Research Article
BibTex RIS Cite
Year 2020, , 55 - 75, 31.08.2020
https://doi.org/10.33187/jmsm.669216

Abstract

Project Number

No project number

References

  • [ 1] F. Stummel, K. Hainer, Introduction to Numerical Analysis, Scottish Academic Press, Edinburgh, 1980.
  • [ 2] L. Kohaupt, Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices, J. Math. Sci. Model., 2(2) (2019), 82-98.
  • [ 3] L. Kohaupt, Solution of the vibration problem $M\ddot{y}+B\dot{y}+K y = 0, \, y(t_0)=y_0, \, \dot{y}(t_0)=\dot{y}_0$ {\em without} the hypothesis $B M^{-1} K = K M^{-1} B$ or $B = \alpha M + \beta K$}, Appl. Math. Sci., 2(41) (2008), 1989-2024.
  • [ 4] A.Czornik, P. Jurga´s, Some properties of the spectral radius of a set of matrices, Int. J. Appl. Math. Sci., 16(2)(2006)183-188.
  • [ 5] L. Kohaupt, Solution of the matrix eigenvalue problem $V A + A^{\ast} V = \mu V$ with applications to the study of free linear systems, J. Comp. Appl. Math., 213(1) (2008), 142-165.
  • [ 6] L. Kohaupt, Spectral properties of the matrix $C^{-1} B$ with positive definite matrix $C$ and Hermitian $B$ as well as applications, J. Appl. Math. Comput., 50 (2016), 389-416.
  • [ 7] T.J. Laffey, H. ˘Smigoc, Nonnegatively realizable spectra with two positive eigenvalues, Linear Multilinear Algebra, 58(7-8) (2010), 1053-1069.
  • [ 8] P. Lancaster, Theory of Matrices, Academic Press, New York and London, 1969.
  • [ 9] P.C. M¨uller, W.O. Schiehlen, Linear Vibrations, Martinus Nijhoff Publishers, Dordrecht Boston Lancaster, 1985.
  • [10] S.V. Savchenko, On the change in the spectral properties of a matrix under perturbations of sufficiently low rank, Funct. Anal. Appl., 38(1) (2004), 69-71.
  • [11] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer, New York Heidelberg, Third Edition, 2010.
  • [12] L. Kohaupt, Construction of a biorthogonal system of principal vectors of the matrices $A$ and $A^{\ast}$ with applications to the initial value problem $\dot{x}=A\,x, \; x(t_0)=x_0$, J. Comput. Math. Optim., 3(3) (2007), 163-192.
  • [13] L. Kohaupt, Further spectral properties of the matrix$C^{-1} B$ with positive definite $C$ and Hermitian $B$ applied to wider classes of matrices $C$ and $B$, J. Appl. Math. Comput., 52 (2016), 215-243.
  • [14] L. Kohaupt, Biorthogonalization of the principal vectors for the matrices $A$ and $A^{\ast}$ with application to the computation of the explicit representation of the solution $x(t)$ of $\dot{x}=A\,x, \; x(t_0)=x_0$, Appl. Math. Sci., 2(20) (2008), 961-974.

Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices

Year 2020, , 55 - 75, 31.08.2020
https://doi.org/10.33187/jmsm.669216

Abstract

In the present paper, formulas for the Rayleigh-quotient representation of the real parts, imaginary
parts, and moduli of the eigenvalues of general matrices are obtained that resemble corresponding
formulas for the eigenvalues of self-adjoint matrices. These formulas are of interest in Linear Algebra
and in the theory of linear dynamical systems. The key point is that a weighted scalar product is
used that is defined by means of a special positive definite matrix. As applications, one obtains
convexity properties of newly-defined numerical ranges of a matrix. A numerical example underpins
the theoretical findings.

Supporting Institution

No supporting institution

Project Number

No project number

References

  • [ 1] F. Stummel, K. Hainer, Introduction to Numerical Analysis, Scottish Academic Press, Edinburgh, 1980.
  • [ 2] L. Kohaupt, Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices, J. Math. Sci. Model., 2(2) (2019), 82-98.
  • [ 3] L. Kohaupt, Solution of the vibration problem $M\ddot{y}+B\dot{y}+K y = 0, \, y(t_0)=y_0, \, \dot{y}(t_0)=\dot{y}_0$ {\em without} the hypothesis $B M^{-1} K = K M^{-1} B$ or $B = \alpha M + \beta K$}, Appl. Math. Sci., 2(41) (2008), 1989-2024.
  • [ 4] A.Czornik, P. Jurga´s, Some properties of the spectral radius of a set of matrices, Int. J. Appl. Math. Sci., 16(2)(2006)183-188.
  • [ 5] L. Kohaupt, Solution of the matrix eigenvalue problem $V A + A^{\ast} V = \mu V$ with applications to the study of free linear systems, J. Comp. Appl. Math., 213(1) (2008), 142-165.
  • [ 6] L. Kohaupt, Spectral properties of the matrix $C^{-1} B$ with positive definite matrix $C$ and Hermitian $B$ as well as applications, J. Appl. Math. Comput., 50 (2016), 389-416.
  • [ 7] T.J. Laffey, H. ˘Smigoc, Nonnegatively realizable spectra with two positive eigenvalues, Linear Multilinear Algebra, 58(7-8) (2010), 1053-1069.
  • [ 8] P. Lancaster, Theory of Matrices, Academic Press, New York and London, 1969.
  • [ 9] P.C. M¨uller, W.O. Schiehlen, Linear Vibrations, Martinus Nijhoff Publishers, Dordrecht Boston Lancaster, 1985.
  • [10] S.V. Savchenko, On the change in the spectral properties of a matrix under perturbations of sufficiently low rank, Funct. Anal. Appl., 38(1) (2004), 69-71.
  • [11] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer, New York Heidelberg, Third Edition, 2010.
  • [12] L. Kohaupt, Construction of a biorthogonal system of principal vectors of the matrices $A$ and $A^{\ast}$ with applications to the initial value problem $\dot{x}=A\,x, \; x(t_0)=x_0$, J. Comput. Math. Optim., 3(3) (2007), 163-192.
  • [13] L. Kohaupt, Further spectral properties of the matrix$C^{-1} B$ with positive definite $C$ and Hermitian $B$ applied to wider classes of matrices $C$ and $B$, J. Appl. Math. Comput., 52 (2016), 215-243.
  • [14] L. Kohaupt, Biorthogonalization of the principal vectors for the matrices $A$ and $A^{\ast}$ with application to the computation of the explicit representation of the solution $x(t)$ of $\dot{x}=A\,x, \; x(t_0)=x_0$, Appl. Math. Sci., 2(20) (2008), 961-974.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ludwig Kohaupt 0000-0003-1781-0600

Project Number No project number
Publication Date August 31, 2020
Submission Date January 8, 2020
Acceptance Date July 27, 2020
Published in Issue Year 2020

Cite

APA Kohaupt, L. (2020). Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Journal of Mathematical Sciences and Modelling, 3(2), 55-75. https://doi.org/10.33187/jmsm.669216
AMA Kohaupt L. Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Journal of Mathematical Sciences and Modelling. August 2020;3(2):55-75. doi:10.33187/jmsm.669216
Chicago Kohaupt, Ludwig. “Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”. Journal of Mathematical Sciences and Modelling 3, no. 2 (August 2020): 55-75. https://doi.org/10.33187/jmsm.669216.
EndNote Kohaupt L (August 1, 2020) Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Journal of Mathematical Sciences and Modelling 3 2 55–75.
IEEE L. Kohaupt, “Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”, Journal of Mathematical Sciences and Modelling, vol. 3, no. 2, pp. 55–75, 2020, doi: 10.33187/jmsm.669216.
ISNAD Kohaupt, Ludwig. “Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”. Journal of Mathematical Sciences and Modelling 3/2 (August 2020), 55-75. https://doi.org/10.33187/jmsm.669216.
JAMA Kohaupt L. Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Journal of Mathematical Sciences and Modelling. 2020;3:55–75.
MLA Kohaupt, Ludwig. “Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices”. Journal of Mathematical Sciences and Modelling, vol. 3, no. 2, 2020, pp. 55-75, doi:10.33187/jmsm.669216.
Vancouver Kohaupt L. Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices. Journal of Mathematical Sciences and Modelling. 2020;3(2):55-7.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.