Research Article
BibTex RIS Cite
Year 2021, , 18 - 38, 30.09.2021
https://doi.org/10.53570/jnt.896345

Abstract

References

  • S. Ersoy, M. Bilgin, İ. İnce, Generalized Closed Set in Topological Spaces, Mathematica Moravica 19(1) (2015) 49-56.
  • S. Al Ghour, W. Zareer, Omega Open Sets in Generalized Topological Spaces, Journal of Nonlinear Sciences and Applications 9 (2016) 3010-3017.
  • P. Jeyanthi, P. Nalayini, M. Mocanu, g*λ_μ-Closed Sets and Generalized Topological Spaces, Boletim da Sociedade Paranaense de Matematica 34(1) (2016) 203-212.
  • I. Reilly, Generalized Closed Sets: A Survey of Recent Works, General and Geometric Topology and its Applications 1248 (2002) 1-11.
  • D. Saravanakumar, N. Kalaivani, G. S. S. Krishnan, On μ ̃-Open Sets in Generalized Topological Spaces, Malaya Journal of Matematik 3(3) (2015) 268-276.
  • B. K. Tyagi, Harsh V. S. Chauhan, On Generalized Closed Sets in a Generalized Topological Spaces, CUBO A Mathematical Journal 18(01) (2016) 27-45.
  • A. Danabalan, C. Santhi, A Class of Separation Axioms in Generalized Topology, Mathematical Journal of Interdisciplinary Sciences 4(2) (2016) 151-159.
  • Y. B. Jun, S. W. Jeong, H. J. Lee, J. W. Lee, Applications of Pre-Open Sets, Applied General Topology, Universidad Politecnica de Valencia 9(2) (2008) 213-228.
  • V. Pavlovic, A. S. Cvetkovic, On Generalized Topologies arising from Mappings, Vesnik, Universidad Politecnica de Valencia 38(3) (2012) 553-565.
  • O. Njastad, On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics 15(3) (1965) 961-970.
  • D. Andrijevic, Semi-Pre-open Sets, Matematicki Vesnik 38(1) (1986) 24-32.
  • H. Ogata, Operations on Topological Spaces and Associated Topology, Mathematica Japonica 36 (1991) 175-184.
  • P. Jeyanthi, P. Nalayini, T. Noiri, Δ_μ-Sets and ∇_μ-Sets in Generalized Topological Spaces, Georgian Mathematical Journal 24(3) (2016) 403-407.
  • A. Csaszar, Generalized Topology, Generalized Continuity, Acta Mathematica Hungarica 96(4) (2002) 351-357.
  • N. Levine, Generalized Closed Set in Topological Spaces, Rendiconti del Circolo Matematico di Palermo 19 (1970) 89-96.
  • N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, American Mathematical Monthly 70 (1963) 19-41.
  • A. Csaszar, Remarks on Quasi-Topologies, Acta Mathematica Hungarica 119(1-2) (2008) 197-200.
  • A. Csaszar, Further Remarks on the Formula for γ-Interior, Acta Mathematica Hungarica 113(4) (2006) 325-332.
  • A. Csaszar, Generalized Open Sets in Generalized Topologies, Acta Mathematica Hungarica 106(1-2) (2005) 53-66.
  • A. Csaszar, Generalized Open Sets, Acta Mathematica Hungarica 75(1-2) (1997) 65-87.
  • K. Rajeshwari, T. D. Rayanagoudar, S. M. Patil, On Semi Generalized ωα-Closed Sets in Topological Spaces, Global Journal of Pure and Applied Mathematics 13(9) (2017) 5491-5503.
  • D. Andrijevic, On b-Open Sets, Matematicki Vesnik 48 (1996) 59-64.
  • S. Bayhan, A. Kanibir, I. L. Reilly, On Functions between Generalized Topological Spaces, Applied General Topology 14(2) (2013) 195-203.
  • P. Bhattacharyya, B.K. Lahiri, Semi-Generalized Closed Sets in Topology, Indian Journal of Mathematics 29 (1987) 376-382.
  • C. Boonpok, On Generalized Continuous Maps in Cech Closure Spaces, General Mathematics 19(3) (2011) 376-382.
  • J. Cao, M. Ganster, I. Reilly, On Generalized Closed sets, Topology and its Applications 123(1) (2002) 37-46.
  • J. Dontchev, T. Noiri, Quasi-Normal Spaces and πg-Closed Sets, Acta Mathematica Hungarica 89(3) (2000) 211-219.
  • J. Dontchev, On Generalizing Semi-Pre-open Sets, Memoirs of the Faculty of the Science, Kochi University Series A Mathematics 16 (1995) 35-48.
  • Y. Gnanambal, On Generalized Preregular Closed Sets in Topological Spaces, Indian Journal of Pure and Applied Mathematics 28 (1997) 351-360.
  • A. Gupta, R. D. Sarma, A Note on some Generalized Closure and Interior Operators in a Topological Space, Mathematics for Applications 6 (2017) 11-20.
  • R. A. Hosny, D. Al-Kadi, Types of Generalized Sets with Ideal, International Journal of Computer Applications 80(4) (2013) 11-14.
  • M. K. R. S. Veera Kumar, Between Closed Sets and g-Closed Sets, Memoirs of the Faculty of the Science, Kochi University Series A Mathematics 21 (2000) 1-19.
  • L. L. L. Lusanta, H. M. Rara, Generalized Star α-b-Separation Axioms in Bigeneralized Topological Spaces, Applied Mathematical Sciences 9(75) (2015) 3725-3737.
  • H. Maki, R. Devi, K. Balachandran, Associated Topologies of Generalized α-Closed Sets and α-Generalized Closed Sets, Memoirs of the Faculty of the Science, Kochi University Series A Mathematics 15 (1994) 51-63.
  • H. Maki, R. Devi, K. Balachandran, Generalized α-Closed Sets in Topology, Bulletin of Fukuoka University of Education Part III 42 (1993) 13-21.
  • A. S. Mashhour, I. A. Hasanein, S. N. E. Deeb, α-Continuous and α-Open Mappings, Acta Mathematica Hungarica 41(3-4) (1983) 213-218.
  • B. Roy, On a Type of Generalized Open Sets, Applied General Topology 12(2) (2011) 163-173.
  • P. Sundaram, M. Sheik John, On w-Closed Sets in Topology, Acta Ciencia Indica 4 (2000) 389-392.
  • M. I. Khodabocus, A Generalized Topological Space endowed with Generalized Topologies, PhD Dissertation, University of Mauritius (2020) Reduit, Mauritius.
  • M. S. Sarsak, On some Properties of Generalized Open Sets in Generalized Topological Spaces, Demonstratio Mathematica XLVI (2) (2013) 415-427.
  • T. Noiri, Unified Characterizations for Modifications of R_0 and R_1 Topological Spaces, Circolo Matematico di Palermo 55(2) (2006) 29-42.
  • M. Caldas, S. Jafari, R. K. Saraf, Semi-θ-Open Sets and New Classes of Maps, Bulletin of the Iranian Mathematical Society 31(2) (2005) 37-52.
  • J. Dontchev, On Some Separation Axioms Associated with the α-Topology, Memoirs of the Faculty of the Science, Kochi University Series A Mathematics 18 (1997) 31-35.
  • M. Caldas, S. Jafari, On Some Applications of b-Open Sets in Topological Spaces, Kochi Journal of Mathematics 2 (2007) 11-19.

Theory of Generalized Sets in Generalized Topological Spaces

Year 2021, , 18 - 38, 30.09.2021
https://doi.org/10.53570/jnt.896345

Abstract

Several specific types of generalized sets (briefly, g-T_g-sets in generalized topological spaces (briefly, T_g-spaces have been defined and investigated for various purposes from time to time in the literature of T_g-spaces. Our recent research in the field of a new class of g-T_g-sets in T_g-spaces is reported herein as a starting point for more generalized classes. It is shown that the class of g-T_g-sets is a superclass of those whose elements are called open, closed, semi-open, semi-closed, pre-open, pre-closed, semi-pre-open, and semi-pre-closed sets in a T_g-space. A subclass of the T_g-subspace corresponds to the class of g-T_g-sets of a T_g-space. A class of g-T_g-sets of the Cartesian product of these T_g-spaces corresponds to the Cartesian product of a finite number of classes of g-T_g-sets, each of which belongs to a T_g-space. Diagrams establish the various relationships amongst the classes presented here and in the literature, and an ad hoc application supports the overall theory.

References

  • S. Ersoy, M. Bilgin, İ. İnce, Generalized Closed Set in Topological Spaces, Mathematica Moravica 19(1) (2015) 49-56.
  • S. Al Ghour, W. Zareer, Omega Open Sets in Generalized Topological Spaces, Journal of Nonlinear Sciences and Applications 9 (2016) 3010-3017.
  • P. Jeyanthi, P. Nalayini, M. Mocanu, g*λ_μ-Closed Sets and Generalized Topological Spaces, Boletim da Sociedade Paranaense de Matematica 34(1) (2016) 203-212.
  • I. Reilly, Generalized Closed Sets: A Survey of Recent Works, General and Geometric Topology and its Applications 1248 (2002) 1-11.
  • D. Saravanakumar, N. Kalaivani, G. S. S. Krishnan, On μ ̃-Open Sets in Generalized Topological Spaces, Malaya Journal of Matematik 3(3) (2015) 268-276.
  • B. K. Tyagi, Harsh V. S. Chauhan, On Generalized Closed Sets in a Generalized Topological Spaces, CUBO A Mathematical Journal 18(01) (2016) 27-45.
  • A. Danabalan, C. Santhi, A Class of Separation Axioms in Generalized Topology, Mathematical Journal of Interdisciplinary Sciences 4(2) (2016) 151-159.
  • Y. B. Jun, S. W. Jeong, H. J. Lee, J. W. Lee, Applications of Pre-Open Sets, Applied General Topology, Universidad Politecnica de Valencia 9(2) (2008) 213-228.
  • V. Pavlovic, A. S. Cvetkovic, On Generalized Topologies arising from Mappings, Vesnik, Universidad Politecnica de Valencia 38(3) (2012) 553-565.
  • O. Njastad, On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics 15(3) (1965) 961-970.
  • D. Andrijevic, Semi-Pre-open Sets, Matematicki Vesnik 38(1) (1986) 24-32.
  • H. Ogata, Operations on Topological Spaces and Associated Topology, Mathematica Japonica 36 (1991) 175-184.
  • P. Jeyanthi, P. Nalayini, T. Noiri, Δ_μ-Sets and ∇_μ-Sets in Generalized Topological Spaces, Georgian Mathematical Journal 24(3) (2016) 403-407.
  • A. Csaszar, Generalized Topology, Generalized Continuity, Acta Mathematica Hungarica 96(4) (2002) 351-357.
  • N. Levine, Generalized Closed Set in Topological Spaces, Rendiconti del Circolo Matematico di Palermo 19 (1970) 89-96.
  • N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, American Mathematical Monthly 70 (1963) 19-41.
  • A. Csaszar, Remarks on Quasi-Topologies, Acta Mathematica Hungarica 119(1-2) (2008) 197-200.
  • A. Csaszar, Further Remarks on the Formula for γ-Interior, Acta Mathematica Hungarica 113(4) (2006) 325-332.
  • A. Csaszar, Generalized Open Sets in Generalized Topologies, Acta Mathematica Hungarica 106(1-2) (2005) 53-66.
  • A. Csaszar, Generalized Open Sets, Acta Mathematica Hungarica 75(1-2) (1997) 65-87.
  • K. Rajeshwari, T. D. Rayanagoudar, S. M. Patil, On Semi Generalized ωα-Closed Sets in Topological Spaces, Global Journal of Pure and Applied Mathematics 13(9) (2017) 5491-5503.
  • D. Andrijevic, On b-Open Sets, Matematicki Vesnik 48 (1996) 59-64.
  • S. Bayhan, A. Kanibir, I. L. Reilly, On Functions between Generalized Topological Spaces, Applied General Topology 14(2) (2013) 195-203.
  • P. Bhattacharyya, B.K. Lahiri, Semi-Generalized Closed Sets in Topology, Indian Journal of Mathematics 29 (1987) 376-382.
  • C. Boonpok, On Generalized Continuous Maps in Cech Closure Spaces, General Mathematics 19(3) (2011) 376-382.
  • J. Cao, M. Ganster, I. Reilly, On Generalized Closed sets, Topology and its Applications 123(1) (2002) 37-46.
  • J. Dontchev, T. Noiri, Quasi-Normal Spaces and πg-Closed Sets, Acta Mathematica Hungarica 89(3) (2000) 211-219.
  • J. Dontchev, On Generalizing Semi-Pre-open Sets, Memoirs of the Faculty of the Science, Kochi University Series A Mathematics 16 (1995) 35-48.
  • Y. Gnanambal, On Generalized Preregular Closed Sets in Topological Spaces, Indian Journal of Pure and Applied Mathematics 28 (1997) 351-360.
  • A. Gupta, R. D. Sarma, A Note on some Generalized Closure and Interior Operators in a Topological Space, Mathematics for Applications 6 (2017) 11-20.
  • R. A. Hosny, D. Al-Kadi, Types of Generalized Sets with Ideal, International Journal of Computer Applications 80(4) (2013) 11-14.
  • M. K. R. S. Veera Kumar, Between Closed Sets and g-Closed Sets, Memoirs of the Faculty of the Science, Kochi University Series A Mathematics 21 (2000) 1-19.
  • L. L. L. Lusanta, H. M. Rara, Generalized Star α-b-Separation Axioms in Bigeneralized Topological Spaces, Applied Mathematical Sciences 9(75) (2015) 3725-3737.
  • H. Maki, R. Devi, K. Balachandran, Associated Topologies of Generalized α-Closed Sets and α-Generalized Closed Sets, Memoirs of the Faculty of the Science, Kochi University Series A Mathematics 15 (1994) 51-63.
  • H. Maki, R. Devi, K. Balachandran, Generalized α-Closed Sets in Topology, Bulletin of Fukuoka University of Education Part III 42 (1993) 13-21.
  • A. S. Mashhour, I. A. Hasanein, S. N. E. Deeb, α-Continuous and α-Open Mappings, Acta Mathematica Hungarica 41(3-4) (1983) 213-218.
  • B. Roy, On a Type of Generalized Open Sets, Applied General Topology 12(2) (2011) 163-173.
  • P. Sundaram, M. Sheik John, On w-Closed Sets in Topology, Acta Ciencia Indica 4 (2000) 389-392.
  • M. I. Khodabocus, A Generalized Topological Space endowed with Generalized Topologies, PhD Dissertation, University of Mauritius (2020) Reduit, Mauritius.
  • M. S. Sarsak, On some Properties of Generalized Open Sets in Generalized Topological Spaces, Demonstratio Mathematica XLVI (2) (2013) 415-427.
  • T. Noiri, Unified Characterizations for Modifications of R_0 and R_1 Topological Spaces, Circolo Matematico di Palermo 55(2) (2006) 29-42.
  • M. Caldas, S. Jafari, R. K. Saraf, Semi-θ-Open Sets and New Classes of Maps, Bulletin of the Iranian Mathematical Society 31(2) (2005) 37-52.
  • J. Dontchev, On Some Separation Axioms Associated with the α-Topology, Memoirs of the Faculty of the Science, Kochi University Series A Mathematics 18 (1997) 31-35.
  • M. Caldas, S. Jafari, On Some Applications of b-Open Sets in Topological Spaces, Kochi Journal of Mathematics 2 (2007) 11-19.
There are 44 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Mohammad Irshad Khodabocus 0000-0003-2252-4342

Noor-ul-hacq Sookıa 0000-0002-3155-0473

Publication Date September 30, 2021
Submission Date March 13, 2021
Published in Issue Year 2021

Cite

APA Khodabocus, M. I., & Sookıa, N.-u.-h. (2021). Theory of Generalized Sets in Generalized Topological Spaces. Journal of New Theory(36), 18-38. https://doi.org/10.53570/jnt.896345
AMA Khodabocus MI, Sookıa Nuh. Theory of Generalized Sets in Generalized Topological Spaces. JNT. September 2021;(36):18-38. doi:10.53570/jnt.896345
Chicago Khodabocus, Mohammad Irshad, and Noor-ul-hacq Sookıa. “Theory of Generalized Sets in Generalized Topological Spaces”. Journal of New Theory, no. 36 (September 2021): 18-38. https://doi.org/10.53570/jnt.896345.
EndNote Khodabocus MI, Sookıa N-u-h (September 1, 2021) Theory of Generalized Sets in Generalized Topological Spaces. Journal of New Theory 36 18–38.
IEEE M. I. Khodabocus and N.-u.-h. Sookıa, “Theory of Generalized Sets in Generalized Topological Spaces”, JNT, no. 36, pp. 18–38, September 2021, doi: 10.53570/jnt.896345.
ISNAD Khodabocus, Mohammad Irshad - Sookıa, Noor-ul-hacq. “Theory of Generalized Sets in Generalized Topological Spaces”. Journal of New Theory 36 (September 2021), 18-38. https://doi.org/10.53570/jnt.896345.
JAMA Khodabocus MI, Sookıa N-u-h. Theory of Generalized Sets in Generalized Topological Spaces. JNT. 2021;:18–38.
MLA Khodabocus, Mohammad Irshad and Noor-ul-hacq Sookıa. “Theory of Generalized Sets in Generalized Topological Spaces”. Journal of New Theory, no. 36, 2021, pp. 18-38, doi:10.53570/jnt.896345.
Vancouver Khodabocus MI, Sookıa N-u-h. Theory of Generalized Sets in Generalized Topological Spaces. JNT. 2021(36):18-3.

Cited By








TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).