Research Article
BibTex RIS Cite
Year 2020, Issue: 31, 108 - 113, 30.06.2020

Abstract

References

  • A. Rosenfeld, Digital Topology, Amer. Math. Monthly 86 (1979) 621-630.
  • R, Devi, K. Bhuvaneshwari and H. Maki, Weak Form of g*-closed Sets, where \rho \in \alpha, \alpha*, \alpha** and The Digital Plane, Mem. Fac. Sci. Kochi Univ. Math. 25 (2004) 37-54.
  • R. Devi, S. N. Rajapriya, K. Muthukumarswamy and H. Maki, \xi-Closed Sets in Topological Spaces and Digital Planes, Scientiae Mathematicae Japanicae, Online e-2006 615-631.
  • R. Devi and M. Vigneshwaram, g*-Closed Sets in the Digital Plane, Int. Jl. of General Topology, 4(1-2) (2011) 91-95.
  • R. Devi and M. Vigneshwaran, On G O-Kernel in Digital Plane, Int. Jl. of Mathematical Archive, 3(6) (2012) 2358-2373.
  • E. D. Khalimsky, R. Kopperman and P. R. Meyer, Computer Graphics and Connected Topologies in Finite Ordered Set, Topology Applications, 36 (1990) 1-17.
  • T. Y. Kong, R. Kopperman and P. R. Meyer, A Topologies Approach to Digital Topology, Amer. Math. Monthly, 98 (1991) 901-907.
  • P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star w\lpha-closed Sets in Topological Spaces, Jl. of New Results in Science, 9 (2015) 37-45.
  • S. S. Benchalli, P. G. Patil and P. M. Nalwad, w\alpha-closed sets in topological spaces, The Global J. Appl. Maths Math. Sciences, 2(1-2) (2009) 53-63.
  • P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star w\alpha-spaces in Topological Spaces, Int. Jl. of Scienti c and Innovative Mathematical Research, 3 Special Issue 1 (2015) 399-391.
  • S. S. Benchalli, P. G. Patil and P. M. Nalwad, some weaker forms of continuous functions in topological spaces, Jl. of Advanced Studies in Topology, 7(2) (2016) 101-109.

A New Class of Closed Set in Digital Topology

Year 2020, Issue: 31, 108 - 113, 30.06.2020

Abstract

The purpose of this paper is to introduce a new class of closed set called
g*w\alpha-closed sets in digital topology. We establish a relationship between closed and
g*w\alpha-closed sets in digital topology. Also, we obtained the properties of g*w\alpha-closed
sets in digital plane.


-

References

  • A. Rosenfeld, Digital Topology, Amer. Math. Monthly 86 (1979) 621-630.
  • R, Devi, K. Bhuvaneshwari and H. Maki, Weak Form of g*-closed Sets, where \rho \in \alpha, \alpha*, \alpha** and The Digital Plane, Mem. Fac. Sci. Kochi Univ. Math. 25 (2004) 37-54.
  • R. Devi, S. N. Rajapriya, K. Muthukumarswamy and H. Maki, \xi-Closed Sets in Topological Spaces and Digital Planes, Scientiae Mathematicae Japanicae, Online e-2006 615-631.
  • R. Devi and M. Vigneshwaram, g*-Closed Sets in the Digital Plane, Int. Jl. of General Topology, 4(1-2) (2011) 91-95.
  • R. Devi and M. Vigneshwaran, On G O-Kernel in Digital Plane, Int. Jl. of Mathematical Archive, 3(6) (2012) 2358-2373.
  • E. D. Khalimsky, R. Kopperman and P. R. Meyer, Computer Graphics and Connected Topologies in Finite Ordered Set, Topology Applications, 36 (1990) 1-17.
  • T. Y. Kong, R. Kopperman and P. R. Meyer, A Topologies Approach to Digital Topology, Amer. Math. Monthly, 98 (1991) 901-907.
  • P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star w\lpha-closed Sets in Topological Spaces, Jl. of New Results in Science, 9 (2015) 37-45.
  • S. S. Benchalli, P. G. Patil and P. M. Nalwad, w\alpha-closed sets in topological spaces, The Global J. Appl. Maths Math. Sciences, 2(1-2) (2009) 53-63.
  • P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star w\alpha-spaces in Topological Spaces, Int. Jl. of Scienti c and Innovative Mathematical Research, 3 Special Issue 1 (2015) 399-391.
  • S. S. Benchalli, P. G. Patil and P. M. Nalwad, some weaker forms of continuous functions in topological spaces, Jl. of Advanced Studies in Topology, 7(2) (2016) 101-109.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Pallavi S. Mırajakar This is me

Prakashgouda G. Patıl This is me

Publication Date June 30, 2020
Submission Date September 20, 2019
Published in Issue Year 2020 Issue: 31

Cite

APA Mırajakar, P. S., & Patıl, P. G. (2020). A New Class of Closed Set in Digital Topology. Journal of New Theory(31), 108-113.
AMA Mırajakar PS, Patıl PG. A New Class of Closed Set in Digital Topology. JNT. June 2020;(31):108-113.
Chicago Mırajakar, Pallavi S., and Prakashgouda G. Patıl. “A New Class of Closed Set in Digital Topology”. Journal of New Theory, no. 31 (June 2020): 108-13.
EndNote Mırajakar PS, Patıl PG (June 1, 2020) A New Class of Closed Set in Digital Topology. Journal of New Theory 31 108–113.
IEEE P. S. Mırajakar and P. G. Patıl, “A New Class of Closed Set in Digital Topology”, JNT, no. 31, pp. 108–113, June 2020.
ISNAD Mırajakar, Pallavi S. - Patıl, Prakashgouda G. “A New Class of Closed Set in Digital Topology”. Journal of New Theory 31 (June 2020), 108-113.
JAMA Mırajakar PS, Patıl PG. A New Class of Closed Set in Digital Topology. JNT. 2020;:108–113.
MLA Mırajakar, Pallavi S. and Prakashgouda G. Patıl. “A New Class of Closed Set in Digital Topology”. Journal of New Theory, no. 31, 2020, pp. 108-13.
Vancouver Mırajakar PS, Patıl PG. A New Class of Closed Set in Digital Topology. JNT. 2020(31):108-13.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).