Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of the Fracture Resistance of Endocrown Restorations Prepared at Different Heights Above the Enamel-Cement Junction

Yıl 2024, Cilt: 6 Sayı: 2, 51 - 61, 31.12.2024
https://doi.org/10.71051/jnlm.1593777

Öz

Objective: This study evaluated the fracture resistance of endocrown restorations prepared at different heights above the enamel-cement junction (ECJ). It sought to elucidate the effects of restoration margins on biomechanical behavior and the success of restorations.
Materials and Methods: Eighty extracted mandibular molars were divided into four groups. In Group I, restorations were prepared at the ECJ level; in Group II, 1 mm above; in Group III, 2 mm above and Group IV, 4 mm above the ECJ. Restorations were fabricated from lithium disilicate ceramics using CAD/CAM technology and cemented with appropriate adhesive protocols. The fracture resistance of the restorations was tested using a universal testing machine. Data were assessed for non-normal distribution using the Shapiro-Wilk test, and intergroup comparisons were conducted using the Kruskal-Wallis H test, followed by Dunn’s test.
Results: The fracture resistance of Group II (1 mm) and Group III (2 mm) was significantly higher compared to the other groups, with mean values of 1423 ± 75 N and 1389 ± 68 N, respectively (p < 0.05). Group I (at the ECJ level) exhibited the lowest fracture resistance, with a mean of 1023 ± 95 N. Group IV (4 mm) demonstrated a mean fracture resistance of 1225 ± 81 N, which was significantly lower than Groups II and III (p < 0.05). These findings indicate that positioning the restoration margins closer to the enamel-dentin transition enhances biomechanical stability.
Conclusion: Endocrown restorations prepared 1–2 mm above the ECJ demonstrated superior fracture resistance within the scope of this study. The findings emphasize the significance of preparation height in achieving optimal biomechanical performance. While lithium disilicate ceramics were utilized in this research, the study did not compare different material types. Therefore, further investigations are necessary to evaluate the influence of alternative restorative materials. Additionally, long-term clinical studies are required to validate these findings under intraoral conditions.

Kaynakça

  • Aggarwal, V., Singla, M., Miglani, S., & Kohli, S. (2012). Comparative evaluation of fracture resistance of structurally compromised canals restored with different dowel methods. J Prosthodont, 21(4), 312-316. doi:10.1111/j.1532-849X.2011.00827.x
  • Biacchi, G., & Basting, R. (2012). Comparison of fracture strength of endocrowns and glass fiber post-retained conventional crowns. Operative dentistry, 37(2), 130-136.
  • da Cunha, L. F., Mondelli, J., Auersvald, C. M., Gonzaga, C. C., Mondelli, R. F. L., Correr, G. M., & Furuse, A. Y. (2015). Endocrown with leucite‐reinforced ceramic: the case of restoration of endodontically treated teeth. Case Reports in Dentistry, 2015(1), 750313.
  • Dejak, B., & Młotkowski, A. (2013). 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dent Mater, 29(12), e309-317. doi:10.1016/j.dental.2013.09.014
  • Govare, N., & Contrepois, M. (2020). Endocrowns: A systematic review. J Prosthet Dent, 123(3), 411-418.e419. doi:10.1016/j.prosdent.2019.04.009
  • Huang, Y., Fokkinga, W. A., Zhang, Q., Creugers, N. H., & Jiang, Q. (2023). Biomechanical properties of different endocrown designs on endodontically treated teeth. journal of the mechanical behavior of biomedical materials, 140, 105691.
  • Inchingolo, F., Paracchini, L., F, D. E. A., Cielo, A., Orefici, A., Spitaleri, D., . . . Palermo, A. (2016). Biomechanical behaviour of a jawbone loaded with a prosthetic system supported by monophasic and biphasic implants. Oral Implantol (Rome), 9(Suppl 1/2016 to N 4/2016), 65-70. doi:10.11138/orl/2016.9.1S.065
  • Mannocci, F., Bitter, K., Sauro, S., Ferrari, P., Austin, R., & Bhuva, B. (2022). Present status and future directions: the restoration of root filled teeth. International endodontic journal, 55, 1059-1084.
  • Otto, T., & Mörmann, W. (2015). Clinical performance of chairside CAD/CAM feldspathic ceramic posterior shoulder crowns and endocrowns up to 12 years. International journal of computerized dentistry, 18(2), 147-161.
  • Sedrez-Porto, J. A., da Rosa, W. L. d. O., Da Silva, A. F., Münchow, E. A., & Pereira-Cenci, T. (2016). Endocrown restorations: A systematic review and meta-analysis. Journal of dentistry, 52, 8-14.
  • Sedrez-Porto, J. A., Münchow, E. A., Valente, L. L., Cenci, M. S., & Pereira-Cenci, T. (2019). New material perspective for endocrown restorations: effects on mechanical performance and fracture behavior. Brazilian oral research, 33, e012.
  • Tribst, J. P. M., Dal Piva, A. M. d. O., Madruga, C. F. L., Valera, M. C., Borges, A. L. S., Bresciani, E., & de Melo, R. M. (2018). Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dental Materials, 34(10), 1466-1473.
  • Uzun, İ., Timur, A. H., & Şenel, K. (2024). In-vitro comparison of fracture resistance of CAD/CAM porcelain restorations for endodontically treated molars. BMC Oral Health, 24(1), 1187. doi:10.1186/s12903-024-04983-3
  • Vianna, A., Prado, C. J. D., Bicalho, A. A., Pereira, R., Neves, F. D. D., & Soares, C. J. (2018). Effect of cavity preparation design and ceramic type on the stress distribution, strain and fracture resistance of CAD/CAM onlays in molars. J Appl Oral Sci, 26, e20180004. doi:10.1590/1678-7757-2018-0004
  • Zhu, J., Wang, D., Rong, Q., Qian, J., & Wang, X. (2020). Effect of central retainer shape and abduction angle during preparation of teeth on dentin and cement layer stress distributions in endocrown-restored mandibular molars. Dental Materials Journal, 39(3), 464-470.

Farklı Mine-Sement Seviyesi Yüksekliklerinde Hazırlanan Endokron Restorasyonların Kırılma Dayanımının Değerlendirilmesi

Yıl 2024, Cilt: 6 Sayı: 2, 51 - 61, 31.12.2024
https://doi.org/10.71051/jnlm.1593777

Öz

Amaç: Bu çalışmada, mine-sement seviyesinin üzerindeki farklı yüksekliklerde hazırlanan endokron restorasyonların kırılma dayanımı değerlendirilmiştir. Restorasyon sınırlarının biyomekanik davranış ve restorasyon başarısı üzerindeki etkilerini ortaya koymak hedeflenmiştir.
Materyal ve Metot: Seksen adet çekilmiş alt molar diş dört gruba ayrılmıştır. Grup I’de restorasyonlar mine-sement birleşim seviyesinde, Grup II’de 1 mm üzerinde, Grup III’te 2 mm üzerinde, Grup IV’te ise 4 mm üzerinde hazırlanmıştır. CAD/CAM teknolojisiyle lityum disilikat seramikten üretilen restorasyonlar, uygun yapıştırma protokolleriyle uygulanmıştır. Restorasyonların kırılma dayanımı, Universal Test Cihazı kullanılarak test edilmiştir. Veriler, Shapiro-Wilk testiyle normal dağılım açısından incelenmiş, Kruskal-Wallis H testi ve Dunn testiyle gruplar arası karşılaştırmalar yapılmıştır.
Bulgular: Grup II (1 mm) kırılma dayanımı ortalama 1423 ± 75 N, Grup III (2 mm) ise 1389 ± 68 N olarak ölçülmüş ve bu değerler diğer gruplardan istatistiksel olarak anlamlı şekilde yüksek bulunmuştur (p < 0.05). Grup I’de (mine-sement birleşim seviyesi) kırılma dayanımı ortalama 1023 ± 95 N ile en düşük değeri göstermiştir. Grup IV’te (4 mm) ise kırılma dayanımı 1225 ± 81 N olarak ölçülmüş, ancak Grup II ve III ile karşılaştırıldığında anlamlı derecede düşük olduğu gözlenmiştir (p < 0.05). Bu sonuçlar, restorasyon sınırının mine-dentin geçişine yakın olmasının biyomekanik stabiliteyi artırdığını ortaya koymuştur.
Sonuç: Mine-sement seviyesinin 1-2 mm üzerinde hazırlanan endokron restorasyonlar, kırılma dayanımı açısından en uygun tasarımı sunmaktadır. Lityum disilikat bazlı seramiklerin üstün mekanik özellikleri, restorasyon başarısını artırmaktadır. Çalışmanın bulguları, restorasyon tasarımı ve materyal seçiminde klinik rehberlik sağlayabilir. Daha uzun dönemli klinik çalışmalar, bu sonuçların ağız içi koşullarda doğrulanmasına katkı sağlayacaktır.

Kaynakça

  • Aggarwal, V., Singla, M., Miglani, S., & Kohli, S. (2012). Comparative evaluation of fracture resistance of structurally compromised canals restored with different dowel methods. J Prosthodont, 21(4), 312-316. doi:10.1111/j.1532-849X.2011.00827.x
  • Biacchi, G., & Basting, R. (2012). Comparison of fracture strength of endocrowns and glass fiber post-retained conventional crowns. Operative dentistry, 37(2), 130-136.
  • da Cunha, L. F., Mondelli, J., Auersvald, C. M., Gonzaga, C. C., Mondelli, R. F. L., Correr, G. M., & Furuse, A. Y. (2015). Endocrown with leucite‐reinforced ceramic: the case of restoration of endodontically treated teeth. Case Reports in Dentistry, 2015(1), 750313.
  • Dejak, B., & Młotkowski, A. (2013). 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dent Mater, 29(12), e309-317. doi:10.1016/j.dental.2013.09.014
  • Govare, N., & Contrepois, M. (2020). Endocrowns: A systematic review. J Prosthet Dent, 123(3), 411-418.e419. doi:10.1016/j.prosdent.2019.04.009
  • Huang, Y., Fokkinga, W. A., Zhang, Q., Creugers, N. H., & Jiang, Q. (2023). Biomechanical properties of different endocrown designs on endodontically treated teeth. journal of the mechanical behavior of biomedical materials, 140, 105691.
  • Inchingolo, F., Paracchini, L., F, D. E. A., Cielo, A., Orefici, A., Spitaleri, D., . . . Palermo, A. (2016). Biomechanical behaviour of a jawbone loaded with a prosthetic system supported by monophasic and biphasic implants. Oral Implantol (Rome), 9(Suppl 1/2016 to N 4/2016), 65-70. doi:10.11138/orl/2016.9.1S.065
  • Mannocci, F., Bitter, K., Sauro, S., Ferrari, P., Austin, R., & Bhuva, B. (2022). Present status and future directions: the restoration of root filled teeth. International endodontic journal, 55, 1059-1084.
  • Otto, T., & Mörmann, W. (2015). Clinical performance of chairside CAD/CAM feldspathic ceramic posterior shoulder crowns and endocrowns up to 12 years. International journal of computerized dentistry, 18(2), 147-161.
  • Sedrez-Porto, J. A., da Rosa, W. L. d. O., Da Silva, A. F., Münchow, E. A., & Pereira-Cenci, T. (2016). Endocrown restorations: A systematic review and meta-analysis. Journal of dentistry, 52, 8-14.
  • Sedrez-Porto, J. A., Münchow, E. A., Valente, L. L., Cenci, M. S., & Pereira-Cenci, T. (2019). New material perspective for endocrown restorations: effects on mechanical performance and fracture behavior. Brazilian oral research, 33, e012.
  • Tribst, J. P. M., Dal Piva, A. M. d. O., Madruga, C. F. L., Valera, M. C., Borges, A. L. S., Bresciani, E., & de Melo, R. M. (2018). Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dental Materials, 34(10), 1466-1473.
  • Uzun, İ., Timur, A. H., & Şenel, K. (2024). In-vitro comparison of fracture resistance of CAD/CAM porcelain restorations for endodontically treated molars. BMC Oral Health, 24(1), 1187. doi:10.1186/s12903-024-04983-3
  • Vianna, A., Prado, C. J. D., Bicalho, A. A., Pereira, R., Neves, F. D. D., & Soares, C. J. (2018). Effect of cavity preparation design and ceramic type on the stress distribution, strain and fracture resistance of CAD/CAM onlays in molars. J Appl Oral Sci, 26, e20180004. doi:10.1590/1678-7757-2018-0004
  • Zhu, J., Wang, D., Rong, Q., Qian, J., & Wang, X. (2020). Effect of central retainer shape and abduction angle during preparation of teeth on dentin and cement layer stress distributions in endocrown-restored mandibular molars. Dental Materials Journal, 39(3), 464-470.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Sağlığı
Bölüm Araştırma Makaleleri
Yazarlar

İsmail Uzun 0000-0003-3353-3260

Kevser Şenel Bu kişi benim 0000-0003-0884-2133

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 30 Kasım 2024
Kabul Tarihi 25 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Uzun, İ., & Şenel, K. (2024). Evaluation of the Fracture Resistance of Endocrown Restorations Prepared at Different Heights Above the Enamel-Cement Junction. Doğal Yaşam Tıbbı Dergisi, 6(2), 51-61. https://doi.org/10.71051/jnlm.1593777
AMA Uzun İ, Şenel K. Evaluation of the Fracture Resistance of Endocrown Restorations Prepared at Different Heights Above the Enamel-Cement Junction. DYT. Aralık 2024;6(2):51-61. doi:10.71051/jnlm.1593777
Chicago Uzun, İsmail, ve Kevser Şenel. “Evaluation of the Fracture Resistance of Endocrown Restorations Prepared at Different Heights Above the Enamel-Cement Junction”. Doğal Yaşam Tıbbı Dergisi 6, sy. 2 (Aralık 2024): 51-61. https://doi.org/10.71051/jnlm.1593777.
EndNote Uzun İ, Şenel K (01 Aralık 2024) Evaluation of the Fracture Resistance of Endocrown Restorations Prepared at Different Heights Above the Enamel-Cement Junction. Doğal Yaşam Tıbbı Dergisi 6 2 51–61.
IEEE İ. Uzun ve K. Şenel, “Evaluation of the Fracture Resistance of Endocrown Restorations Prepared at Different Heights Above the Enamel-Cement Junction”, DYT, c. 6, sy. 2, ss. 51–61, 2024, doi: 10.71051/jnlm.1593777.
ISNAD Uzun, İsmail - Şenel, Kevser. “Evaluation of the Fracture Resistance of Endocrown Restorations Prepared at Different Heights Above the Enamel-Cement Junction”. Doğal Yaşam Tıbbı Dergisi 6/2 (Aralık 2024), 51-61. https://doi.org/10.71051/jnlm.1593777.
JAMA Uzun İ, Şenel K. Evaluation of the Fracture Resistance of Endocrown Restorations Prepared at Different Heights Above the Enamel-Cement Junction. DYT. 2024;6:51–61.
MLA Uzun, İsmail ve Kevser Şenel. “Evaluation of the Fracture Resistance of Endocrown Restorations Prepared at Different Heights Above the Enamel-Cement Junction”. Doğal Yaşam Tıbbı Dergisi, c. 6, sy. 2, 2024, ss. 51-61, doi:10.71051/jnlm.1593777.
Vancouver Uzun İ, Şenel K. Evaluation of the Fracture Resistance of Endocrown Restorations Prepared at Different Heights Above the Enamel-Cement Junction. DYT. 2024;6(2):51-6.