey). Journal of Biological Sciences, 8(1): 155-160.
  • Çiçek, E., Avşar, D., Yeldan, H., & Manaşırlı, M. (2020). Comparative morphology of the sagittal otolith of mullet species (Mugilidae) from the Iskenderun Bay, north-eastern Mediterranean. Acta Biologica Turcica, 33(4), 219-226.
  • Çiçek, E., Avşar, D., Yeldan, H., & Manaşırlı, M. (2021). Otoliths atlas of 77 fish species from the Iskenderun Bay, Northeastern Mediterranean Sea. Fishtaxa-Journal of Fish Taxonomy, (19).
  • Daros, F. A., Spach, H. L., Sial, A. N., & Correia, A. T. (2016). Otolith fingerprints of the coral reef fish Stegastes fuscus in southeast Brazil: a useful tool for population and connectivity studies. Regional Studies in Marine Science, 3, 1–20.
  • Devries, D. A., Churchill, B. G., & Prager, M. H. (2002). Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of King Mackerel. Fisheries Research, 57, 51-62.
  • Dürrani, Ö., & Seyhan, K. (2024). Stock identification of the Mediterranean horse mackerel (Carangidae: Trachurus mediterraneus) in the Marmara and Black Seas using body and otolith shape analyses. Estuarine, Coastal and Shelf Science, 299, 108687.
  • Heimbrand, Y., Limburg, K. E., Hüssy, K., Casini, M., Sjöberg, R., Palmén Bratt, A. M., & Öhlund, J. (2020). Seeking the true time: Exploring otolith chemistry as an age‐determination tool. Journal of fish biology, 97(2), 552-565.
  • Elsdon, T. S., & Gillanders, B. M. (2002). Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1796–1808.
  • EPA. (2014). "Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry," Revision 2. Washington, DC.
  • Ergüden, D., & Turan, C. (2005). Examination of genetic and morphologic structure of sea-bass (Dicentrarchus labrax L., 1758) populations in Turkish coastal waters. Turkish Journal of Veterinary & Animal Sciences, 29(3), 727-733.
  • Ferreira, I., Santos, D., Moreira, C., Feijó, D., Rocha, A., & Correia, A. T. (2019). Population structure of Chelidonichthys lucerna in Portugal mainland using otolith shape and elemental signatures. Marine Biology Research, 15(8-9), 500-512.
  • Ferreira, I., Daros, F. A., Moreira, C., Feijó, D., Rocha, A., Mendez-Vicente, A., ... & Correia, A. T. (2023). Is Chelidonichthys lucerna (Linnaeus, 1758) a Marine Estuarine-Dependent Fish? Insights from Saccular Otolith Microchemistry. Fishes, 8(7), 383.
  • Foresberg, J. E., & Neal, R. (1993). Estimating sex of Pacific halibut (Hippoglossus stenolepis) using Fourier shape analysis of otoliths. Technical Report- International Pacific Halibut Commission, 29, 5–23.
  • Forrester, G. E., & Swearer, S. E. (2002). Trace elements in otoliths indicate the use of open-coast versus bay nursery habitats by juvenile California halibut. Marine Ecology Progress Series, 241, 201-213.
  • Gillanders, B. M., & Kingsford, M. J. (1996). Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Marine Ecology Progress Series, 141, 13-20.
  • Gillanders, B. M., & Kingsford, M. J. (2003). Spatial variation in elemental composition of otoliths of three species of fish (family Sparidae). Estuarine, Coastal and Shelf Science, 57(5-6), 1049-1064.
  • Halden, N. M., Mejia, S. R., Babaluk, J. A., Reist, J. D., Kristofferson, A. H., Campbell, J. L., & Teesdale, W. J. (2000). Oscillatory zinc distribution in Arctic char (Salvelinus alpinus) otoliths: The result of biology or environment? Fisheries Research, 46(1-3), 289-298.
  • Hamer, P. A., Jenkins, G. P., & Coutin, P. (2006). Barium variation in Pagrus auratus (Sparidae) otoliths: a potential indicator of migration between an embayment and ocean waters in south-eastern Australia. Estuarine, Coastal and Shelf Science, 68(3-4), 686-702.
  • Higgins, R., Isidro, E., Menezes, G., & Correia, A. (2013). Otolith elemental signatures indicate population separation in deep-sea rockfish, Helicolenus dactylopterus and Pontinus kuhlii, from the Azores. Journal of Sea Research, 83, 202–208.
  • Hüssy, K., Haase, S., Mion, M., Hilvarsson, A., Radtke, K., Thomsen, T. B., ... & Sturrock, A. M. (2024). Into the wild: coupling otolith and archival tag records to test assumptions underpinning otolith chemistry applications in wild fish. Frontiers in marine science, 11, 1365023.
  • Ilkyaz, A. T., Metin, G., & Kinacigil, H. T. (2010). The use of otolith length and weight measurements in age estimations of three Gobiidae species (Deltentosteus quadrimaculatus, Gobius niger, Lesueurigobius friesii). Turkish Journal of Zoology, 35, 819–827.
  • İşmen, A., İşmen, P., & Başusta, N. (2004). Age, growth and reproduction of Tub Gurnard (Chelidonichthys lucerna L. 1758) in the Bay of Iskenderun in the eastern Mediterranean. Turkish Journal of Veterinary Animal Sciences, 28(2), 289-295.
  • Kerr, L. A., Whitener, Z. T., Cadrin, S. X., Morse, M. R., Secor, D. H., & Golet, W. (2020). Mixed stock origin of Atlantic bluefin tuna in the US rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fisheries research, 224, 105461.
  • Koochaknejad, E., Closs, G. P., Jarvis, M., Eskandari, G., Savari, A., Safahieh, A., & Reid, M. (2024). Preliminary microchemical analyses of North-western Persian Gulf hilsa shad otolith trace elements: Indications of complex migratory behavior and stock structure. Journal of Experimental Marine Biology and Ecology, 571, 151981.
  • Ladroit, Y., Maolagain, C. O., & Horn P. L. (2017). An investigation of otolith shape analysis as a tool to determine stock structure of ling (Genypterus blacodes). New Zealand Fisheries Assessment Report 2017/24, 16.
  • Martin, G.B., & Thorrold, S.R. (2005). Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series, 293, 223–232.
  • Mathews, T., & Fisher, N. S. (2009). Dominance of dietary intake of metals in marine elasmobranch and teleost fish. Science of the total environment, 407(18), 5156-5161.
  • Moreira, C., Froufe, E., Sial, A. N., Caeiro, A., Vaz-Pires, P., & Correia A. T. (2018). Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry. Fisheries Research, 197:113–122.
  • Moreira, C., Froufe, E., Sial, A.N., Caeiro, A., Vaz-Pires, P., & Correia, A. T. (2019). Otolith shape analysis as a tool to infer the population structure of the blue Jack mackerel, Trachurus picturatus, in the NE Atlantic. Fisheries Research, 209, 40–48.
  • Özpiçak, M., Saygin, S., Aydin, A., Hancer, E., Yilmaz, S., Polat, N. (2018). Otolith shape analyses of Squalius cephalus (Linnaeus, 1758)(Actinopterygii: Cyprinidae) inhabiting four inland water bodies of the middle Black Sea region, Turkey. Iranian Journal of Ichthyology, 5(4), 293-302.
  • Özpiçak, M., Saygın, S., & Polat, N. (2019). Otolith Shape Analysis of Bluefish, Pomatomus saltatrix (Linnaeus, 1766) in the Black Sea Region (Samsun, Turkey). Acta Aquatica Turcica, 15(4), 507-516.
  • Patterson, H. M., Thorrold, S. R., & Shenker, J. M. (1999). Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution based ICPMS. Coral Reefs. 18, 171–178.
  • Patterson, H. M., McBride, R. S., & Julien, N. (2004). Population structure of red drum (Sciaenops ocellatus) as determined by otolith chemistry. Marine Biology, 144, 855-862.
  • Pawson, M. G. (1990). Using otolith weight to age fish. Journal of Fish Biology, 36, 521–531.
  • Pender, P. J., & Griffin, R. K. (1996). Habitat history of barramundi Lates calcarifer in a north Australian river system based on barium and strontium levels in scales. Transactions of the American Fisheries Society, 125(5), 679-689.
  • Pentreath, R. J. (1973). The accumulation and retention of 65Zn and 54Mn by the plaice, Pleuronectes platessa L. Journal of experimental marine Biology and Ecology, 12(1), 1-18.
  • Ponton, S., Flanagan, L. B., Alstad, K. P., Johnson, B. G., Morgenstern, K. A. I., Kljun, N., & Barr, A. G. (2006). Comparison of ecosystem water‐use efficiency among Douglas‐fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology, 12(2), 294-310.
  • Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.
  • Ranaldi, M. M., & Gagnon, M. M. (2008). Zinc incorporation in the otoliths of juvenile pink snapper (Pagrus auratus Forster): The influence of dietary versus waterborne sources. Journal of Experimental Marine Biology and Ecology, 360(1), 56-62.
  • Reis-Santos, P., Tanner, S. E., Elsdon, T. S., Cabral, H. N., & Gillanders, B. M. (2013). Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology, 446, 245–252.
  • Reznick, D., Lindbeck, E., & Bryga, H. (1989). Slower growth results in larger otoliths: an experimental test with guppies (Poecilia reticulata). Canadian Journal of Fisheries and Aquatic Sciences, 46, 108–112.
  • Richards, W. J., & Saksena, V. P. (1990). Triglidae. In: Quero, J. C., Hureau, J. C., Karrer, C.A.P., Saldanha, L. (Eds). Check-List of the Fishes of the Eastern Tropical Atlantic (CLOFETA). JNICT, Lisbon: SEI, Paris and UNESCO, Paris, 1990; Vol. 2, 680-684
  • Rooker, J. R., Zdanowicz, V. S., & Secor, D. H. (2001). Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Marine Biology, 139, 35–43.
  • Saygın, S. (2019). İnci kefali (Alburnus tarichi (Güldenstädt, 1814)’nin otolit stronsiyum izotop oranlarından (87Sr/86Sr) faydalanılarak en uygun doğal üreme alanının belirlenmesi ve türün biyolojik döngüsü.
  • Saygın, S. (2024). Otolith shape analysis of red mullet, Mullus barbatus (Mullidae) in Turkish Waters of the Aegean, Black, and Mediterranean Seas. Journal of Ichthyology, 1-11.
  • Schroeder, R., Schwingel, P. R., & Correia, A. T. (2022). Population structure of the Brazilian sardine (Sardinella brasiliensis) in the Southwest Atlantic inferred from body morphology and otolith shape signatures. Hydrobiologia, 849(6), 1367-1381.
  • Secor, D. H., & Rooker, J. R. (2000). Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Research, 46, 359–371.
  • Serpin, D. (2007). Iskarmoz balığı (Saurida undosquamis Richardson, 1848)populasyonlarının morfometrik ve meristik karakterler ile otolit element kompozisyonları arasındaki farklılıklar (Master's thesis, Fen Bilimleri Enstitüsü).
  • Silva, D. M., Santos, P., & Correia, A. T. (2011). Discrimination of Trisopterus luscus stocks in the northern of Portugal using otolith elemental fingerprints. Aquatic Living Resources, 24, 85–91.
  • Simoneau, M., Casselman, J. M., & Fortin, R. (2000). Determining the effect of negative allometry (length/height relationship) on variation in otolith shape in lake trout (Salvelinus namaycush), using Fourier-series analysis. Canadian Journal of Zoology, 78, 1597–1603.
  • Stransky, C., Murta, A. G., Schlickeisen, J., & Zimmermann, C. (2008). Otolith shape analysis as a tool for stock separation of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean. Fisheries Research, 89(2), 159-166.
  • Sturrock, A. M., Trueman, C. N., Darnaude, A. M., & Hunter, E. (2012). Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology, 81, 766–795.
  • Sturrock, A. M., Hunter, E., Milton, J. A., EIMF, Johnson, R. C., Waring, C. P., & Trueman, C. N. (2015). Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution, 6(7), 806-816.
  • Thomas, O. R., Ganio, K., Roberts, B. R., & Swearer, S. E. (2017). Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics, 9(3), 239-249.
  • Turan, C., Ergüden, D., Gürlek, M., Başusta, N., & Turan, F. (2004). Morphometric structuring of the anchovy (Engraulis encrasicolus L.) in the Black, Aegean and Northeastern Mediterranean Seas. Turkish Journal of Veterinary & Animal Sciences, 28(5), 865-871.
  • Turan, C. (2006). The use of otolith shape and chemistry to determine stock structure of Mediterranean horse mackerel Trachurus mediterraneus (Steindachner). Journal of Fish Biology, 69, 165-180.
  • Turan, C., Oral, M., Öztürk, B., & Düzgüneş, E. (2006). Morphometric and meristic variation between stocks of Bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and northeastern Mediterranean Seas. Fisheries Research, 79(1-2), 139-147.
  • Tuset V. M., Lozano, I. J., Gonzalez, J. A., Pertusa, J. F., & Garcia-Diaz, M. M. (2003b). Shape indices to identify regional differences in otolith morphology of comber Serranus cabrilla (L., 1758). Journal of Applied Ichthyology, 19, 88–93.
  • Tuset, V. M., Rosin, P. L., & Lombarte, A. (2006) Sagittal otolith shape used in the identification of fishes of the genus Serranus. Fisheries Research, 81, 316–325.
  • Tuset V. M., Lombarte, A., & Assis, C. A. (2008). Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina, 72S1, 7-198.
  • Uyan, A. (2014). Kırlangıç (Chelidonichthys lucerna Linnaeus, 1758) populasyonlarının genetik ve morfolojik yapı analizi (Master's thesis, Fen Bilimleri Enstitüsü).
  • Vieira, A. R., Neves, A., Sequeira, V., Paiva, R. B., & Gordo, L. S. (2014). Otolith shape analysis as a tool for stock discrimination of forkbeard (Phycis phycis) in the Northeast Atlantic. Hydrobiologia, 728, 103–110.
  • Vignon, M. (2015). Disentangling and quantifying sources of otolith shape variation across multiple scales using a new hierarchical partitioning approach. Marine Ecology Progress Series, 534, 163–177.
  • Walther, B. D., & Limburg, K. E. (2012). The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology, 81(2), 796-825.
  • Zar, J. H. (1999). Biostatistical analysis. Prentice Hall, Engelwood Cliffs, N.J., USA.
  • Zorica, B., Sinovcic, G., & Cikes Kec, V. (2010). Preliminary data on the study of otolith morphology of five pelagic fish species from the Adriatic Sea (Croatia). Acta Adriatica, 51(1), 89-96.

Türkiye Kıyılarında Kırlangıç Balığının (Chelidonichthys lucerna Linnaeus, 1758) Otolit Kimyası ve Otolit Şekil Analizi Kullanılarak Populasyon Yapısı

Yıl 2024, Cilt: 7 Sayı: 1, 67 - 85, 10.07.2024
https://doi.org/10.46384/jmsf.1488491

Öz

Chelidonichthys lucerna ekonomik öneme sahip demersal bir türdür. Ülkemizde aşırı avcılık baskısı altındadır ve elde edilen miktar azalmaktadır. Türün populasyon yapısı, habitat bağlantıları hakkındaki bilgi sınırlıdır. Bu çalışmada Türkiye kıyılarında dört avlanma bölgesinde (Karadeniz/Ordu, Marmara Denizi/Bandırma, Ege Denizi/Foça ve Akdeniz/Mersin) Şubat 2020-Aralık 2020 tarihleri arasında yakalanan 160 adet bireyin otolit şekli ve kimyası incelenmiştir. Boy aralığı benzer bireylerin TL (19-25 cm, TL) otolit morfolojisi ve kimyası (Li:Ca, Na:Ca, Mg:Ca, Mn:Ca, Fe:Ca, Co:Ca, Ni:Ca, Cu:Ca, Zn:Ca, Sr:Ca, Ba:Ca, Pb:Ca, K:Ca, P:Ca) tek ve çok değişkenli istatistiksel analizlerle değerlendirilmiştir. Otolit morfolojisi ve kimyası tekniklerinin genel kombinasyonu, örneklerin orijinal konumlarına en yüksek yeniden sınıflandırma başarısını (%75-%90) ve örnekleme bölgeleri arasında önemli farklılıkların varlığını ortaya çıkarmıştır. Otolit şekil analizleri ve otolit kimyası birlikte değerlendirildiğinde dört denizden örneklenen (Karadeniz, Marmara, Ege ve Akdeniz) C. lucerna bireylerini tam olarak ayırt edebilmiştir. Ayrıca, analiz sonuçları, Marmara ve Ege denizlerindeki bireyler arasında habitat bağlantılarının bulunduğunu, C. lucerna stokları açısından Karadeniz ve Akdeniz'in izole bölgeler olduğunu ortaya koymuştur. Elde edilen şekil ve kimyasal bulgular, C. lucerna'nın Türkiye kıyılarında tek bir stok birimi olmadığını ve bu balık stoklarının balıkçılık amacıyla ayrı ayrı yönetilmesi gerektiğini göstermiştir.

Proje Numarası

FDK-2020-3428

Kaynakça

  • Adelir-Alves, J., Daros, F. A, Spach, H. L., Soeth, M., & Correia, A. T. (2018). Otoliths as a tool to study reef fish population structure from coastal islands of South Brazil. Marine Biology Research, 14, 973–988.
  • Aguirre, H., & Lombarte, A. (1999). Ecomorphologic comparisons of sagittae in Mullus barbatus and M. surmuletus. Journal of Fish Biology, 55, 105–114.
  • Agüera, A, & Brophy, D. (2011). Use of saggital otolith shape analysis to discriminate Northeast Atlantic and western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fisheries Research, 110, 465– 471.
  • Akyol, O., Metin, G., & Unsal, S. (1997). Relationship between otolith to fork lengths of sardine (Sardina pilchardus Walbaum, 1972) in the Bay of Izmir (Aegean Sea). Mediterranean Fisheries Congress 9–11 April 1997, Izmir, Turkey, pp. 925–929 (in Turkish).
  • Amouei, F., Valinassab, T., & Haitov, A. (2014). Aging and morphology of otolith in Alburnus chalcoides (Guldenstaedt, 1772) in the southern Caspian Sea. Caspian Journal of Environmental Sciences, 12, 205–214.
  • Atay, D. (1985). Deniz Balıkları ve Üretim Tekniği. A.Ü. Ziraat Fakültesi Yay. 943 Ders Kitabı No: 268, Ankara, 278s.
  • Avigliano, E., Domanico, A., Sánchez, S., & Volpedo, A. V. (2017). Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fisheries Research, 186, 1-10.
  • Bal, H., & Esen, S. (2021). Preliminary study on otolith chemistry and otolith morphology of two demersal fish species, European hake (Merluccius merluccius Linnaeus, 1758) and striped red mullet (Mullus surmuletus Linnaeus, 1758) in the Sea of Marmara. Ege Journal of Fisheries and Aquatic Sciences, 38(4), 515-521.
  • Başusta, A., Bal, H., & Aslan, E. (2013a). Otolith biometry-total length relationships in the population of Hazar Bleak, Alburnus heckeli (Battalgil, 1943) inhabiting Lake Hazar, Elazig, Turkey. Pakistan Journal of Zoology, 45(1), 1180–1182.
  • Başusta, A., Özer, E. I., & Girgin, H. (2013ab). Munzur Nehri'ndeki kırmızı benekli alabalığın (Salmo trutta macrostigma (Dummeril, 1858)) otolit boyutları- balık boyu arasındaki ilişki. Journal of FisheriesSciences.com, 7(1), 22–29.
  • Başusta, A., Özer, E. I., & Girgin, H. (2013bc). Akdeniz'deki Lepidotrigla dieuzeidei (Blanc & Hureau, 1973) populasyonunda otolit biyometrisi-balık boyu uzunluğu arasındaki ilişki. Yunus Araştırma Bülteni, 3, 3–9.
  • Başusta, A., & Bıyıklı, N. D. (2022). Kuzeydoğu Akdeniz’de Yaşayan Chelidonichthys lucerna (Linnaeus, 1758) Türünün Otolit Biyometrisi. Ecological Life Sciences, 17(4), 187-202.
  • Bath, G. E., Thorrold, S. R., Jones, C. M., Campana, S. E., McLaren, J. W., & Lam, J. W. (2000). Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et cosmochimica acta, 64(10), 1705-1714.
  • Begg, G. A., & Brown, R.W. (2000). Stock identification of Haddock Melanogrammus aeglefinus on Georges Bank based on otolith shape analysis. Transactions of American Fisheries Society, 129, 335-345.
  • Begg, G. A., &Waldman, J. R. (1999). An holistic approach to fish stock identification. Fisheries research, 43(1-3), 35-44.
  • Berg, F., Almeland, O.W., Skadal, J., Slotte, A., Andersson, L., & Folkvord, A. (2018). Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus). PLoS One, 13, e0190995.
  • Bilecenoğlu, M., Kaya, M., Cihangir, B., & Çiçek, E. (2014). An updated checklist of the marine fishes of Turkey. Turkish Journal of Zoology, 38(6), 901-929.
  • Bouchard, C., Thorrold, S.R., & Fortier, L. (2015). Spatial segregation, dispersion and migration in early stages of polar cod Boreogadus saida revealed by otolith chemistry. Marine Biology, 162, 855–868.
  • Bourehail, N., Morat, F., Lecomte-Finiger, R., & Kara, M. H. (2015). Using otolith shape analysis to distinguish barracudas Sphyraena sphyraena and Sphyraena viridensis from the Algerian coast. Cybium 39(4), 271-278.
  • Bostancı, D., Polat, N., Kurucu, G., Yedier, S., Kontaş, S., & Darçin, M. (2015). Using otolith shape and morphometry to identify four Alburnus species (A. chalcoides, A. escherichii, A. mossulensis and A. tarichi) in Turkish inland waters. Journal of Applied Ichthyology, 31(6), 1013-1022.
  • Cadrin, S. X., Karr, L. A., & Mariani, S. (2014). Stock identification methods: an overview. Stock identification methods, 1-5.
  • Campana, S.E., & Casselman, J. M. (1993). Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences, 50, 1062–1083.
  • Campana, S. E., (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188, 263–297.
  • Campana, S. E., Chouinard, G. A., Hanson, J. M., Frechet, A., & Brattey, J. (2000). Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research, 46, 343–357.
  • Campana, S. E., & Thorrold, S. R. (2001). Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?. Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 30-38.
  • Cardinale, M., Doering-Arjes, P., Kastowsky, M., & Mosegaard, H. (2004). Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 61, 158–167.
  • Carvalho, B.M., Vaz-dos-Santos, A.M., Spach, H.L., & Volpedo, A.V. (2015). Ontogenetic development of the sagittal otolith of the anchovy, Anchoa tricolor, in a subtropical estuary. Scientia Marina, 79, 409–418.
  • Castonguay, M., Simard, P., & Cagnon, P. (1991). Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination. Canadian Journal of Fisheries and Aquatic Sciences, 48(2), 296-302.
  • Correia, A.T., Hamer, P., Carocinho, B., & Silva, A. (2014). Evidence for meta-population structure of Sardina pilchardus in the Atlantic Iberian waters from otoliths elemental signatures of a strong cohort. Fisheries Research, 149, 76–85.
  • Çiçek, E., Avsar, D., Ozyurt, C. E., Yeldan, H., & Manasırlı, M. (2008). Age, growth, reproduction and mortality of tub gurnard (Chelidonichthys lucernus (Linnaeus, 1758)) inhabiting in Babadillimani Bight (Northeastern Mediterranean Coast of Turkey). Journal of Biological Sciences, 8(1): 155-160.
  • Çiçek, E., Avşar, D., Yeldan, H., & Manaşırlı, M. (2020). Comparative morphology of the sagittal otolith of mullet species (Mugilidae) from the Iskenderun Bay, north-eastern Mediterranean. Acta Biologica Turcica, 33(4), 219-226.
  • Çiçek, E., Avşar, D., Yeldan, H., & Manaşırlı, M. (2021). Otoliths atlas of 77 fish species from the Iskenderun Bay, Northeastern Mediterranean Sea. Fishtaxa-Journal of Fish Taxonomy, (19).
  • Daros, F. A., Spach, H. L., Sial, A. N., & Correia, A. T. (2016). Otolith fingerprints of the coral reef fish Stegastes fuscus in southeast Brazil: a useful tool for population and connectivity studies. Regional Studies in Marine Science, 3, 1–20.
  • Devries, D. A., Churchill, B. G., & Prager, M. H. (2002). Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of King Mackerel. Fisheries Research, 57, 51-62.
  • Dürrani, Ö., & Seyhan, K. (2024). Stock identification of the Mediterranean horse mackerel (Carangidae: Trachurus mediterraneus) in the Marmara and Black Seas using body and otolith shape analyses. Estuarine, Coastal and Shelf Science, 299, 108687.
  • Heimbrand, Y., Limburg, K. E., Hüssy, K., Casini, M., Sjöberg, R., Palmén Bratt, A. M., & Öhlund, J. (2020). Seeking the true time: Exploring otolith chemistry as an age‐determination tool. Journal of fish biology, 97(2), 552-565.
  • Elsdon, T. S., & Gillanders, B. M. (2002). Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1796–1808.
  • EPA. (2014). "Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry," Revision 2. Washington, DC.
  • Ergüden, D., & Turan, C. (2005). Examination of genetic and morphologic structure of sea-bass (Dicentrarchus labrax L., 1758) populations in Turkish coastal waters. Turkish Journal of Veterinary & Animal Sciences, 29(3), 727-733.
  • Ferreira, I., Santos, D., Moreira, C., Feijó, D., Rocha, A., & Correia, A. T. (2019). Population structure of Chelidonichthys lucerna in Portugal mainland using otolith shape and elemental signatures. Marine Biology Research, 15(8-9), 500-512.
  • Ferreira, I., Daros, F. A., Moreira, C., Feijó, D., Rocha, A., Mendez-Vicente, A., ... & Correia, A. T. (2023). Is Chelidonichthys lucerna (Linnaeus, 1758) a Marine Estuarine-Dependent Fish? Insights from Saccular Otolith Microchemistry. Fishes, 8(7), 383.
  • Foresberg, J. E., & Neal, R. (1993). Estimating sex of Pacific halibut (Hippoglossus stenolepis) using Fourier shape analysis of otoliths. Technical Report- International Pacific Halibut Commission, 29, 5–23.
  • Forrester, G. E., & Swearer, S. E. (2002). Trace elements in otoliths indicate the use of open-coast versus bay nursery habitats by juvenile California halibut. Marine Ecology Progress Series, 241, 201-213.
  • Gillanders, B. M., & Kingsford, M. J. (1996). Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Marine Ecology Progress Series, 141, 13-20.
  • Gillanders, B. M., & Kingsford, M. J. (2003). Spatial variation in elemental composition of otoliths of three species of fish (family Sparidae). Estuarine, Coastal and Shelf Science, 57(5-6), 1049-1064.
  • Halden, N. M., Mejia, S. R., Babaluk, J. A., Reist, J. D., Kristofferson, A. H., Campbell, J. L., & Teesdale, W. J. (2000). Oscillatory zinc distribution in Arctic char (Salvelinus alpinus) otoliths: The result of biology or environment? Fisheries Research, 46(1-3), 289-298.
  • Hamer, P. A., Jenkins, G. P., & Coutin, P. (2006). Barium variation in Pagrus auratus (Sparidae) otoliths: a potential indicator of migration between an embayment and ocean waters in south-eastern Australia. Estuarine, Coastal and Shelf Science, 68(3-4), 686-702.
  • Higgins, R., Isidro, E., Menezes, G., & Correia, A. (2013). Otolith elemental signatures indicate population separation in deep-sea rockfish, Helicolenus dactylopterus and Pontinus kuhlii, from the Azores. Journal of Sea Research, 83, 202–208.
  • Hüssy, K., Haase, S., Mion, M., Hilvarsson, A., Radtke, K., Thomsen, T. B., ... & Sturrock, A. M. (2024). Into the wild: coupling otolith and archival tag records to test assumptions underpinning otolith chemistry applications in wild fish. Frontiers in marine science, 11, 1365023.
  • Ilkyaz, A. T., Metin, G., & Kinacigil, H. T. (2010). The use of otolith length and weight measurements in age estimations of three Gobiidae species (Deltentosteus quadrimaculatus, Gobius niger, Lesueurigobius friesii). Turkish Journal of Zoology, 35, 819–827.
  • İşmen, A., İşmen, P., & Başusta, N. (2004). Age, growth and reproduction of Tub Gurnard (Chelidonichthys lucerna L. 1758) in the Bay of Iskenderun in the eastern Mediterranean. Turkish Journal of Veterinary Animal Sciences, 28(2), 289-295.
  • Kerr, L. A., Whitener, Z. T., Cadrin, S. X., Morse, M. R., Secor, D. H., & Golet, W. (2020). Mixed stock origin of Atlantic bluefin tuna in the US rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fisheries research, 224, 105461.
  • Koochaknejad, E., Closs, G. P., Jarvis, M., Eskandari, G., Savari, A., Safahieh, A., & Reid, M. (2024). Preliminary microchemical analyses of North-western Persian Gulf hilsa shad otolith trace elements: Indications of complex migratory behavior and stock structure. Journal of Experimental Marine Biology and Ecology, 571, 151981.
  • Ladroit, Y., Maolagain, C. O., & Horn P. L. (2017). An investigation of otolith shape analysis as a tool to determine stock structure of ling (Genypterus blacodes). New Zealand Fisheries Assessment Report 2017/24, 16.
  • Martin, G.B., & Thorrold, S.R. (2005). Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series, 293, 223–232.
  • Mathews, T., & Fisher, N. S. (2009). Dominance of dietary intake of metals in marine elasmobranch and teleost fish. Science of the total environment, 407(18), 5156-5161.
  • Moreira, C., Froufe, E., Sial, A. N., Caeiro, A., Vaz-Pires, P., & Correia A. T. (2018). Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry. Fisheries Research, 197:113–122.
  • Moreira, C., Froufe, E., Sial, A.N., Caeiro, A., Vaz-Pires, P., & Correia, A. T. (2019). Otolith shape analysis as a tool to infer the population structure of the blue Jack mackerel, Trachurus picturatus, in the NE Atlantic. Fisheries Research, 209, 40–48.
  • Özpiçak, M., Saygin, S., Aydin, A., Hancer, E., Yilmaz, S., Polat, N. (2018). Otolith shape analyses of Squalius cephalus (Linnaeus, 1758)(Actinopterygii: Cyprinidae) inhabiting four inland water bodies of the middle Black Sea region, Turkey. Iranian Journal of Ichthyology, 5(4), 293-302.
  • Özpiçak, M., Saygın, S., & Polat, N. (2019). Otolith Shape Analysis of Bluefish, Pomatomus saltatrix (Linnaeus, 1766) in the Black Sea Region (Samsun, Turkey). Acta Aquatica Turcica, 15(4), 507-516.
  • Patterson, H. M., Thorrold, S. R., & Shenker, J. M. (1999). Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution based ICPMS. Coral Reefs. 18, 171–178.
  • Patterson, H. M., McBride, R. S., & Julien, N. (2004). Population structure of red drum (Sciaenops ocellatus) as determined by otolith chemistry. Marine Biology, 144, 855-862.
  • Pawson, M. G. (1990). Using otolith weight to age fish. Journal of Fish Biology, 36, 521–531.
  • Pender, P. J., & Griffin, R. K. (1996). Habitat history of barramundi Lates calcarifer in a north Australian river system based on barium and strontium levels in scales. Transactions of the American Fisheries Society, 125(5), 679-689.
  • Pentreath, R. J. (1973). The accumulation and retention of 65Zn and 54Mn by the plaice, Pleuronectes platessa L. Journal of experimental marine Biology and Ecology, 12(1), 1-18.
  • Ponton, S., Flanagan, L. B., Alstad, K. P., Johnson, B. G., Morgenstern, K. A. I., Kljun, N., & Barr, A. G. (2006). Comparison of ecosystem water‐use efficiency among Douglas‐fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology, 12(2), 294-310.
  • Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.
  • Ranaldi, M. M., & Gagnon, M. M. (2008). Zinc incorporation in the otoliths of juvenile pink snapper (Pagrus auratus Forster): The influence of dietary versus waterborne sources. Journal of Experimental Marine Biology and Ecology, 360(1), 56-62.
  • Reis-Santos, P., Tanner, S. E., Elsdon, T. S., Cabral, H. N., & Gillanders, B. M. (2013). Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology, 446, 245–252.
  • Reznick, D., Lindbeck, E., & Bryga, H. (1989). Slower growth results in larger otoliths: an experimental test with guppies (Poecilia reticulata). Canadian Journal of Fisheries and Aquatic Sciences, 46, 108–112.
  • Richards, W. J., & Saksena, V. P. (1990). Triglidae. In: Quero, J. C., Hureau, J. C., Karrer, C.A.P., Saldanha, L. (Eds). Check-List of the Fishes of the Eastern Tropical Atlantic (CLOFETA). JNICT, Lisbon: SEI, Paris and UNESCO, Paris, 1990; Vol. 2, 680-684
  • Rooker, J. R., Zdanowicz, V. S., & Secor, D. H. (2001). Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Marine Biology, 139, 35–43.
  • Saygın, S. (2019). İnci kefali (Alburnus tarichi (Güldenstädt, 1814)’nin otolit stronsiyum izotop oranlarından (87Sr/86Sr) faydalanılarak en uygun doğal üreme alanının belirlenmesi ve türün biyolojik döngüsü.
  • Saygın, S. (2024). Otolith shape analysis of red mullet, Mullus barbatus (Mullidae) in Turkish Waters of the Aegean, Black, and Mediterranean Seas. Journal of Ichthyology, 1-11.
  • Schroeder, R., Schwingel, P. R., & Correia, A. T. (2022). Population structure of the Brazilian sardine (Sardinella brasiliensis) in the Southwest Atlantic inferred from body morphology and otolith shape signatures. Hydrobiologia, 849(6), 1367-1381.
  • Secor, D. H., & Rooker, J. R. (2000). Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Research, 46, 359–371.
  • Serpin, D. (2007). Iskarmoz balığı (Saurida undosquamis Richardson, 1848)populasyonlarının morfometrik ve meristik karakterler ile otolit element kompozisyonları arasındaki farklılıklar (Master's thesis, Fen Bilimleri Enstitüsü).
  • Silva, D. M., Santos, P., & Correia, A. T. (2011). Discrimination of Trisopterus luscus stocks in the northern of Portugal using otolith elemental fingerprints. Aquatic Living Resources, 24, 85–91.
  • Simoneau, M., Casselman, J. M., & Fortin, R. (2000). Determining the effect of negative allometry (length/height relationship) on variation in otolith shape in lake trout (Salvelinus namaycush), using Fourier-series analysis. Canadian Journal of Zoology, 78, 1597–1603.
  • Stransky, C., Murta, A. G., Schlickeisen, J., & Zimmermann, C. (2008). Otolith shape analysis as a tool for stock separation of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean. Fisheries Research, 89(2), 159-166.
  • Sturrock, A. M., Trueman, C. N., Darnaude, A. M., & Hunter, E. (2012). Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology, 81, 766–795.
  • Sturrock, A. M., Hunter, E., Milton, J. A., EIMF, Johnson, R. C., Waring, C. P., & Trueman, C. N. (2015). Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution, 6(7), 806-816.
  • Thomas, O. R., Ganio, K., Roberts, B. R., & Swearer, S. E. (2017). Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics, 9(3), 239-249.
  • Turan, C., Ergüden, D., Gürlek, M., Başusta, N., & Turan, F. (2004). Morphometric structuring of the anchovy (Engraulis encrasicolus L.) in the Black, Aegean and Northeastern Mediterranean Seas. Turkish Journal of Veterinary & Animal Sciences, 28(5), 865-871.
  • Turan, C. (2006). The use of otolith shape and chemistry to determine stock structure of Mediterranean horse mackerel Trachurus mediterraneus (Steindachner). Journal of Fish Biology, 69, 165-180.
  • Turan, C., Oral, M., Öztürk, B., & Düzgüneş, E. (2006). Morphometric and meristic variation between stocks of Bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and northeastern Mediterranean Seas. Fisheries Research, 79(1-2), 139-147.
  • Tuset V. M., Lozano, I. J., Gonzalez, J. A., Pertusa, J. F., & Garcia-Diaz, M. M. (2003b). Shape indices to identify regional differences in otolith morphology of comber Serranus cabrilla (L., 1758). Journal of Applied Ichthyology, 19, 88–93.
  • Tuset, V. M., Rosin, P. L., & Lombarte, A. (2006) Sagittal otolith shape used in the identification of fishes of the genus Serranus. Fisheries Research, 81, 316–325.
  • Tuset V. M., Lombarte, A., & Assis, C. A. (2008). Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina, 72S1, 7-198.
  • Uyan, A. (2014). Kırlangıç (Chelidonichthys lucerna Linnaeus, 1758) populasyonlarının genetik ve morfolojik yapı analizi (Master's thesis, Fen Bilimleri Enstitüsü).
  • Vieira, A. R., Neves, A., Sequeira, V., Paiva, R. B., & Gordo, L. S. (2014). Otolith shape analysis as a tool for stock discrimination of forkbeard (Phycis phycis) in the Northeast Atlantic. Hydrobiologia, 728, 103–110.
  • Vignon, M. (2015). Disentangling and quantifying sources of otolith shape variation across multiple scales using a new hierarchical partitioning approach. Marine Ecology Progress Series, 534, 163–177.
  • Walther, B. D., & Limburg, K. E. (2012). The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology, 81(2), 796-825.
  • Zar, J. H. (1999). Biostatistical analysis. Prentice Hall, Engelwood Cliffs, N.J., USA.
  • Zorica, B., Sinovcic, G., & Cikes Kec, V. (2010). Preliminary data on the study of otolith morphology of five pelagic fish species from the Adriatic Sea (Croatia). Acta Adriatica, 51(1), 89-96.
Toplam 95 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Popülasyon Ekolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Sibel Atak Sanduvaç 0000-0002-1320-2598

Ali İşmen 0000-0003-2456-0232

Proje Numarası FDK-2020-3428
Yayımlanma Tarihi 10 Temmuz 2024
Gönderilme Tarihi 22 Mayıs 2024
Kabul Tarihi 3 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 1

Kaynak Göster

APA Atak Sanduvaç, S., & İşmen, A. (2024). Türkiye Kıyılarında Kırlangıç Balığının (Chelidonichthys lucerna Linnaeus, 1758) Otolit Kimyası ve Otolit Şekil Analizi Kullanılarak Populasyon Yapısı. Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 7(1), 67-85. https://doi.org/10.46384/jmsf.1488491