Research Article
BibTex RIS Cite

Year 2025, Volume: 04, 31 - 42, 31.10.2025
https://doi.org/10.54709/joebs.1662975

Abstract

References

  • 1. Marchand, J., Laval, J., Sekhari, A., Cheutet, V., & Danielou, J.-B. (2025). End-to-end lifecycle machine learning framework for predictive maintenance of critical equipment. Enterprise Information Systems, 19(1-2). https://doi.org/10.1080/17517575.2024.2448008
  • 2. Patil, D. T. (2025). Artificial Intelligence-Driven Predictive Maintenance In Manufacturing: Enhancing Operational Efficiency, Minimizing Downtime, And Optimizing Resource Utilization. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5057406
  • 3. Labchiri, F. E., Hidila, Z., Ayoub, F., Monteiro, F., Rjoub, A., & Abdennasser, A. (2024). Optimizing Industrial System From Machine Learning to Digital Twin-Driven Predictive Maintenance. Proceedings of the International Conference on Microelectronics (ICM), 1–6. https://doi.org/10.1109/icm63406.2024.10815781
  • 4. Padmavathi, S., Nevetha, B., Bala Sakthi, R., & Varshini, K. (2024). Machine Learning for Reliable Industrial Operations. In Advances in Industrial Automation and Smart Manufacturing (pp. 316–330). https://doi.org/10.1201/9781032711300-22
  • 5. Tanuja, M., K, D. C., & V M, Mrs. H. (2024). Predictive Analytics for Maintenance. International Journal of Advanced Research in Science, Communication and Technology, 4(2), 175–179. https://doi.org/10.48175/ijarsct-22538
  • 6. Karwa, R. R., Bamnote, G. R., Dhumale, Y. A., Deshmukh, P., Meshram, R. A., & Iqbal, S. (2024). Predictive Maintenance: Machine Learning Approaches for Enhanced Equipment Reliability. Proceedings of the International Conference on Artificial Intelligence and Education (ICAIE), 1–6. https://doi.org/10.1109/idicaiei61867.2024.10842946
  • 7. Gupta, K., & Kaur, P. (2024). Application of Predictive Maintenance in Manufacturing with the utilization of AI and IoT Tools. TechRxiv Preprint. https://doi.org/10.36227/techrxiv.173532375.50630906/v1
  • 8. Udofot, A. I., Oluseyi, O. M., & Edim, B. E. (2024). Machine Learning for Predictive Maintenance in Industrial IoT: A Comparative Study of Algorithms and Applications. International Journal of Scientific and Research Publications, 6(12), 192–203. https://doi.org/10.35629/5252-0612192203
  • 9. Shukor, S. A., & Juhari, M. S. H. M. (2024). Machine learning-driven predictive maintenance: optimizing naive bayes with synthetic data and class imbalance techniques. International Journal of Innovation and Industrial Revolution, 6(19), 72–85. https://doi.org/10.35631/ijirev.619006
  • 10. Rao, A. V. S. S., Kulkarni, S., Bhatia, D., Sambasivarao, L. V., & Singh, K. (2024). Advanced Machine Learning Algorithms for Predictive Maintenance in Industrial Manufacturing Systems. South Eastern European Journal of Public Health, 716–723. https://doi.org/10.70135/seejph.vi.2057
  • 11. Sheikh, A. I., Anil Kumar, T. Ch., Gupta, A., Satish, G. J., Nagpal, A., Ranjit, P. S., & Ptak, A. (2024). Using IoT and Machine Learning Together for Manufacturing Predictive Maintenance. Lecture Notes in Networks and Systems, 856(1), 36–39. https://doi.org/10.1201/9781003596721-9
  • 12. Singgih, M. L., & Zakiyyah, F. F. (2024). Machine Learning for Predictive Maintenance: A Literature Review. Proceedings of the International Conference on Vocational Education and Electrical Engineering (ICVEE), 12(2), 250–256. https://doi.org/10.1109/icvee63912.2024.10823713
  • 13. Sharma, S. S., Vivek, V. S., & Malviya, A. (2024). AI-Enhanced Predictive Maintenance in Intelligent Systems for Industries. International Conference on Automation, Robotics and Smart Technologies (ACROSET), 7(1), 1–6. https://doi.org/10.1109/acroset62108.2024.10743977
  • 14. Rani, A. J., Prithivirajan, V., Shiney, S. A., Babaiah, Ch., Swamy, H., & Sivagamidevi, G. (2024). Enhancing Predictive Maintenance in Industrial IoT through Machine Learning Models. IEEE Asian Conference on Automation and Control (ASIANCON), 8(1), 1–6. https://doi.org/10.1109/asiancon62057.2024.10837788
  • 15. Patel, D., & Kalgutkar, P. (2024). Predictive Maintenance for Industrial Equipment Using Machine Learning. International Journal of Advanced Research in Science, Communication and Technology, 8(3), 618–625. https://doi.org/10.48175/ijarsct-19379
  • 16. Shaala, A., Baglee, D., & Dixon, D. (2024). Machine learning model for predictive maintenance of modern manufacturing assets. International Conference on Automation and Computing (ICAC), 11(2), 1–6. https://doi.org/10.1109/icac61394.2024.10718768
  • 17. Márquez, J. C. de la C., & Garcia, A. M. (2024). Machine Learning for Predictive Maintenance to Enhance Energy Efficiency in Industrial Operations. Information Technology Engineering Journal (ITEj), 9(1), 15–22. https://doi.org/10.24235/itej.v9i2.125
  • 18. Meher, S. S., & Kakran, V. (2024). Predictive Maintenance of Industrial Equipments combining IoT and Data Science Techniques using Feed Forward Neural Network. International Conference on Intelligent Systems and Control (CISCON), 6(2), 1–6. https://doi.org/10.1109/ciscon62171.2024.10696859
  • 19. Davrazos, G., Raftopoulos, G., Panagiotakopoulos, T., Kotsiantis, S., & Kameas, A. (2024). Enhancing Predictive Maintenance with Interpretable AutoML: A Case Study on Detecting Ball-Bearing Faults Using IoT Data. International Conference on Information, Intelligence, Systems & Applications (IISA), 14(1), 1–4. https://doi.org/10.1109/iisa62523.2024.10786664
  • 20. Shaikh, M., Patil, P., Thokal, P. V., & Pardeshi, D. B. (2024). Implementing Machine Learning for Predictive Maintenance in Industrial Machinery. International Conference on Computing, Communication and Networking Technologies (ICCCNT), 9(2), 1–6. https://doi.org/10.1109/icccnt61001.2024.10724004
  • 21. Suthar, A., Kolhe, K., Gutte, V., & Patil, D. (2024). Predictive Maintenance and Real-Time Monitoring using IoT and Cloud Computing. International Conference on Information Processing and Communication Networks (ICIPCN), 5(1), 814–820. https://doi.org/10.1109/icipcn63822.2024.00141
  • 22. Ohoriemu, O. B., & Ogala, J. O. (2024). Integrating artificial intelligence and mathematical models for predictive maintenance in industrial systems. Fudma Journal of Sciences, 8(3), 501–505. https://doi.org/10.33003/fjs-2024-0803-2593
  • 23. Ragavendiran, S. D. P., Shahakar, D., Kumari, D., Yadav, A. S., Arthi, P. M., & Rajesha, N. (2024). Predictive Maintenance of Electrical Machines using Machine Learning and Condition Monitoring Data. Proceedings of the 2024 International Conference on Advances in Computing and Artificial Intelligence (ACCAI), 1–6. https://doi.org/10.1109/accai61061.2024.10601981
  • 24. Malaiyappan, J. N. A., Krishnamoorthy, G., & Jangoan, S. (2024). Predictive Maintenance using Machine Learning in Industrial IoT. International Journal of Innovative Science and Research Technology, 9(3), 123–128. https://doi.org/10.38124/ijisrt/ijisrt24mar984
  • 25. Kumar, R., Mishra, M., Suman, S., & Bali, P. (2024). Predictive Maintenance in Industrial Systems Using Machine Learning. International Journal of Innovative Science and Research Technology, 9(3), 234–239. https://doi.org/10.38124/ijisrt/ijisrt24mar1367
  • 26. Darewar, S. S., Satote, S. A., Jadhav, S., & Vast, A. J. (2024). Cogs in Motion: Advancing Mechanical System Management with Predictive Maintenance and Machine Learning. International Journal of Research Publication and Reviews, 5(5), 12352–12357. https://doi.org/10.55248/gengpi.5.0524.1439
  • 27. Alaguvathana, P., Vignesh, S., MLB, T., & RM, Y. (2024). Optimizing Industrial Machinery Maintenance through Machine Learning Predictions. Proceedings of the 2024 International Conference on Information and Communication Technology (ICICT), 1–6. https://doi.org/10.1109/icict60155.2024.10544515
  • 28. Narayanan, L. K., Loganayagi, S., Hemavathi, R., Jayalakshmi, D. S., & Vimal, V. R. (2024). Machine Learning-Based Predictive Maintenance for Industrial Equipment Optimization. Transactions on Quality, Control, and Electronic Business Technologies, 101, 1–5. https://doi.org/10.1109/tqcebt59414.2024.10545280
  • 29. Mani, A. (2024). The Impact of AI-Powered Predictive Maintenance on Industrial Equipment. Indian Scientific Journal of Research in Engineering and Management, 12(2), 45–50.
  • 30. Hector, I., & Panjanathan, R. (2024). Predictive Maintenance in Industry 4.0: A Survey of Planning Models and Machine Learning Techniques. PeerJ Computer Science, 10, e2016.
  • 31. Usharani, R., Sivagami, V. M., Saravanan, K., Pushparani, S., & Rekha, K. S. (2024). Cloud-Enhanced Machine Learning Models for Predictive Maintenance in Industrial IoT. Transactions on Quality, Control, and Electronic Business Technologies, 29, 1–5. https://doi.org/10.1109/tqcebt59414.2024.10545129
  • 32. Thakkar, D., & Kumar, R. (2024). AI-Driven Predictive Maintenance for Industrial Assets Using Edge Computing and Machine Learning. Journal for Research in Applied Sciences and Biotechnology, 3(1), 363–367. https://doi.org/10.55544/jrasb.3.1.55

Development of an Intelligent Predictive Maintenance System Using Machine Learning for Industrial Equipment

Year 2025, Volume: 04, 31 - 42, 31.10.2025
https://doi.org/10.54709/joebs.1662975

Abstract

The reliability and efficiency of industrial equipment are crucial for minimizing downtime and operational costs. This study presents the development of an intelligent predictive maintenance system using machine learning to enhance equipment reliability. Failure data from CNC machines, conveyor belts, lathe machines, boilers, and hydraulic presses were analyzed, revealing an annual downtime of 400 hours and maintenance costs of ₦20,000,000. Sensor data from IoT-enabled devices recorded vibration (2.5–7.0 mm/s), temperature (60–88°C), pressure (5.0–8.0 bar), and humidity (30–55%), with anomaly scores reaching 0.95. A machine learning framework tested Random Forest, SVM, Neural Networks, XGBoost, and Logistic Regression, with XGBoost achieving the highest accuracy (96.0%), precision (95.3%), recall (94.7%), and F1-score (95.0%). After implementing the predictive maintenance system, downtime was reduced by 45% (from 400 to 220 hours), maintenance costs decreased by 40% (from ₦20,000,000 to ₦12,000,000), and unexpected failures dropped by 66% (from 30 to 10 incidents annually). The mean time between failures increased from 300 to 500 hours (67% improvement), and spare parts usage was reduced by 30%. Feature importance analysis ranked vibration (0.35), temperature (0.30), and pressure (0.20) as key indicators of failure. A comparison of maintenance strategies showed predictive maintenance extended equipment lifespan to 12 years, outperforming reactive (8 years) and preventive (10 years) approaches. The developed system demonstrated significant improvements in reliability, cost savings, and operational efficiency, underscoring its potential for industrial adoption.

References

  • 1. Marchand, J., Laval, J., Sekhari, A., Cheutet, V., & Danielou, J.-B. (2025). End-to-end lifecycle machine learning framework for predictive maintenance of critical equipment. Enterprise Information Systems, 19(1-2). https://doi.org/10.1080/17517575.2024.2448008
  • 2. Patil, D. T. (2025). Artificial Intelligence-Driven Predictive Maintenance In Manufacturing: Enhancing Operational Efficiency, Minimizing Downtime, And Optimizing Resource Utilization. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5057406
  • 3. Labchiri, F. E., Hidila, Z., Ayoub, F., Monteiro, F., Rjoub, A., & Abdennasser, A. (2024). Optimizing Industrial System From Machine Learning to Digital Twin-Driven Predictive Maintenance. Proceedings of the International Conference on Microelectronics (ICM), 1–6. https://doi.org/10.1109/icm63406.2024.10815781
  • 4. Padmavathi, S., Nevetha, B., Bala Sakthi, R., & Varshini, K. (2024). Machine Learning for Reliable Industrial Operations. In Advances in Industrial Automation and Smart Manufacturing (pp. 316–330). https://doi.org/10.1201/9781032711300-22
  • 5. Tanuja, M., K, D. C., & V M, Mrs. H. (2024). Predictive Analytics for Maintenance. International Journal of Advanced Research in Science, Communication and Technology, 4(2), 175–179. https://doi.org/10.48175/ijarsct-22538
  • 6. Karwa, R. R., Bamnote, G. R., Dhumale, Y. A., Deshmukh, P., Meshram, R. A., & Iqbal, S. (2024). Predictive Maintenance: Machine Learning Approaches for Enhanced Equipment Reliability. Proceedings of the International Conference on Artificial Intelligence and Education (ICAIE), 1–6. https://doi.org/10.1109/idicaiei61867.2024.10842946
  • 7. Gupta, K., & Kaur, P. (2024). Application of Predictive Maintenance in Manufacturing with the utilization of AI and IoT Tools. TechRxiv Preprint. https://doi.org/10.36227/techrxiv.173532375.50630906/v1
  • 8. Udofot, A. I., Oluseyi, O. M., & Edim, B. E. (2024). Machine Learning for Predictive Maintenance in Industrial IoT: A Comparative Study of Algorithms and Applications. International Journal of Scientific and Research Publications, 6(12), 192–203. https://doi.org/10.35629/5252-0612192203
  • 9. Shukor, S. A., & Juhari, M. S. H. M. (2024). Machine learning-driven predictive maintenance: optimizing naive bayes with synthetic data and class imbalance techniques. International Journal of Innovation and Industrial Revolution, 6(19), 72–85. https://doi.org/10.35631/ijirev.619006
  • 10. Rao, A. V. S. S., Kulkarni, S., Bhatia, D., Sambasivarao, L. V., & Singh, K. (2024). Advanced Machine Learning Algorithms for Predictive Maintenance in Industrial Manufacturing Systems. South Eastern European Journal of Public Health, 716–723. https://doi.org/10.70135/seejph.vi.2057
  • 11. Sheikh, A. I., Anil Kumar, T. Ch., Gupta, A., Satish, G. J., Nagpal, A., Ranjit, P. S., & Ptak, A. (2024). Using IoT and Machine Learning Together for Manufacturing Predictive Maintenance. Lecture Notes in Networks and Systems, 856(1), 36–39. https://doi.org/10.1201/9781003596721-9
  • 12. Singgih, M. L., & Zakiyyah, F. F. (2024). Machine Learning for Predictive Maintenance: A Literature Review. Proceedings of the International Conference on Vocational Education and Electrical Engineering (ICVEE), 12(2), 250–256. https://doi.org/10.1109/icvee63912.2024.10823713
  • 13. Sharma, S. S., Vivek, V. S., & Malviya, A. (2024). AI-Enhanced Predictive Maintenance in Intelligent Systems for Industries. International Conference on Automation, Robotics and Smart Technologies (ACROSET), 7(1), 1–6. https://doi.org/10.1109/acroset62108.2024.10743977
  • 14. Rani, A. J., Prithivirajan, V., Shiney, S. A., Babaiah, Ch., Swamy, H., & Sivagamidevi, G. (2024). Enhancing Predictive Maintenance in Industrial IoT through Machine Learning Models. IEEE Asian Conference on Automation and Control (ASIANCON), 8(1), 1–6. https://doi.org/10.1109/asiancon62057.2024.10837788
  • 15. Patel, D., & Kalgutkar, P. (2024). Predictive Maintenance for Industrial Equipment Using Machine Learning. International Journal of Advanced Research in Science, Communication and Technology, 8(3), 618–625. https://doi.org/10.48175/ijarsct-19379
  • 16. Shaala, A., Baglee, D., & Dixon, D. (2024). Machine learning model for predictive maintenance of modern manufacturing assets. International Conference on Automation and Computing (ICAC), 11(2), 1–6. https://doi.org/10.1109/icac61394.2024.10718768
  • 17. Márquez, J. C. de la C., & Garcia, A. M. (2024). Machine Learning for Predictive Maintenance to Enhance Energy Efficiency in Industrial Operations. Information Technology Engineering Journal (ITEj), 9(1), 15–22. https://doi.org/10.24235/itej.v9i2.125
  • 18. Meher, S. S., & Kakran, V. (2024). Predictive Maintenance of Industrial Equipments combining IoT and Data Science Techniques using Feed Forward Neural Network. International Conference on Intelligent Systems and Control (CISCON), 6(2), 1–6. https://doi.org/10.1109/ciscon62171.2024.10696859
  • 19. Davrazos, G., Raftopoulos, G., Panagiotakopoulos, T., Kotsiantis, S., & Kameas, A. (2024). Enhancing Predictive Maintenance with Interpretable AutoML: A Case Study on Detecting Ball-Bearing Faults Using IoT Data. International Conference on Information, Intelligence, Systems & Applications (IISA), 14(1), 1–4. https://doi.org/10.1109/iisa62523.2024.10786664
  • 20. Shaikh, M., Patil, P., Thokal, P. V., & Pardeshi, D. B. (2024). Implementing Machine Learning for Predictive Maintenance in Industrial Machinery. International Conference on Computing, Communication and Networking Technologies (ICCCNT), 9(2), 1–6. https://doi.org/10.1109/icccnt61001.2024.10724004
  • 21. Suthar, A., Kolhe, K., Gutte, V., & Patil, D. (2024). Predictive Maintenance and Real-Time Monitoring using IoT and Cloud Computing. International Conference on Information Processing and Communication Networks (ICIPCN), 5(1), 814–820. https://doi.org/10.1109/icipcn63822.2024.00141
  • 22. Ohoriemu, O. B., & Ogala, J. O. (2024). Integrating artificial intelligence and mathematical models for predictive maintenance in industrial systems. Fudma Journal of Sciences, 8(3), 501–505. https://doi.org/10.33003/fjs-2024-0803-2593
  • 23. Ragavendiran, S. D. P., Shahakar, D., Kumari, D., Yadav, A. S., Arthi, P. M., & Rajesha, N. (2024). Predictive Maintenance of Electrical Machines using Machine Learning and Condition Monitoring Data. Proceedings of the 2024 International Conference on Advances in Computing and Artificial Intelligence (ACCAI), 1–6. https://doi.org/10.1109/accai61061.2024.10601981
  • 24. Malaiyappan, J. N. A., Krishnamoorthy, G., & Jangoan, S. (2024). Predictive Maintenance using Machine Learning in Industrial IoT. International Journal of Innovative Science and Research Technology, 9(3), 123–128. https://doi.org/10.38124/ijisrt/ijisrt24mar984
  • 25. Kumar, R., Mishra, M., Suman, S., & Bali, P. (2024). Predictive Maintenance in Industrial Systems Using Machine Learning. International Journal of Innovative Science and Research Technology, 9(3), 234–239. https://doi.org/10.38124/ijisrt/ijisrt24mar1367
  • 26. Darewar, S. S., Satote, S. A., Jadhav, S., & Vast, A. J. (2024). Cogs in Motion: Advancing Mechanical System Management with Predictive Maintenance and Machine Learning. International Journal of Research Publication and Reviews, 5(5), 12352–12357. https://doi.org/10.55248/gengpi.5.0524.1439
  • 27. Alaguvathana, P., Vignesh, S., MLB, T., & RM, Y. (2024). Optimizing Industrial Machinery Maintenance through Machine Learning Predictions. Proceedings of the 2024 International Conference on Information and Communication Technology (ICICT), 1–6. https://doi.org/10.1109/icict60155.2024.10544515
  • 28. Narayanan, L. K., Loganayagi, S., Hemavathi, R., Jayalakshmi, D. S., & Vimal, V. R. (2024). Machine Learning-Based Predictive Maintenance for Industrial Equipment Optimization. Transactions on Quality, Control, and Electronic Business Technologies, 101, 1–5. https://doi.org/10.1109/tqcebt59414.2024.10545280
  • 29. Mani, A. (2024). The Impact of AI-Powered Predictive Maintenance on Industrial Equipment. Indian Scientific Journal of Research in Engineering and Management, 12(2), 45–50.
  • 30. Hector, I., & Panjanathan, R. (2024). Predictive Maintenance in Industry 4.0: A Survey of Planning Models and Machine Learning Techniques. PeerJ Computer Science, 10, e2016.
  • 31. Usharani, R., Sivagami, V. M., Saravanan, K., Pushparani, S., & Rekha, K. S. (2024). Cloud-Enhanced Machine Learning Models for Predictive Maintenance in Industrial IoT. Transactions on Quality, Control, and Electronic Business Technologies, 29, 1–5. https://doi.org/10.1109/tqcebt59414.2024.10545129
  • 32. Thakkar, D., & Kumar, R. (2024). AI-Driven Predictive Maintenance for Industrial Assets Using Edge Computing and Machine Learning. Journal for Research in Applied Sciences and Biotechnology, 3(1), 363–367. https://doi.org/10.55544/jrasb.3.1.55
There are 32 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section Research Article
Authors

Dıckson Davıd Olodu 0000-0003-3383-2543

Andrew Erameh 0000-0002-6463-143X

Osagie Imevbore Ihenyen 0000-0003-4499-7845

Francis Inegbedion 0000-0002-2142-8079

Early Pub Date October 31, 2025
Publication Date October 31, 2025
Submission Date March 29, 2025
Acceptance Date October 31, 2025
Published in Issue Year 2025 Volume: 04

Cite

Vancouver Olodu DD, Erameh A, Ihenyen OI, Inegbedion F. Development of an Intelligent Predictive Maintenance System Using Machine Learning for Industrial Equipment. JOEBS. 2025;04:31-42.

     download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjY0YjkvZGMxZC80MzY5LzY4Njc5ODZkMjZmMzEucG5nIiwiZXhwIjoxNzU5MDQ4OTc4LCJub25jZSI6IjRiNjgxM2VkMjdlOGRlYzdjN2ZjM2E1OWYwMDMzOGM2In0.muS64PI-pzVj3uw574Iq70DPGP35CC848_IRD2XGN8Q            download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6ImJiMzYvZmU4NS9jMDMyLzY4OWM5MTkxYjk3ZTcucG5nIiwiZXhwIjoxNzU5MDQ5MDkxLCJub25jZSI6ImIxMjllNWRlMWNhNjYwNjBmMmEwZTk5ODNkY2I0MzkwIn0.DxiKu0Zpn-vPFgUBGsuiCr39WTnZPy8JTQbJWrG4Xs0             download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6ImQ2NjAvMjFjYS9kNTJkLzY4OWM4YWRmODhiMzcucG5nIiwiZXhwIjoxNzU5MDQ5Mjg5LCJub25jZSI6Ijk5NDNlOTRiN2NkY2ZlNDdjY2ViYjdmMjYwOWFhMmU4In0.FdEZrYIbOOKE9ViBoDcEp2PUU5HWJc6EgaKe2KfZqU0

Flag Counter

(CC BY-NC-SA 4.0). Deed | Attribution-NonCommercial-ShareAlike 4.0 International | Creative Commons