Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Extended Spectrum Beta-Lactamase Profiles of Klebsiella pneumoniae Isolates by Using Genotypic and Phenotypic Methods

Yıl 2024, Cilt: 4 Sayı: 3, 76 - 82, 30.09.2024

Öz

Objectives: The aim of this study is to detect the production of extended-spectrum beta-lactamase (ESBL) in Klebsiella pneumoniae isolates isolated in our hospital using phenotypic and genotypic methods and to evaluate the performance of the newly developed colorimetric-ESBL test in our department.
Materials and Methods: Between 2018 and 2023, routine automated susceptibility testing (VITEK 2 Compact, BioMérieux, France) in our hospital detected MICs of ceftazidime and ceftriaxone that were 100 above the ESBL screening limit (>1mg/L); 20 K. pneumoniae isolates that were below (≤1mg/L) were included in the study. The ESBL positivity and negativity of the isolates was confirmed by a combination disk test according to the EUCAST recommendations. The three most common ESBL genes, blaTEM, blaSHV and blaCTX-M, were PCR-treated with specific primers. The performance of the colorimetric-ESBL test in detecting ESBL in isolates in which at least one of the ESBL genes was detected in the PCR test was evaluated. The performance of the colorimetric-ESBL test in detecting ESBL in isolates in which at least one of the ESBL genes was detected in the PCR test was evaluated. The colorimetric-ESBL test was performed in a tube containing specific concentrations of cefotaxime/ceftriaxone and phenol red as a pH indicator (*unpublished data).
Results: All 100 isolates were confirmed as ESBL-positive by combination disk test. At least one of the ESBL genes tested by PCR was detected in 97 (97%) of the isolates. The most frequently occurring ESBL gene was blaCTX-M (95.9 %), alone or in combination with another ESBL gene. The proportion of isolates carrying all three genes together was 28.9 %. Considering the PCR test results as the gold standard, 94 of 97 ESBL-PCR positive isolates (96.9 %) gave positive results in the colorimetric- ESBL test. Of the 20 ESBL-PCR negative isolates, all (100 %) were found to be ESBL-negative in the colorimetric-ESBL test.
Conclusion: Our study showed that the most common ESBL gene in our K. pneumoniae isolates was blaCTX-M and that double or triple ESBL gene combinations were present in more than half of the isolates. The sensitivity (96.9%) and specificity (100%) of the colorimetric ESBL test in detecting ESBL was found to be high, provided that it is evaluated in large-scale studies.

Kaynakça

  • [1] Akova M. Dikkat Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Var! ANKEM Dergisi 2004; 18(2): 98-103.
  • [2] Altınkanat Gelmez G, Hasdemir U, Söyletir G. Enterobacterales Üyelerinde Nadir Bir Plazmid Aracılı A Sınıfı Beta Laktamaz Olan IBC-1’in Araştırılması. Experimed. 2021;11(2):81-7.
  • [3] Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews. 2001;14(4):933-951.
  • [4] Bush K. Past and Present Perspectives on β-Lactamases. Antimicrobial Agents and Chemotherapy. 2018;62(10):e01076-18. [5] Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrobial Agents and Chemotherapy. 2009;53(6):2227-2238.
  • [6] Giske CG, Martinez LM, Cantón R, Stefani S, Skov R, Glupczynski Y, Nordmann P, Wootton M, Miriagou V, Simonsen GS, Zemlickova H, Cohen-Stuart J, Gniadkowski M. Detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. EUCAST guidelines, version 2.01. 2017. [7] D'Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type β-lactamases: a successful story of antibiotic resistance. International Journal of Medical Microbiology. 2013;303(6-7):305-317.
  • [8] Dortet L, Poirel L, Nordmann P. Rapid detection of ESBL-producing Enterobacteriaceae in blood cultures. Emerging Infectious Diseases. 2015;21(3):504-507.
  • [9] Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. Journal of Clinical Microbiology. 2012;50(12):3877-3880.
  • [10] Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide [published correction appears in Clinical Microbiology and Infection. 2008 May;14 Suppl 5:21-4]. Clin Microbiol Infect. 2008;14 Suppl 1:90-103.
  • [11] Ellington MJ, Ekelund O, Aarestrup FM, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clinical Microbiology and Infection. 2017;23(1):2-22.
  • [12] Gherardi G, Angeletti S, Panitti M, et al. Comparative evaluation of the Vitek-2 Compact and Phoenix systems for rapid identification and antibiotic susceptibility testing directly from blood cultures of Gram-negative and Gram-positive isolates. Diagnostic Microbiology and Infectious Disease. 2012 Jan;72(1):20-31.
  • [13] Harada S, Ishii Y, Yamaguchi K. Extended-spectrum beta-lactamases: implications for the clinical laboratory and therapy. The Korean Journal of Laboratory Medicine. 2008;28(6):401-412.
  • [14] Hope R, Potz NA, Warner M, Fagan EJ, Arnold E, Livermore DM. Efficacy of practised screening methods for detection of cephalosporin-resistant Enterobacteriaceae. Journal of Antimicrobial Chemotherapy. 2007;59(1):110-113.
  • [15] Jean SS, Hsueh PR. High burden of antimicrobial resistance in Asia. International Journal of Antimicrobial Agents. 2011;37(4):291-295.
  • [16] Latifpour M, Gholipour A, Damavandi MS. Prevalence of Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Isolates in Nosocomial and Community-Acquired Urinary Tract Infections. Jundishapur Journal of Microbiology. 2016;9(3):e31179. Published 2016 Mar 12.
  • [17] Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Frontiers in Microbiology. 2016;7:895. Published 2016 Jun 13.
  • [18] Livermore DM. Defining an extended-spectrum beta-lactamase [published correction appears in Clin Microbiol Infect. 2008 May;14 Suppl 5:21-4]. Clinical Microbiology and Infection. 2008;14 Suppl 1:3-10.
  • [19] Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clinical Microbiology Reviews. 2015;28(3):565-591.
  • [20] Moland ES, Kim SY, Hong SG, & Thomson KS. Newer β-Lactamases: clinical and laboratory implications, Part I. Clinical Microbiology Newsletter. 2008; 30: 71–77.
  • [21] Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Reviews. 2017;41(3):252-275.
  • [22] Nordmann P, Dortet L, Poirel L. Rapid detection of extended-spectrum-β-lactamase-producing Enterobacteriaceae. Journal of Clinical Microbiology. 2012;50(9):3016-3022.
  • [23] Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clinical Microbiology Reviews. 2005;18(4):657-686.
  • [24] Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. International Journal of Medical Microbiology. 2010;300(6):371-379.
  • [25] Platteel TN, Cohen Stuart JW, de Neeling AJ, et al. Multi-centre evaluation of a phenotypic extended spectrum β-lactamase detection guideline in the routine setting. Clinical Microbiology and Infection. 2013;19(1):70-76.
  • [26] Renvoisé A, Decré D, Amarsy-Guerle R, et al. Evaluation of the βLacta test, a rapid test detecting resistance to third-generation cephalosporins in clinical strains of Enterobacteriaceae. Journal of Clinical Microbiology. 2013;51(12):4012-4017.
  • [27] Roschanski N, Fischer J, Guerra B, Roesler U. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS One. 2014;9(7):e100956.
  • [28] Rozwandowicz M, Brouwer MSM, Fischer J, et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy. 2018;73(5):1121-1137.
  • [29] Tijet N, Boyd D, Patel SN, Mulvey MR, Melano RG. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2013;57(9):4578-4580.
  • [30] Towne TG, Lewis JS 2nd, Herrera M, Wickes B, Jorgensen JH. Detection of SHV-type extended-spectrum beta-lactamase in Enterobacter isolates. Journal of Clinical Microbiology. 2010;48(1):298-299.
  • [31] Tsai SS, Huang JC, Chen ST, et al. Characteristics of Klebsiella pneumoniae bacteremia in community-acquired and nosocomial infections in diabetic patients. Chang Gung Medical Journal. 2010;33(5):532-539.
  • [32] Vasoo S, Cunningham SA, Kohner PC, et al. Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. Journal of Clinical Microbiology. 2013;51(9):3097-3101.
  • [33] World Health Organization. Annual Report 2020, Access To Medicines And Health Products Programme. 2021.
  • [34] World Health Organization and European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2023 - 2021 data. 2023, Stockholm.
  • [35] Yusuf E, Van Der Meeren S, Schallier A, Piérard D. Comparison of the Carba NP test with the Rapid CARB Screen Kit for the detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. European Journal of Clinical Microbiology & Infectious Diseases. 2014;33(12):2237-2240.

Klebsiella pneumoniae İzolatlarının Genişlemiş Spektrumlu Beta-Laktamaz Profilinin Genotipik ve Fenotipik Yöntemlerle Araştırılması

Yıl 2024, Cilt: 4 Sayı: 3, 76 - 82, 30.09.2024

Öz

Amaç: Bu çalışmanın amacı, hastanemizde izole edilen Klebsiella pneumoniae izolatlarında genişletilmiş spektrumlu beta laktamaz (GSBL) üretimini fenotipik ve genotipik yöntemlerle tespit etmek ve GSBL saptama amacıyla bölümümüzde yeni geliştirilen kolorimetrik-GSBL testinin performansını değerlendirmektir.
Yöntem: 2018-2023 yılları arasında hastanemizde rutin otomatize duyarlılık testinde (VITEK 2 Compact, BioMérieux, Fransa) seftazidim ve seftriakson MİK’leri GSBL tarama sınırının (>1mg/L) üstünde olan 100; altında (≤1mg/L) olan 20 K. pneumoniae izolatı çalışmaya dahil edilmiştir. İzolatlarda GSBL pozitifliği ve negatifliği, EUCAST önerilerine göre kombinasyon disk testi ile konfirme edilmiştir. En sıklıkla rastlanan üç GSBL geni, blaTEM, blaSHV ve blaCTX-M, yönünden spesifik primerlerle PZR’a alınmıştır. PZR testinde GSBL genlerinden en az biri saptanan izolatlarda kolorimetrik-GSBL testinin, GSBL saptamadaki performansı değerlendirilmiştir. Kolorimetrik-GSBL testi, belirli konsantrasyonlarda sefotaksim/seftriakson ve pH indikatörü olarak fenol-kırmızısı içeren bir tüpte gerçekleştirilmiştir (araştırmacıyla görüşme sonucu).
Bulgular: 100 izolatın tamamı kombinasyon disk testi ile GSBL pozitif olarak doğrulanmıştır. İzolatların %97’sinde PZR ile araştırılan GSBL genlerinden en az biri saptanmıştır. En sıklıkla rastlanan GSBL geni, tek başına veya diğer bir GSBL geni ile birlikte blaCTX-M (%95,9) oldu. Üç geni bir arada taşıyan izolatların oranı %28,9’du. Altın standart olarak PZR test sonuçlarını dikkate aldığımızda GSBL-PZR pozitif 97 izolatın 94’ü (%96,9) kolorimetrik-GSBL testi ile pozitif sonuç vermiştir. GSBL-PZR negatif 20 izolatın ise kolorimetrik-GSBL testi ile hepsi GSBL negatif bulunmuştur.
Sonuç: Çalışmamızda, K. pneumoniae izolatlarımızda en yaygın GSBL geninin blaCTX-M olduğu ve izolatların yarısından çoğunda ikili veya üçlü GSBL gen kombinasyonlarının varlığı belirlenmiştir. Kolorimetrik-GSBL testinin, GSBL saptamadaki duyarlılığının (%96,9) ve özgüllüğünün (%100), geniş kapsamlı çalışmalarda da değerlendirilmek koşuluyla, yüksek olduğunu kaydedilmiştir.

Kaynakça

  • [1] Akova M. Dikkat Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Var! ANKEM Dergisi 2004; 18(2): 98-103.
  • [2] Altınkanat Gelmez G, Hasdemir U, Söyletir G. Enterobacterales Üyelerinde Nadir Bir Plazmid Aracılı A Sınıfı Beta Laktamaz Olan IBC-1’in Araştırılması. Experimed. 2021;11(2):81-7.
  • [3] Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews. 2001;14(4):933-951.
  • [4] Bush K. Past and Present Perspectives on β-Lactamases. Antimicrobial Agents and Chemotherapy. 2018;62(10):e01076-18. [5] Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrobial Agents and Chemotherapy. 2009;53(6):2227-2238.
  • [6] Giske CG, Martinez LM, Cantón R, Stefani S, Skov R, Glupczynski Y, Nordmann P, Wootton M, Miriagou V, Simonsen GS, Zemlickova H, Cohen-Stuart J, Gniadkowski M. Detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. EUCAST guidelines, version 2.01. 2017. [7] D'Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type β-lactamases: a successful story of antibiotic resistance. International Journal of Medical Microbiology. 2013;303(6-7):305-317.
  • [8] Dortet L, Poirel L, Nordmann P. Rapid detection of ESBL-producing Enterobacteriaceae in blood cultures. Emerging Infectious Diseases. 2015;21(3):504-507.
  • [9] Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. Journal of Clinical Microbiology. 2012;50(12):3877-3880.
  • [10] Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide [published correction appears in Clinical Microbiology and Infection. 2008 May;14 Suppl 5:21-4]. Clin Microbiol Infect. 2008;14 Suppl 1:90-103.
  • [11] Ellington MJ, Ekelund O, Aarestrup FM, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clinical Microbiology and Infection. 2017;23(1):2-22.
  • [12] Gherardi G, Angeletti S, Panitti M, et al. Comparative evaluation of the Vitek-2 Compact and Phoenix systems for rapid identification and antibiotic susceptibility testing directly from blood cultures of Gram-negative and Gram-positive isolates. Diagnostic Microbiology and Infectious Disease. 2012 Jan;72(1):20-31.
  • [13] Harada S, Ishii Y, Yamaguchi K. Extended-spectrum beta-lactamases: implications for the clinical laboratory and therapy. The Korean Journal of Laboratory Medicine. 2008;28(6):401-412.
  • [14] Hope R, Potz NA, Warner M, Fagan EJ, Arnold E, Livermore DM. Efficacy of practised screening methods for detection of cephalosporin-resistant Enterobacteriaceae. Journal of Antimicrobial Chemotherapy. 2007;59(1):110-113.
  • [15] Jean SS, Hsueh PR. High burden of antimicrobial resistance in Asia. International Journal of Antimicrobial Agents. 2011;37(4):291-295.
  • [16] Latifpour M, Gholipour A, Damavandi MS. Prevalence of Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Isolates in Nosocomial and Community-Acquired Urinary Tract Infections. Jundishapur Journal of Microbiology. 2016;9(3):e31179. Published 2016 Mar 12.
  • [17] Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Frontiers in Microbiology. 2016;7:895. Published 2016 Jun 13.
  • [18] Livermore DM. Defining an extended-spectrum beta-lactamase [published correction appears in Clin Microbiol Infect. 2008 May;14 Suppl 5:21-4]. Clinical Microbiology and Infection. 2008;14 Suppl 1:3-10.
  • [19] Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clinical Microbiology Reviews. 2015;28(3):565-591.
  • [20] Moland ES, Kim SY, Hong SG, & Thomson KS. Newer β-Lactamases: clinical and laboratory implications, Part I. Clinical Microbiology Newsletter. 2008; 30: 71–77.
  • [21] Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Reviews. 2017;41(3):252-275.
  • [22] Nordmann P, Dortet L, Poirel L. Rapid detection of extended-spectrum-β-lactamase-producing Enterobacteriaceae. Journal of Clinical Microbiology. 2012;50(9):3016-3022.
  • [23] Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clinical Microbiology Reviews. 2005;18(4):657-686.
  • [24] Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. International Journal of Medical Microbiology. 2010;300(6):371-379.
  • [25] Platteel TN, Cohen Stuart JW, de Neeling AJ, et al. Multi-centre evaluation of a phenotypic extended spectrum β-lactamase detection guideline in the routine setting. Clinical Microbiology and Infection. 2013;19(1):70-76.
  • [26] Renvoisé A, Decré D, Amarsy-Guerle R, et al. Evaluation of the βLacta test, a rapid test detecting resistance to third-generation cephalosporins in clinical strains of Enterobacteriaceae. Journal of Clinical Microbiology. 2013;51(12):4012-4017.
  • [27] Roschanski N, Fischer J, Guerra B, Roesler U. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS One. 2014;9(7):e100956.
  • [28] Rozwandowicz M, Brouwer MSM, Fischer J, et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy. 2018;73(5):1121-1137.
  • [29] Tijet N, Boyd D, Patel SN, Mulvey MR, Melano RG. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2013;57(9):4578-4580.
  • [30] Towne TG, Lewis JS 2nd, Herrera M, Wickes B, Jorgensen JH. Detection of SHV-type extended-spectrum beta-lactamase in Enterobacter isolates. Journal of Clinical Microbiology. 2010;48(1):298-299.
  • [31] Tsai SS, Huang JC, Chen ST, et al. Characteristics of Klebsiella pneumoniae bacteremia in community-acquired and nosocomial infections in diabetic patients. Chang Gung Medical Journal. 2010;33(5):532-539.
  • [32] Vasoo S, Cunningham SA, Kohner PC, et al. Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. Journal of Clinical Microbiology. 2013;51(9):3097-3101.
  • [33] World Health Organization. Annual Report 2020, Access To Medicines And Health Products Programme. 2021.
  • [34] World Health Organization and European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2023 - 2021 data. 2023, Stockholm.
  • [35] Yusuf E, Van Der Meeren S, Schallier A, Piérard D. Comparison of the Carba NP test with the Rapid CARB Screen Kit for the detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. European Journal of Clinical Microbiology & Infectious Diseases. 2014;33(12):2237-2240.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Halk Sağlığı (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Şükrü Şen 0009-0007-0766-7704

Ufuk Hasdemir 0000-0002-1606-0804

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 7 Mayıs 2024
Kabul Tarihi 20 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 3

Kaynak Göster

APA Şen, Ş., & Hasdemir, U. (2024). Klebsiella pneumoniae İzolatlarının Genişlemiş Spektrumlu Beta-Laktamaz Profilinin Genotipik ve Fenotipik Yöntemlerle Araştırılması. Journal of Health Sciences and Management, 4(3), 76-82.