Factors Influencing Digoxin Efficacy in Supraventricular Tachyarrhythmia: The Role of Hemoglobin and Renal Function
Yıl 2025,
Cilt: 8 Sayı: 3, 307 - 311, 30.09.2025
Gökhan Eyüpoğlu
,
Önder Yeşiloğlu
,
Ebru Akkoç
,
Ezgi Zengin
,
Ertuğrul Altuğ
,
Mehmet Tatlı
,
Begüm Şeyda Avci
,
Ramazan Güven
,
Akkan Avci
Öz
Background: Supraventricular tachycardia (SVT) is a common arrhythmia requiring effective rate control. As a cardiac glycoside Digoxin is mostly utilized in infants for this indication. However, factors influencing its efficacy in managing SVT in adult patients are not thoroughly evaluated. Our study investigates the impact of hemoglobin and renal function on digoxin's ability to achieve rate control in adult SVT patients.
Methods: We conducted a retrospective, single-center observational study with 167 adult patients presenting with SVT and treated with digoxin. Patients were categorized into Rate Control Group (RCG, n=58) and Non-Rate Control Group (N-RCG, n=109) based on the success of rate control. Clinical and laboratory parameters, including hemoglobin, renal function (GFR, renal failure), and patient outcomes (discharge, hospital/ICU admission) of both patient groups were analyzed and compared.
Results: Patients achieving rate control (RCG) exhibited significantly higher hemoglobin levels (13.6 ± 2.5 g/dL vs. 12.7 ± 2.5 g/dL, p=0.010) and GFR (60.7 ± 27.3 vs. 58.7 ± 25.5 ml/min/1.73m2, p=0.015), with lower incidence of renal failure (3.4% vs. 17.4%, p=0.009) compared to N-RCG. Multivariate logistic regression revealed that hemoglobin remained a significant independent positive predictor of rate control (Adjusted OR: 1.154, 95% CI: 1.009-1.321, p=0.037), while renal failure and GFR did not retain statistical significance. No significant difference was observed in overall patient outcomes (discharge, hospital/ICU admission) between the groups (p=0.302).
Conclusion: Higher hemoglobin levels independently predict successful rate control with digoxin in adult SVT patients. While renal function is still critical for digoxin pharmacokinetics, its direct influence on rate control success may be confounded by other factors. Further research is warranted to explore the mechanisms linking hemoglobin and GFR to digoxin efficacy and the long-term clinical implications of rate control.
Kaynakça
-
1. Page RL, Joglar JA, Caldwell MA, et al. 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2016;133(14):e471–505. [Crossref]
-
2. Ren Y, Ribas HT, Heath K, et al. Na+/K+-ATPase-targeted cytotoxicity of (+)-digoxin and several semisynthetic derivatives. J Nat Prod. 2020;83(3):638–48. [Crossref]
-
3. Corwin DJ, Scarfone RJ. Supraventricular tachycardia associated with severe anemia. Pediatr Emerg Care. 2018;34(4):e75–8. [Crossref]
-
4. Lunney M, Ruospo M, Natale P, Quinn RR, Ronksley PE, Konstantinidis I, et al. Pharmacological interventions for heart failure in people with chronic kidney disease. Cochrane Database Syst Rev. 2020;2(2):CD012466. [Crossref]
-
5. Kaji AH, Schriger D, Green S. Looking through the retrospectoscope: reducing bias in emergency medicine chart review studies. Ann Emerg Med. 2014;64(3):292–8. [Crossref]
-
6. Corwin D, Scarfone R. Supraventricular tachycardia associated with severe anemia. Pediatr Emerg Care. 2018;34(4):e75–8. [Crossref]
-
7. Concordia Pharmaceuticals. Lanoxin® (digoxin) tablets prescribing information. St. Michael, Barbados; 2018 Aug. [Crossref]
-
8. Lim WH, Choi EK, Han KD, et al. Impact of hemoglobin levels and their dynamic changes on the risk of atrial fibrillation: a nationwide population-based study. Sci Rep. 2020;10(1):6762. [Crossref]
-
9. Sertcakacilar G, Yildiz GO. Association between anemia and new-onset atrial fibrillation in critically ill patients in the intensive care unit: a retrospective cohort analysis. Clin Pract. 2022;12(4):533–44. [Crossref]
-
10. Pérez J, Asseff I, Olguín H. Pharmacokinetics of digoxin in children with congestive heart failure aggravated by other diseases. Rev Invest Clin. 2004;56(1):32–7. [Crossref]
-
11. Lin Y, He S, Feng R, Xu Z, Chen W, Huang Z, et al. Digoxin-induced anemia among patients with atrial fibrillation and heart failure: clinical data analysis and drug-gene interaction network. Oncotarget. 2017;8(34):57003–11. [Crossref]
-
12. Alqahtani MA, Alqahtani BA, Dighriri IM. Potential effects of digoxin on renal functions in patients with congestive heart failure. Cureus. 2023;15(9):e45419. [Crossref]
-
13. Garikapati K, Goh D, Khanna S, Echampati K. Uraemic cardiomyopathy: a review of current literature. Clin Med Insights Cardiol. 2021;15:1179546821998347. [Crossref]
-
14. Liu J, Nie Y, Chaudhry M, Bai F, Chuang J, Sodhi K, et al. The redox-sensitive Na/K-ATPase signaling in uremic cardiomyopathy. Int J Mol Sci. 2020;21(4):1256. [Crossref]
-
15. Kiuchi MG. Atrial fibrillation and chronic kidney disease: a bad combination. Kidney Res Clin Pract. 2018;37(2):103–5. [Crossref]
-
16. Eslami V, Mortezapour F, Samavat S, et al. Evaluating plasma digoxin concentration after an intravenous loading dose in patients with renal failure. Arch Clin Nephrol. 2021;7(1):33–7. [Crossref]
-
17. Ahuja T, Saadi R, Papadopoulos J, et al. Digoxin loading doses for atrial fibrillation in critically ill patients. Eur Heart J. 2024;45(Suppl_1):ehae666.3320. [Crossref]
-
18. Shah P, Pellicori P, Hanning I, et al. The effect of digoxin on renal function in patients with heart failure. BMC Nephrol. 2021;22(1):349. [Crossref]
Supraventriküler Taşiaritmide Digoksin Etkinliğini Belirleyen Faktörler: Hemoglobin Düzeyi ve Böbrek Fonksiyonlarının Rolü
Yıl 2025,
Cilt: 8 Sayı: 3, 307 - 311, 30.09.2025
Gökhan Eyüpoğlu
,
Önder Yeşiloğlu
,
Ebru Akkoç
,
Ezgi Zengin
,
Ertuğrul Altuğ
,
Mehmet Tatlı
,
Begüm Şeyda Avci
,
Ramazan Güven
,
Akkan Avci
Öz
Supraventriküler taşikardiler (SVT), etkili hız kontrolü gerektiren ve sık görülen aritmilerdir. Kardiyak glikozitlerden biri olan digoksinin özellikle yenidoğan hasta grubunda bu amaçla kullanılmakta olduğu bilinmektedir. Ancak, digoksinin erişkin hastalarda SVT yönetimindeki etkinliğini düzenleyen faktörler yeterince araştırılmamıştır. Biz bu çalışmamızda, hemoglobin düzeyinin ve böbrek fonksiyonlarının erişkin SVT hastalarında digoksinle hız kontrolü sağlanması üzerine etkisini araştırdık.
Yöntem:
Retrospektif ve tek merkezli olan çalışmamızda SVT tanısıyla başvuran ve digoksin ile tedavi edilen 167 erişkin hasta incelendi. Hastalar, hız kontrolünün sağlanıp sağlanmamasına göre Hız Kontrol Grubu (RCG, n=58) ve Hız Kontrolü Sağlanamayan Grup (N-RCG, n=109) olarak ikiye ayrıldı. Her iki grubun klinik sonuçları ve laboratuvar verileri (hemoglobin, GFR, böbrek yetmezliği varlığı) ve hasta sonuçları (taburculuk, hastane/YBÜ yatışı) analiz edilerek karşılaştırıldı.
Bulgular:
Hız kontrolü sağlanan hastalar (RCG), daha yüksek hemoglobin düzeylerine (13.6 ± 2.5 g/dL vs. 12.7 ± 2.5 g/dL, p=0.010) ve daha yüksek GFR değerlerine (60.7 ± 27.3 vs. 58.7 ± 25.5 ml/dk/1.73m², p=0.015) sahipti. Ayrıca böbrek yetmezliği görülme oranı daha düşüktü (3.4% vs. 17.4%, p=0.009). Çok değişkenli lojistik regresyon analizinde ise hemoglobin düzeyi, hız kontrolünün bağımsız ve anlamlı bir pozitif belirleyicisi olarak kaldı (Düzeltilmiş OR: 1.154, %95 GA: 1.009–1.321, p=0.037) ancak böbrek yetmezliği ve GFR istatistiksel olarak anlamlı bulunmadı. Gruplar arasında genel hasta sonuçları (taburculuk, hastane/YBÜ yatışı) açısından anlamlı fark gözlenmedi (p=0.302).
Sonuç:
Erişkin SVT hastalarında digoksin ile hız kontrolü başarısı, hemoglobin düzeyleri ile bağımsız olarak ilişkili bulunmuştur. Böbrek fonksiyonu digoksin farmakokinetiği açısından önemli olmakla birlikte, hız kontrolündeki doğrudan etkisi başka faktörler tarafından etkileniyor olabilir. Hemoglobin ve GFR’nin digoksin etkinliği ile ilişkisini ve hız kontrolünün uzun vadeli klinik sonuçlarını açıklığa kavuşturmak için ileri araştırmalara ihtiyaç vardır.
Kaynakça
-
1. Page RL, Joglar JA, Caldwell MA, et al. 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2016;133(14):e471–505. [Crossref]
-
2. Ren Y, Ribas HT, Heath K, et al. Na+/K+-ATPase-targeted cytotoxicity of (+)-digoxin and several semisynthetic derivatives. J Nat Prod. 2020;83(3):638–48. [Crossref]
-
3. Corwin DJ, Scarfone RJ. Supraventricular tachycardia associated with severe anemia. Pediatr Emerg Care. 2018;34(4):e75–8. [Crossref]
-
4. Lunney M, Ruospo M, Natale P, Quinn RR, Ronksley PE, Konstantinidis I, et al. Pharmacological interventions for heart failure in people with chronic kidney disease. Cochrane Database Syst Rev. 2020;2(2):CD012466. [Crossref]
-
5. Kaji AH, Schriger D, Green S. Looking through the retrospectoscope: reducing bias in emergency medicine chart review studies. Ann Emerg Med. 2014;64(3):292–8. [Crossref]
-
6. Corwin D, Scarfone R. Supraventricular tachycardia associated with severe anemia. Pediatr Emerg Care. 2018;34(4):e75–8. [Crossref]
-
7. Concordia Pharmaceuticals. Lanoxin® (digoxin) tablets prescribing information. St. Michael, Barbados; 2018 Aug. [Crossref]
-
8. Lim WH, Choi EK, Han KD, et al. Impact of hemoglobin levels and their dynamic changes on the risk of atrial fibrillation: a nationwide population-based study. Sci Rep. 2020;10(1):6762. [Crossref]
-
9. Sertcakacilar G, Yildiz GO. Association between anemia and new-onset atrial fibrillation in critically ill patients in the intensive care unit: a retrospective cohort analysis. Clin Pract. 2022;12(4):533–44. [Crossref]
-
10. Pérez J, Asseff I, Olguín H. Pharmacokinetics of digoxin in children with congestive heart failure aggravated by other diseases. Rev Invest Clin. 2004;56(1):32–7. [Crossref]
-
11. Lin Y, He S, Feng R, Xu Z, Chen W, Huang Z, et al. Digoxin-induced anemia among patients with atrial fibrillation and heart failure: clinical data analysis and drug-gene interaction network. Oncotarget. 2017;8(34):57003–11. [Crossref]
-
12. Alqahtani MA, Alqahtani BA, Dighriri IM. Potential effects of digoxin on renal functions in patients with congestive heart failure. Cureus. 2023;15(9):e45419. [Crossref]
-
13. Garikapati K, Goh D, Khanna S, Echampati K. Uraemic cardiomyopathy: a review of current literature. Clin Med Insights Cardiol. 2021;15:1179546821998347. [Crossref]
-
14. Liu J, Nie Y, Chaudhry M, Bai F, Chuang J, Sodhi K, et al. The redox-sensitive Na/K-ATPase signaling in uremic cardiomyopathy. Int J Mol Sci. 2020;21(4):1256. [Crossref]
-
15. Kiuchi MG. Atrial fibrillation and chronic kidney disease: a bad combination. Kidney Res Clin Pract. 2018;37(2):103–5. [Crossref]
-
16. Eslami V, Mortezapour F, Samavat S, et al. Evaluating plasma digoxin concentration after an intravenous loading dose in patients with renal failure. Arch Clin Nephrol. 2021;7(1):33–7. [Crossref]
-
17. Ahuja T, Saadi R, Papadopoulos J, et al. Digoxin loading doses for atrial fibrillation in critically ill patients. Eur Heart J. 2024;45(Suppl_1):ehae666.3320. [Crossref]
-
18. Shah P, Pellicori P, Hanning I, et al. The effect of digoxin on renal function in patients with heart failure. BMC Nephrol. 2021;22(1):349. [Crossref]