Araştırma Makalesi
BibTex RIS Kaynak Göster

Samandağ Kumsalında Yeşil Kaplumbağaların Yuva Yeri Seçiminin Tekrarlanabilirliği

Yıl 2024, Cilt: 7 Sayı: 2, 138 - 145, 25.12.2024
https://doi.org/10.46384/jmsf.1521720

Öz

Yuva yeri seçimi, ebeveyn bakımı olmayan türlerde yavruların hayatta kalması üzerinde maternal bir etkidir. Deniz kaplumbağaları yuva yapmak için kumsallara bağımlıdır ve dişiler embriyolarının başarılı bir şekilde gelişmesi için kumsalda yuva yeri seçimi yaparlar. Bu çalışmada, Akdeniz'de yeşil kaplumbağalar için önemli bir yuvalama kumsalı olan Samandağ kumsalında yuva yeri seçiminin tekrarlanabilirliği araştırılmıştır. 2013 yuvalama sezonu boyunca, dişilerin ilk ve ikinci yuvalarının denize uzaklığı, bitki örtüsüne uzaklığı, yatay mesafesi ve yuva derinliği etiketleme yöntemiyle kaydedilmiştir. Tekrarlanabilirlik analizi R programında rtpR paketi kullanılarak gerçekleştirilmiştir. Toplam 91 kaplumbağa etiketlenmiştir; bu kaplumbağaların 36'sı ilk ve ikinci yuvaları sırasında gözlemlenmiştir. En yüksek tekrarlanabilirlik yatay mesafede bulunmuş, bunu bitki örtüsüne olan mesafe ve denize olan mesafe izlemiştir. Buna karşılık, yuva derinliği önemsiz bir tekrarlanabilirlik göstermiştir. Bu da yeşil kaplumbağaların yuvalama alanı olarak bitki örtüsüne yakın ancak denizden uzak alanları ve yatay mesafe olarak birbirine çok yakın alanları seçtiğini göstermektedir. Bu çalışmanın sonuçları tek bir yıllık yuvalama sezonunun sonuçlarını içermektedir. Yuva yeri seçiminin yıldan yıla tekrarlanabilirliğinin sonuçlarını görmek için gelecekteki çalışmaların birbirini takip eden yıllarda yapılması tavsiye edilir.

Kaynakça

  • Balazs, G.H. (1999). Factors to consider in the tagging of sea turtles. In: K.L. Eckert, K.A. Bjorndal, F.A. Abreu-Grobois & M. Donnelly (Eds), Research and Management Techniques for the Conservation of Sea Turtles (pp 101–109). IUCN/SSC Marine Turtle Specialist Group, Publication no. 4, Washington DC.
  • Boake, C.R.B. (1989). Repeatability: Its role in evolutionary studies of mating behavior. Evolutionary Ecology, 3: 173–182. doi.org/10.1007/BF02270919
  • Booth, D.T. (2017). Influence of incubation temperature on sea turtle hatchling quality. Integrative Zoology, 12(5): 352-360. doi.org/10.1111/1749-4877.12255
  • Bowen, B.W., & Karl, S.A. (2007). Population genetics and phylogeography of sea turtles. Molecular Ecology, 16: 4886–4907. doi.org/10.1111/j.1365-294X.2007.03542.x
  • Dohm, M.R. (2002). Repeatability estimates do not always set an upper limit to heritability. Functional Ecology, 16: 273–280.
  • Ehrhart, L.M. (1982). A review of sea turtle reproduction. In K. Bjorndal (Ed.), Biology and Conservation of Sea Turtles (pp. 29 - 38). Washington DC: Smithsonian Institution Press.
  • Falconer, D.S. & Mackay, T.F.C. (1996). Introduction to quantitative genetics, 4th edition. Prentice Hall, Harlow, U.K. Fowler, L.E. (1979). Hatching success and nest predation in the green sea turtle, Chelonia mydas, at Tortuguero, Costa Rica. Ecology, 60(5): 946-955. doi.org/10.2307/1936863
  • Hart, C.E., Ley-QuiNonez, C., Maldonado-Gasca, A., Zavala-Norzagaray, A., & Abreu-Grobois, F.A. (2014). Nesting characteristics of olive ridley turtles (Lepidochelys olivacea) on El Naranjo Beach, Nayarit, Mexico. Herpetological Conservation and Biology, 9(2): 524-534.
  • Heredero Saura, L., Janez-Escalada, L., Lopez Navas, J., Cordero, K., & Santidrian Tomillo, P. (2022). Nest-site selection influences offspring sex ratio in green turtles, a species with temperature-dependent sex determination. Climatic Change, 170(3): 39. doi.org/10.1007/s10584-022-03325-y
  • Kamel, S.J., & Mrosovsky, N. (2005). Repeatability of nesting preferences in the hawksbill sea turtle, Eretmochelys imbricata, and their fitness consequences. Animal Behaviour, 70: 819–828. doi.org/10.1016/j.anbehav.2005.01.006
  • Kamel, S.J., & Mrosovsky, N. (2006). Inter-seasonal maintenance of individual nest site preferences in hawksbill. Ecology, 87(11): 2947- 2952. doi.org/10.1890/0012-9658(2006)87[2947:IMOINS]2.0.CO;2
  • Kamel, S.J., & Mrosovsky, N. (2004). Nest site selection in leatherbacks, Dermochelys coriacea: Individual patterns and their consequences. Animal Behaviour, 68: 357 - 366. doi.org/10.1016/j.anbehav.2003.07.021.
  • Martins, S., Patricio, R., Clarke, L.J., de Santos Loureiro, N., & Marco, A. (2022). High variability in nest site selection in a loggerhead turtle rookery, in Boa Vista Island, Cabo Verde. Journal of Experimental Marine Biology and Ecology, 556: 151798. doi.org/10.1016/j.jembe.2022.151798
  • McGehee, M.A. (1990). Effects of moisture on eggs and hatchlings of loggerhead sea turtles (Caretta caretta). Herpetologica, 46(3): 251-258.
  • Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non‐Gaussian data: a practical guide for biologists. Biological Reviews, 85(4): 935-956. doi.org/10.1111/j.1469-185X.2010.00141.x
  • Nordmoe, E.D., Sieg, A.E., Sotherland, P.R., Spotila, J.R., Paladino, F.V., & Reina, R.D. (2004). Nest site fidelity of leatherback turtles at Playa Grande, Costa Rica. Animal Behaviour, 68:387–394. doi.org/10.1016/j.anbehav.2003.07.015
  • Obare, F.D., Chira, R., Sigana, D., & Wamukota, A. (2019). Biophysical factors influencing the choice of nesting sites by the green turtle (Chelonia mydas) on the Kenyan coast. Western Indian Ocean Journal of Marine Science, 18(2): 45-55. doi.org/10.4314/wiojms.v18i2.5
  • Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach. Journal of Open Source Software, 6(61): 3167. doi.org/10.21105/joss.03167
  • Patricio, A.R., Varela, M.R., Barbosa, C., Broderick, A.C., Airaud, M.B.F., Godley, B.J., ... & Catry, P. (2018). Nest site selection repeatability of green turtles, Chelonia mydas, and consequences for offspring. Animal Behaviour, 139: 91-102. doi.org/10.1016/j.anbehav.2018.03.006
  • Pfaller, J.B., Weaver, S.M., Williams, K.L., Dodd, M.G., Godfrey, M.H., Griffin, D.B., Pate, S.M., Glen, C.G., Nairn, C.J., & Shamblin, B.M. (2022). One beach amongst many: how weak fidelity to a focal nesting site can bias demographic rates in marine turtles. Marine Biology, 169: 8. doi.org/10.1007/s00227-021-03991-z
  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  • R Studio Team (2020). R Studio: Integrated Development for R. R Studio, PBC, Boston, MA URL http://www.rstudio.com/.
  • Salleh, S.M., Nishizawa, H., Sah, S.A., Chowdhury, A.J., & Rusli, M. U. (2021). Sand particle size influences nest site selection of green turtles (Cheloina mydas) differently in east and west peninsular Malaysia. Herpetological Conservation and Biology, 16(3): 671 - 680.
  • Schwarzkopf, L., & Brooks, R.J. (1987). Nest-site selection and offspring sex ratio in painted turtles, Chrysemys picta. Copeia, 53-61. doi.org/10.2307/1446037
  • Siqueira-Silva, I. S., Arantes, M. O., Hackradt, C. W., & Schiavetti, A. (2020). Environmental and anthropogenic factors affecting nesting site selection by sea turtles. Marine Environmental Research, 162: 105090. doi.org/10.1016/j.marenvres.2020.105090
  • Sönmez, B. (2018). Investigation of temporal and spatial variation of mammalian predation in green sea turtle (Chelonia mydas) nests on Samandağ beach, Eastern Mediterranean. International Journal of Agriculture and Wildlife Science (IJAWS), 4(1): 79 - 88 doi.org/10.24180/ijaws.400827
  • Sönmez, B., Türkecan, O., & Jded, A. (2017). Long distance movement between nesting sites for two green turtles in the eastern Mediterranean. Marine Turtle Newsletter, 153: 7-8.
  • Sönmez, B., & Yalçın Özdilek, Ş. (2013). Conservation technique of the green turtle (Chelonia mydas L. 1758) nests under the risk of tidal inundation with hatcheries, on Samandağ beach, Turkey. Russian Journal of Herpetology, 20(1): 19-26.
  • Sönmez, B., Mestav, B., & Özdilek, Ş. Y. (2024). A 21‐year recovery trend in green turtle nesting activity: 2002–2022. Aquatic Conservation: Marine and Freshwater Ecosystems, 34(1): e4043. doi.org/10.1002/aqc.4043
  • Stoffel, M.A., Nakagawa, S., & Schielzeth, H. (2017). rptR: Repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods in Ecology and Evolution, 8(11): 1639-1644. https://doi.org/10.1111/2041-210X.12797
  • Stokes, H.J., Esteban, N., & Hays, G.C. (2024). Nest site selection in sea turtles shows consistencies across the globe in the face of climate change. Animal Behaviour, 208: 59-68. doi.org/10.1016/j.anbehav.2023.12.001
  • Türkozan, O., Yamamoto, K., & Yılmaz, C. (2011). Nest site preference and hatching success of green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles at Akyatan Beach, Turkey. Chelonian Conservation and Biology, 10(2): 270-275. doi.org/10.2744/CCB-0861.1
  • Whitmore, C.P., & Dutton, P.H. (1985). Infertility, embryonic mortality and nest-site selection in leatherback and green sea turtles in Suriname. Biological conservation, 34(3): 251-272. doi.org/10.1016/0006-3207(85)90095-3
  • Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
  • Wilson, D.S. (1998). Nest-site selection: microhabitat variation and its effects on the survival of turtle embryos. Ecology 79:1884–1892. doi.org/10.1890/0012-9658(1998)079[1884:NSSMVA]2.0.CO;2
  • Yalçın Özdilek, Ş., Sönmez, B., & Kaska, Y. (2016). Sex ratio estimations of Chelonia mydas hatchlings at Samandağ Beach, Turkey. Turkish Journal of Zoology, 40(4): 552-560. doi.org/10.3906/zoo-1501-17
  • Yntema, C.L., & Mrosovsky, N. (1980). Sexual differentiation in hatchling loggerheads (Caretta caretta) incubated at different controlled temperatures. Herpetologica, 36(1): 33-36.

Repeatability of Nest Site Selection of Green Turtles on Samandağ Beach

Yıl 2024, Cilt: 7 Sayı: 2, 138 - 145, 25.12.2024
https://doi.org/10.46384/jmsf.1521720

Öz

Nest site selection is a maternal effect on hatchling survival in species without parental care. Sea turtles depend on sandy beaches for nesting, and females perform nest site selection on the beach for the successful development of their embryos. This study investigated the repeatability of nest site selection on Samandağ beach, a major green turtle nesting beach in the Mediterranean. During the 2013 nesting season, the distance to the sea, distance to vegetation, horizontal distance, and nest depth of the first and second nests of females were recorded using a tagging method. Repeatability analysis was performed using the rtpR package in R. A total of 91 turtles were tagged, of which 36 were observed during their first and second nests. The highest repeatability was found for horizontal distance, followed by distance to vegetation and distance to the sea. In contrast, nest depth showed insignificant repeatability. This suggests that green turtles select nesting sites that are close to the vegetation line but far from the sea and sites that are very close in horizontal distance. The results of this study include the results of a single year nesting season. It is recommended that future studies be conducted in consecutive years to see the results of repeatability of nest site selection from year to year.

Etik Beyan

No ethics committee approval is required for this study.

Teşekkür

I would like to specially thank the Hatay Directorate of Nature Conservation and National Parks of the TC Ministry of Agriculture and Forestry, the Samandağ Environmental Protection and Tourism Association. I would also like to thank Emre Sandık for his cooperation in the statistical analyses, and the volunteers whose names I cannot mention who voluntarily supported the Samandağ sea turtle protection and monitoring study in 2013.

Kaynakça

  • Balazs, G.H. (1999). Factors to consider in the tagging of sea turtles. In: K.L. Eckert, K.A. Bjorndal, F.A. Abreu-Grobois & M. Donnelly (Eds), Research and Management Techniques for the Conservation of Sea Turtles (pp 101–109). IUCN/SSC Marine Turtle Specialist Group, Publication no. 4, Washington DC.
  • Boake, C.R.B. (1989). Repeatability: Its role in evolutionary studies of mating behavior. Evolutionary Ecology, 3: 173–182. doi.org/10.1007/BF02270919
  • Booth, D.T. (2017). Influence of incubation temperature on sea turtle hatchling quality. Integrative Zoology, 12(5): 352-360. doi.org/10.1111/1749-4877.12255
  • Bowen, B.W., & Karl, S.A. (2007). Population genetics and phylogeography of sea turtles. Molecular Ecology, 16: 4886–4907. doi.org/10.1111/j.1365-294X.2007.03542.x
  • Dohm, M.R. (2002). Repeatability estimates do not always set an upper limit to heritability. Functional Ecology, 16: 273–280.
  • Ehrhart, L.M. (1982). A review of sea turtle reproduction. In K. Bjorndal (Ed.), Biology and Conservation of Sea Turtles (pp. 29 - 38). Washington DC: Smithsonian Institution Press.
  • Falconer, D.S. & Mackay, T.F.C. (1996). Introduction to quantitative genetics, 4th edition. Prentice Hall, Harlow, U.K. Fowler, L.E. (1979). Hatching success and nest predation in the green sea turtle, Chelonia mydas, at Tortuguero, Costa Rica. Ecology, 60(5): 946-955. doi.org/10.2307/1936863
  • Hart, C.E., Ley-QuiNonez, C., Maldonado-Gasca, A., Zavala-Norzagaray, A., & Abreu-Grobois, F.A. (2014). Nesting characteristics of olive ridley turtles (Lepidochelys olivacea) on El Naranjo Beach, Nayarit, Mexico. Herpetological Conservation and Biology, 9(2): 524-534.
  • Heredero Saura, L., Janez-Escalada, L., Lopez Navas, J., Cordero, K., & Santidrian Tomillo, P. (2022). Nest-site selection influences offspring sex ratio in green turtles, a species with temperature-dependent sex determination. Climatic Change, 170(3): 39. doi.org/10.1007/s10584-022-03325-y
  • Kamel, S.J., & Mrosovsky, N. (2005). Repeatability of nesting preferences in the hawksbill sea turtle, Eretmochelys imbricata, and their fitness consequences. Animal Behaviour, 70: 819–828. doi.org/10.1016/j.anbehav.2005.01.006
  • Kamel, S.J., & Mrosovsky, N. (2006). Inter-seasonal maintenance of individual nest site preferences in hawksbill. Ecology, 87(11): 2947- 2952. doi.org/10.1890/0012-9658(2006)87[2947:IMOINS]2.0.CO;2
  • Kamel, S.J., & Mrosovsky, N. (2004). Nest site selection in leatherbacks, Dermochelys coriacea: Individual patterns and their consequences. Animal Behaviour, 68: 357 - 366. doi.org/10.1016/j.anbehav.2003.07.021.
  • Martins, S., Patricio, R., Clarke, L.J., de Santos Loureiro, N., & Marco, A. (2022). High variability in nest site selection in a loggerhead turtle rookery, in Boa Vista Island, Cabo Verde. Journal of Experimental Marine Biology and Ecology, 556: 151798. doi.org/10.1016/j.jembe.2022.151798
  • McGehee, M.A. (1990). Effects of moisture on eggs and hatchlings of loggerhead sea turtles (Caretta caretta). Herpetologica, 46(3): 251-258.
  • Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non‐Gaussian data: a practical guide for biologists. Biological Reviews, 85(4): 935-956. doi.org/10.1111/j.1469-185X.2010.00141.x
  • Nordmoe, E.D., Sieg, A.E., Sotherland, P.R., Spotila, J.R., Paladino, F.V., & Reina, R.D. (2004). Nest site fidelity of leatherback turtles at Playa Grande, Costa Rica. Animal Behaviour, 68:387–394. doi.org/10.1016/j.anbehav.2003.07.015
  • Obare, F.D., Chira, R., Sigana, D., & Wamukota, A. (2019). Biophysical factors influencing the choice of nesting sites by the green turtle (Chelonia mydas) on the Kenyan coast. Western Indian Ocean Journal of Marine Science, 18(2): 45-55. doi.org/10.4314/wiojms.v18i2.5
  • Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach. Journal of Open Source Software, 6(61): 3167. doi.org/10.21105/joss.03167
  • Patricio, A.R., Varela, M.R., Barbosa, C., Broderick, A.C., Airaud, M.B.F., Godley, B.J., ... & Catry, P. (2018). Nest site selection repeatability of green turtles, Chelonia mydas, and consequences for offspring. Animal Behaviour, 139: 91-102. doi.org/10.1016/j.anbehav.2018.03.006
  • Pfaller, J.B., Weaver, S.M., Williams, K.L., Dodd, M.G., Godfrey, M.H., Griffin, D.B., Pate, S.M., Glen, C.G., Nairn, C.J., & Shamblin, B.M. (2022). One beach amongst many: how weak fidelity to a focal nesting site can bias demographic rates in marine turtles. Marine Biology, 169: 8. doi.org/10.1007/s00227-021-03991-z
  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  • R Studio Team (2020). R Studio: Integrated Development for R. R Studio, PBC, Boston, MA URL http://www.rstudio.com/.
  • Salleh, S.M., Nishizawa, H., Sah, S.A., Chowdhury, A.J., & Rusli, M. U. (2021). Sand particle size influences nest site selection of green turtles (Cheloina mydas) differently in east and west peninsular Malaysia. Herpetological Conservation and Biology, 16(3): 671 - 680.
  • Schwarzkopf, L., & Brooks, R.J. (1987). Nest-site selection and offspring sex ratio in painted turtles, Chrysemys picta. Copeia, 53-61. doi.org/10.2307/1446037
  • Siqueira-Silva, I. S., Arantes, M. O., Hackradt, C. W., & Schiavetti, A. (2020). Environmental and anthropogenic factors affecting nesting site selection by sea turtles. Marine Environmental Research, 162: 105090. doi.org/10.1016/j.marenvres.2020.105090
  • Sönmez, B. (2018). Investigation of temporal and spatial variation of mammalian predation in green sea turtle (Chelonia mydas) nests on Samandağ beach, Eastern Mediterranean. International Journal of Agriculture and Wildlife Science (IJAWS), 4(1): 79 - 88 doi.org/10.24180/ijaws.400827
  • Sönmez, B., Türkecan, O., & Jded, A. (2017). Long distance movement between nesting sites for two green turtles in the eastern Mediterranean. Marine Turtle Newsletter, 153: 7-8.
  • Sönmez, B., & Yalçın Özdilek, Ş. (2013). Conservation technique of the green turtle (Chelonia mydas L. 1758) nests under the risk of tidal inundation with hatcheries, on Samandağ beach, Turkey. Russian Journal of Herpetology, 20(1): 19-26.
  • Sönmez, B., Mestav, B., & Özdilek, Ş. Y. (2024). A 21‐year recovery trend in green turtle nesting activity: 2002–2022. Aquatic Conservation: Marine and Freshwater Ecosystems, 34(1): e4043. doi.org/10.1002/aqc.4043
  • Stoffel, M.A., Nakagawa, S., & Schielzeth, H. (2017). rptR: Repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods in Ecology and Evolution, 8(11): 1639-1644. https://doi.org/10.1111/2041-210X.12797
  • Stokes, H.J., Esteban, N., & Hays, G.C. (2024). Nest site selection in sea turtles shows consistencies across the globe in the face of climate change. Animal Behaviour, 208: 59-68. doi.org/10.1016/j.anbehav.2023.12.001
  • Türkozan, O., Yamamoto, K., & Yılmaz, C. (2011). Nest site preference and hatching success of green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles at Akyatan Beach, Turkey. Chelonian Conservation and Biology, 10(2): 270-275. doi.org/10.2744/CCB-0861.1
  • Whitmore, C.P., & Dutton, P.H. (1985). Infertility, embryonic mortality and nest-site selection in leatherback and green sea turtles in Suriname. Biological conservation, 34(3): 251-272. doi.org/10.1016/0006-3207(85)90095-3
  • Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
  • Wilson, D.S. (1998). Nest-site selection: microhabitat variation and its effects on the survival of turtle embryos. Ecology 79:1884–1892. doi.org/10.1890/0012-9658(1998)079[1884:NSSMVA]2.0.CO;2
  • Yalçın Özdilek, Ş., Sönmez, B., & Kaska, Y. (2016). Sex ratio estimations of Chelonia mydas hatchlings at Samandağ Beach, Turkey. Turkish Journal of Zoology, 40(4): 552-560. doi.org/10.3906/zoo-1501-17
  • Yntema, C.L., & Mrosovsky, N. (1980). Sexual differentiation in hatchling loggerheads (Caretta caretta) incubated at different controlled temperatures. Herpetologica, 36(1): 33-36.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz ve Nehir Ağzı Ekolojisi , Ekoloji (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Bektaş Sönmez 0000-0002-8190-409X

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 24 Temmuz 2024
Kabul Tarihi 18 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Sönmez, B. (2024). Repeatability of Nest Site Selection of Green Turtles on Samandağ Beach. Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 7(2), 138-145. https://doi.org/10.46384/jmsf.1521720