Araştırma Makalesi
BibTex RIS Kaynak Göster

OX-LDL İLE NÖTROFİL AKTİVASYONU SIRASINDA OLUŞAN DNA HASARININ KOMET ASSAY İLE DEĞERLENDİRİLMESİ

Yıl 2018, Cilt: 4 Sayı: 4, 183 - 189, 27.12.2018

Öz

Amaç İnsan vücudunda normal metabolizma ürünü olarak ya da ekzojen kaynaklarla oluşturulan reaktif oksijen türleri (ROT) ve diğer serbest
radikallerin, çok sayıda fi zyolojik ve patolojik olayda yer aldığı bilinmektedir. Bu reaktif türler eşleşmemiş elektrona sahip oldukları için,
hücrenin pek çok bileşeni, DNA, protein ve lipid içerikleriyle kolaylıkla reaksiyona girerek, normal hücre fonksiyonlarını bozabilme
yeteneğindedir. Bu çalışmada, oksidan stres modeli olarak seçilen nötrofi llerin okside olmuş düşük dansiteli lipoprotein (ox-LDL) ile
aktive edilmesi sonucu oluşan hasarı Komet Assay ile göstermeyi amaçladık.
Gereç ve
yöntemler
Bu çalışmada LDL, “short-run ultracentrifugation” yöntemiyle izole edildikten sonra CuCl� ile okside edildi. Ficoll-Hypaque gradientcentrifi ıgation” yöntemi ile de tam kandan izole edilen nötrofi ller ox-LDL ile sitümüle edildi. %1 LMP-agoraz içinde yatay elektroforezde
yürütüldü ve propidyum iyodidle boyanarak, fl oresan mikroskopu (Leica-DMLB) ile değerlendirildi. Sonuçlar, sayılan 100 hücreden
komet oluşturmuş hücrelerin yüzdesi olarak bildirildi.
Bulgular Komet yöntemi ile Ox-LDL ile muamele edilen hücrelerde Komet oluşumu %30,0 ± 4,6 olarak tespit edildi. Aynı oran kontrol hücre
grubunda %5,2 ± 1,9 olarak bulundu. Bu sonuçlara göre ox-LDL ile indüklenen oksidatif stres durumunda Komet oluşturan hücrelerin
yüzdesinin belirgin olarak arttığı gözlendi (p<0.001). Aynı hücre gruplarında tripan mavisi ile tespit edilen hücre canlılığı %53,4 ± 3,9
(oksidan stres durumunda); %84,7± 3,2 (kontrol grubunda) olarak belirlendi (p<0.001).
Sonuç Nötrofi llerin ox-LDL ile muameleye aktivasyonla yanıt verdiği ve bunun sonucu DNA hasarında istatistiksel olarak anlamlı bir yükselme
olduğu Komet yöntemi ile göstermek mümkün olmuştur. Bu DNA hasarının nötrofi llerin doğal immünitedeki koruyucu fonksiyonlarının
aksine kronik infl amatuar hastalıklar, kanser oluşumu gibi pek çok hastalığın etyopatogenezindeki rollerini açıklamada önemli olacaktır. 

Kaynakça

  • 1. Jialal I, Deveraj S. Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clinical Chemistry. 1996;42(4):498-506. PMID: 8605665
  • 2. Weinbrenner T, Cladellas M, Covas MI, Fito M, Tomas M, Senti M et al. High oxidative stress in patients with stable coronary heart disease, Atherosclerosis. 2003;168(1):99-106. PMID: 12732392
  • 3. Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J. 2001;15(12):2073-84. PMID: 11641234
  • 4. Kita T, Kume N, Minami M, Hayashida K, Murayama T, Sano H. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci. 2001;947:199-205; discussion 205-6. PMID: 11795267
  • 5. Hari K, Katayama M, Sata N, ishii K, Waga S, Yadai J. Neuroprotection by glial cells through adult T cell leukemia-derived factor/human thioredoxin (ADF/TRX). Brain Res. 1994;652(2):304-10. PMID: 7953744
  • 6. Borregaard N, Herlin T. Energy metabolism of human neutrophils during phagocytosis. J Clin Invest. 1982;70(3):550-7. PMID: 7107894
  • 7. Roos D, Weeúg RS, Voetman AA, Schaik JV, Bot AAM, Meerhoff LJ, Loos JA. Protection of phagocytic leukocytes by endogenous glutathione: studies in a family with glutathione reductase deficiency. Blood. 1979;53(5):851-66. PMID: 435643
  • 8. Vicentini FC, Gomes CM, Danilovic A,. Chedid Neto EA, Mazzucchi E, Srougi M. Percutaneous nephrolithotomy: Current concepts. Indian J Urol. 2009; 25(1): 4–10. PMID: 19468422
  • 9. Abdalla DSP, Compa A, Monteiro HP. Low density lipoprotein oxidation by stimulated neutrophils and ferritin. Aterosclerosis. 1992; 47:149-159. PMID: 1334654
  • 10. Weiss SJ, Slivka A. Monocyte and granulocyte-mediated tumor cell destruction. A role for the hydrogen peroxide-myeloperoxidase-chloride system. J Clin Invest. 1982;69(2): 255–262. PMID: 6276438
  • 11. Andrews PC, Krinsky M. The reductive cleavage of myeloperoxidase in half, producing enzymatically active hemi myeloperoxidase. J Biol Chem.1981;256: 4211-4218. PMID: 6260790
  • 12. Weiss SJ, Klein R, Slivka A, Wei M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 1982;70(3):598-607. PMID: 6286728
  • 13. Clark RA, Stone PJ, Hag AE, Calore JD, Franzblau C. Myeloperoxidase-catalyzed inactivation of α1-protease inhibitor by human neutrophils. J Biol Chem. 1981;256:3348–3353. PMID: 6162845
  • 14. Marion R, Stumpf DA, Michals K, Hart RD, Parks JK, Goodman SI. Lipoamide dehydrogenase defiency with primary lactic acidosis: Favorable response to treatment with oral lipoic acid. J Pediatrics. 1984;104:65-69. PMID: 6418873
  • 15. Yan LJ, Traber MG, Kobuchi H, Matsugo S, Tritschler HJ, Packer L. Efficacy of hypochlorous acid scavengers in the prevention of protein carbonyl formation. Arch Biochem Biophys.1996;327(2):330-4. PMID: 8619623
  • 16. Siminiak T, Flores Na, Sheridan DJ: Neutrophil interactions with endothelium and platelets: possible role in the development of cardiovascular injury. Eur Heart J. 1995;16:160-70. PMID: 7744086
  • 17. McCarron RM, Wang L, Siren AL, Spatz M, Hallenbeck M. Adhesion Molecules on Normotensive and Hypertensive Rat Brain Endothelial Cells. Proc Soc Exp Biol Med. 1994;205(3):257-62. PMID: 7909612
  • 18. Kleinveld HA, Hak-Lemmers HL, Stalenhoef AF, Demacker PN. Improved measurement of low-density-lipoprotein susceptibility to copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein. Clin Chem. 1992;38(10):2066-72. PMID: 1394991
  • 19. Scheek LM1, Wiseman SA, Tijburg LB, van Tol A. Dialysis of isolated low density lipoprotein induces a loss of lipophilic antioxidants and increases the susceptibility to oxidation in vitro. Atherosclerosis. 1995;117(1):139-44. PMID: 8546750
  • 20. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1-85. PMID: 2172697
  • 21. Graham A, Hogg N, Kalyanaraman B, O'Leary V, Darley-Usmar V, Moncada S. Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett. 1993;330(2):181-5. PMID: 8365489
  • 22. Leake DS, Rankin SM, Collard S. Macrophage proteases can modify low density lipoproteins to increase their uptake by macrophages. FEBS Lett. 1990;269:209-212. PMID: 2201569
  • 23. Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997;272(31):19095-8. PMID: 9235895
  • 24. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010 Jul-Dec; 4(8): 118–126. PMID: 22228951
  • 25. Paap B, Wilson DM, Sutherland BM. Human abasic endonuclease action on multilesion abasic clusters: implications for radiation-induced biological damage. Nucleic Acids Res. 2008;36(8): 2717–2727. PMID: 18353858
  • 26. Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 1988;240(4852):640-2. PMID: 2834821
  • 27. Beckman KB, Ames BN. Oxidative decay of DNA. J Biol Chem. 1997;272(32):19633-6. PMID: 9289489
  • 28. Guidarelli A, Cattabeni F, Cantoni O. Alternative mechanisms for hydroperoxide-induced DNA single strand breakage. Free Radic Res. 1997;26(6):537-47. PMID: 9212348
  • 29.Cooper PK, Nouspikel T, Clarkson SG, Leadon SA. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science. 1997;275(5302):990-3. PMID: 9020084
  • 30. Hazell LT, Berg J.JM, Stocker R. Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem J. 1994; 302(Pt 1): 297–304. PMID: 8068018
  • 31. Jacob S, Streeger RS, Fogt DL, Hokoma JY, Tritschler HJ, Dietze GJ, Henriksen EJ. The antioxidant alpha-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes. 1996;45(8):1024-9. PMID: 8690147
  • 32. Davies KJ. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987;262(20):9895-901. PMID: 3036875
  • 33. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. Method for the measurement of antioxidant activity in human fluids. J Clin Pathol. 2001; 54(5): 356–361. PMID: 11328833
  • 34. Markwell MA, Haas SM, Bieber LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978;87(1):206-10. PMID: 98070
  • 35. Esterbauer H, Gebicki J, Puhl H, Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992;13(4):341-90. PMID: 1398217
  • 36. Arauz J, Ramos-Tovar E, Muriel P. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside. Annals of Hepatolgy. 2016;15(2):160-173. PMID: 26845593
  • 37. J Renzi P, Ginns LC. Analysis of T cell subsets in normal adults. Comparison of whole blood lysis technique to Ficoll-Hypaque separation by flow cytometry. J Immunol Methods. 1987;98(1):53-6. PMID: 2951443
  • 38. Araujo FB, Barbosa DS, Hsin CY, Maranhao RC, Abdalla DS. Evaluation of oxidative stress in patients with hyperlipidemia. Atherosclerosis. 1995;117(1):61-71. PMID: 8546756
  • 39. Carr AC, Frei B. Human neutrophils oxidize low-density lipoprotein by a hypochlorous acid-dependent mechanism: the role of vitamin C. Biol Chem. 2002;383(3-4):627-36. PMID: 12033452
  • 40. Kelley J, Hemontolor G, Younis W, Li C, Krishnaswamy G, Chi DS. Mast cell activation by lipoproteins. Methods Mol Biol. 2006;315:341-8. PMID: 16110168
  • 41. Kopprasch S, Pietzsch J, Graessler J. The protective effects of HDL and its constituents against neutrophil respiratory burst activation by hypochlorite-oxidized LDL. Mol Cell Biochem. 2004 Mar;258(1-2):121-7. PMID: 15030176
  • 42. de Assis EF, Silva AR, Caiado LF, Marathe GK, Zimmerman GA, Prescott SM et al. Synergism between platelet-activating factor-like phospholipids and peroxisome proliferator-activated receptor gamma agonists generated during low density lipoprotein oxidation that induces lipid body formation in leukocytes. J Immunol. 2003 Aug 15;171(4):2090-8. PMID: 12902515
  • 43. Sedgwick JB, Hwang YS, Gerbyshak HA, Kita H, Busse WW. Oxidized low-density lipoprotein activates migration and degranulation of human granulocytes. Am J Respir Cell Mol Biol. 2003;29(6):702-9. PMID: 12777245
  • 44. van Tits LJ, Hak-Lemmers HL, Demacker PN, Stalenhoef AF, Willems PH. Oxidized low-density lipoprotein induces calcium influx in polymorphonuclear leukocytes.Free Radic Biol Med. 2000;29(8):747-55. PMID: 11053776
  • 45. Djordjevic VB. Free radicals in cell biology. Int Rev Cytol. 2004;237:57-89. PMID: 15380666
  • 46. Davies KJ. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987;262(20):9895-901. PMID: 3036875
  • 47. Weiss SJ, Klein R, Slivka A, Wei M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 1982;70(3):598-607. PMID: 6286728
  • 48.Lambert BM, Weiss SJ. The chlorinating potential of the human monocyte. Blood 1983;62:645-651. PMID:6882917
  • 49. Martelli-Palomino G, Paoliello-Paschoalato AB, Crispim JC, Rassi DM, Oliveira RD, Louzada P, Lucisano-Valim YM, Donadi EA. DNA damage increase in peripheral neutrophils from patients with rheumatoid arthritis is associated with the disease activity and the presence of shared epitope. Clin Exp Rheumatol. 2017;35(2):247-254. PMID: 27908303
  • 50. Barrett CD, Hsu AT, Ellson CD, Y Miyazawa B, Kong YW, Greenwood JD. Blood clotting and traumatic injury with shock mediates complement-dependent neutrophil priming for extracellular ROS, ROS-dependent organ injury and coagulopathy. Clin Exp Immunol. 2018;194(1):103-117. PMID: 30260475

Evulation of DNA Damage with Comet Assoy During Neutrophil Activation with OX-LDL

Yıl 2018, Cilt: 4 Sayı: 4, 183 - 189, 27.12.2018

Öz

Aim As a product of normal metabolism in the human body or produced from exogenous sources, reactive oxygen species (ROS) and other
free radicals involved in a large number of physiological and pathological events in human body. Because of their unmatched electrons,
these reactive species can easily react with many components of the cell such as DNA, proteins and lipids, and disrupt normal cell
functions. In this study, the neutrophils activated by oxidized low-density lipoprotein (ox-LDL) were selected as the model of oxidant
stress. We aimed to show the DNA damage after neutrophil activation by using Comet Assay
Material
and
Methods
In this study, LDL was oxidized with CuCl2 after isolatation by sonra short-run ultracentrifugation. Neutrophils were isolated from whole
blood by “Ficoll-Hypaque gradient-centrifugation” method and activated with ox-LDL. After activation they applied into LMP-agorase(%
1) for electrophoresis. After staining with propidium, iodide they evaluated for Comet formation under the fl uorescence microscopy
(Leica-DMLB). The results were reported as a percentage of cells in the form of comet.
Results Comet formation were %30,0 ± 4,6 and %5,2 ± 1,9 in cells treated with Ox-LDL and control, respectively. According to these results,
the percentage of Comet-forming cells in the case of oxidative stress induced by ox-LDL was signifi cantly increased (p<0.001). Cell
viability detected by trypan blue in the same cell groups were %53,4 ± 3,9 (In the case of oxidant stress); %84,7± 3,2 (in the control
group) (p<0.001).
Conclusion By using Comet Assay, it was possible to demonstrate that neutrophils responded to activation by treatment with ox-LDL, which
resulted in a statistically signifi cant increase in DNA damage. This DNA damage will be important in explaining the role of neutrophils
in the etiopathogenesis of many diseases, such as chronic infl ammatory diseases, cancer formation, as opposed to their protective
functio ns in natural immunity.

Kaynakça

  • 1. Jialal I, Deveraj S. Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clinical Chemistry. 1996;42(4):498-506. PMID: 8605665
  • 2. Weinbrenner T, Cladellas M, Covas MI, Fito M, Tomas M, Senti M et al. High oxidative stress in patients with stable coronary heart disease, Atherosclerosis. 2003;168(1):99-106. PMID: 12732392
  • 3. Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J. 2001;15(12):2073-84. PMID: 11641234
  • 4. Kita T, Kume N, Minami M, Hayashida K, Murayama T, Sano H. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci. 2001;947:199-205; discussion 205-6. PMID: 11795267
  • 5. Hari K, Katayama M, Sata N, ishii K, Waga S, Yadai J. Neuroprotection by glial cells through adult T cell leukemia-derived factor/human thioredoxin (ADF/TRX). Brain Res. 1994;652(2):304-10. PMID: 7953744
  • 6. Borregaard N, Herlin T. Energy metabolism of human neutrophils during phagocytosis. J Clin Invest. 1982;70(3):550-7. PMID: 7107894
  • 7. Roos D, Weeúg RS, Voetman AA, Schaik JV, Bot AAM, Meerhoff LJ, Loos JA. Protection of phagocytic leukocytes by endogenous glutathione: studies in a family with glutathione reductase deficiency. Blood. 1979;53(5):851-66. PMID: 435643
  • 8. Vicentini FC, Gomes CM, Danilovic A,. Chedid Neto EA, Mazzucchi E, Srougi M. Percutaneous nephrolithotomy: Current concepts. Indian J Urol. 2009; 25(1): 4–10. PMID: 19468422
  • 9. Abdalla DSP, Compa A, Monteiro HP. Low density lipoprotein oxidation by stimulated neutrophils and ferritin. Aterosclerosis. 1992; 47:149-159. PMID: 1334654
  • 10. Weiss SJ, Slivka A. Monocyte and granulocyte-mediated tumor cell destruction. A role for the hydrogen peroxide-myeloperoxidase-chloride system. J Clin Invest. 1982;69(2): 255–262. PMID: 6276438
  • 11. Andrews PC, Krinsky M. The reductive cleavage of myeloperoxidase in half, producing enzymatically active hemi myeloperoxidase. J Biol Chem.1981;256: 4211-4218. PMID: 6260790
  • 12. Weiss SJ, Klein R, Slivka A, Wei M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 1982;70(3):598-607. PMID: 6286728
  • 13. Clark RA, Stone PJ, Hag AE, Calore JD, Franzblau C. Myeloperoxidase-catalyzed inactivation of α1-protease inhibitor by human neutrophils. J Biol Chem. 1981;256:3348–3353. PMID: 6162845
  • 14. Marion R, Stumpf DA, Michals K, Hart RD, Parks JK, Goodman SI. Lipoamide dehydrogenase defiency with primary lactic acidosis: Favorable response to treatment with oral lipoic acid. J Pediatrics. 1984;104:65-69. PMID: 6418873
  • 15. Yan LJ, Traber MG, Kobuchi H, Matsugo S, Tritschler HJ, Packer L. Efficacy of hypochlorous acid scavengers in the prevention of protein carbonyl formation. Arch Biochem Biophys.1996;327(2):330-4. PMID: 8619623
  • 16. Siminiak T, Flores Na, Sheridan DJ: Neutrophil interactions with endothelium and platelets: possible role in the development of cardiovascular injury. Eur Heart J. 1995;16:160-70. PMID: 7744086
  • 17. McCarron RM, Wang L, Siren AL, Spatz M, Hallenbeck M. Adhesion Molecules on Normotensive and Hypertensive Rat Brain Endothelial Cells. Proc Soc Exp Biol Med. 1994;205(3):257-62. PMID: 7909612
  • 18. Kleinveld HA, Hak-Lemmers HL, Stalenhoef AF, Demacker PN. Improved measurement of low-density-lipoprotein susceptibility to copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein. Clin Chem. 1992;38(10):2066-72. PMID: 1394991
  • 19. Scheek LM1, Wiseman SA, Tijburg LB, van Tol A. Dialysis of isolated low density lipoprotein induces a loss of lipophilic antioxidants and increases the susceptibility to oxidation in vitro. Atherosclerosis. 1995;117(1):139-44. PMID: 8546750
  • 20. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1-85. PMID: 2172697
  • 21. Graham A, Hogg N, Kalyanaraman B, O'Leary V, Darley-Usmar V, Moncada S. Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett. 1993;330(2):181-5. PMID: 8365489
  • 22. Leake DS, Rankin SM, Collard S. Macrophage proteases can modify low density lipoproteins to increase their uptake by macrophages. FEBS Lett. 1990;269:209-212. PMID: 2201569
  • 23. Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997;272(31):19095-8. PMID: 9235895
  • 24. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010 Jul-Dec; 4(8): 118–126. PMID: 22228951
  • 25. Paap B, Wilson DM, Sutherland BM. Human abasic endonuclease action on multilesion abasic clusters: implications for radiation-induced biological damage. Nucleic Acids Res. 2008;36(8): 2717–2727. PMID: 18353858
  • 26. Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 1988;240(4852):640-2. PMID: 2834821
  • 27. Beckman KB, Ames BN. Oxidative decay of DNA. J Biol Chem. 1997;272(32):19633-6. PMID: 9289489
  • 28. Guidarelli A, Cattabeni F, Cantoni O. Alternative mechanisms for hydroperoxide-induced DNA single strand breakage. Free Radic Res. 1997;26(6):537-47. PMID: 9212348
  • 29.Cooper PK, Nouspikel T, Clarkson SG, Leadon SA. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science. 1997;275(5302):990-3. PMID: 9020084
  • 30. Hazell LT, Berg J.JM, Stocker R. Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem J. 1994; 302(Pt 1): 297–304. PMID: 8068018
  • 31. Jacob S, Streeger RS, Fogt DL, Hokoma JY, Tritschler HJ, Dietze GJ, Henriksen EJ. The antioxidant alpha-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes. 1996;45(8):1024-9. PMID: 8690147
  • 32. Davies KJ. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987;262(20):9895-901. PMID: 3036875
  • 33. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. Method for the measurement of antioxidant activity in human fluids. J Clin Pathol. 2001; 54(5): 356–361. PMID: 11328833
  • 34. Markwell MA, Haas SM, Bieber LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978;87(1):206-10. PMID: 98070
  • 35. Esterbauer H, Gebicki J, Puhl H, Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992;13(4):341-90. PMID: 1398217
  • 36. Arauz J, Ramos-Tovar E, Muriel P. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside. Annals of Hepatolgy. 2016;15(2):160-173. PMID: 26845593
  • 37. J Renzi P, Ginns LC. Analysis of T cell subsets in normal adults. Comparison of whole blood lysis technique to Ficoll-Hypaque separation by flow cytometry. J Immunol Methods. 1987;98(1):53-6. PMID: 2951443
  • 38. Araujo FB, Barbosa DS, Hsin CY, Maranhao RC, Abdalla DS. Evaluation of oxidative stress in patients with hyperlipidemia. Atherosclerosis. 1995;117(1):61-71. PMID: 8546756
  • 39. Carr AC, Frei B. Human neutrophils oxidize low-density lipoprotein by a hypochlorous acid-dependent mechanism: the role of vitamin C. Biol Chem. 2002;383(3-4):627-36. PMID: 12033452
  • 40. Kelley J, Hemontolor G, Younis W, Li C, Krishnaswamy G, Chi DS. Mast cell activation by lipoproteins. Methods Mol Biol. 2006;315:341-8. PMID: 16110168
  • 41. Kopprasch S, Pietzsch J, Graessler J. The protective effects of HDL and its constituents against neutrophil respiratory burst activation by hypochlorite-oxidized LDL. Mol Cell Biochem. 2004 Mar;258(1-2):121-7. PMID: 15030176
  • 42. de Assis EF, Silva AR, Caiado LF, Marathe GK, Zimmerman GA, Prescott SM et al. Synergism between platelet-activating factor-like phospholipids and peroxisome proliferator-activated receptor gamma agonists generated during low density lipoprotein oxidation that induces lipid body formation in leukocytes. J Immunol. 2003 Aug 15;171(4):2090-8. PMID: 12902515
  • 43. Sedgwick JB, Hwang YS, Gerbyshak HA, Kita H, Busse WW. Oxidized low-density lipoprotein activates migration and degranulation of human granulocytes. Am J Respir Cell Mol Biol. 2003;29(6):702-9. PMID: 12777245
  • 44. van Tits LJ, Hak-Lemmers HL, Demacker PN, Stalenhoef AF, Willems PH. Oxidized low-density lipoprotein induces calcium influx in polymorphonuclear leukocytes.Free Radic Biol Med. 2000;29(8):747-55. PMID: 11053776
  • 45. Djordjevic VB. Free radicals in cell biology. Int Rev Cytol. 2004;237:57-89. PMID: 15380666
  • 46. Davies KJ. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987;262(20):9895-901. PMID: 3036875
  • 47. Weiss SJ, Klein R, Slivka A, Wei M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 1982;70(3):598-607. PMID: 6286728
  • 48.Lambert BM, Weiss SJ. The chlorinating potential of the human monocyte. Blood 1983;62:645-651. PMID:6882917
  • 49. Martelli-Palomino G, Paoliello-Paschoalato AB, Crispim JC, Rassi DM, Oliveira RD, Louzada P, Lucisano-Valim YM, Donadi EA. DNA damage increase in peripheral neutrophils from patients with rheumatoid arthritis is associated with the disease activity and the presence of shared epitope. Clin Exp Rheumatol. 2017;35(2):247-254. PMID: 27908303
  • 50. Barrett CD, Hsu AT, Ellson CD, Y Miyazawa B, Kong YW, Greenwood JD. Blood clotting and traumatic injury with shock mediates complement-dependent neutrophil priming for extracellular ROS, ROS-dependent organ injury and coagulopathy. Clin Exp Immunol. 2018;194(1):103-117. PMID: 30260475
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Fatma Behice Serinkan-cinemre Bu kişi benim

Leyla Sevinc Bu kişi benim

Birsen Aydemir Bu kişi benim

Hakan Cinemre Bu kişi benim

Yayımlanma Tarihi 27 Aralık 2018
Gönderilme Tarihi 18 Eylül 2018
Kabul Tarihi 5 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 4 Sayı: 4

Kaynak Göster

APA Serinkan-cinemre, F. B., Sevinc, L., Aydemir, B., Cinemre, H. (2018). OX-LDL İLE NÖTROFİL AKTİVASYONU SIRASINDA OLUŞAN DNA HASARININ KOMET ASSAY İLE DEĞERLENDİRİLMESİ. Journal of Human Rhythm, 4(4), 183-189.
AMA Serinkan-cinemre FB, Sevinc L, Aydemir B, Cinemre H. OX-LDL İLE NÖTROFİL AKTİVASYONU SIRASINDA OLUŞAN DNA HASARININ KOMET ASSAY İLE DEĞERLENDİRİLMESİ. Journal of Human Rhythm. Aralık 2018;4(4):183-189.
Chicago Serinkan-cinemre, Fatma Behice, Leyla Sevinc, Birsen Aydemir, ve Hakan Cinemre. “OX-LDL İLE NÖTROFİL AKTİVASYONU SIRASINDA OLUŞAN DNA HASARININ KOMET ASSAY İLE DEĞERLENDİRİLMESİ”. Journal of Human Rhythm 4, sy. 4 (Aralık 2018): 183-89.
EndNote Serinkan-cinemre FB, Sevinc L, Aydemir B, Cinemre H (01 Aralık 2018) OX-LDL İLE NÖTROFİL AKTİVASYONU SIRASINDA OLUŞAN DNA HASARININ KOMET ASSAY İLE DEĞERLENDİRİLMESİ. Journal of Human Rhythm 4 4 183–189.
IEEE F. B. Serinkan-cinemre, L. Sevinc, B. Aydemir, ve H. Cinemre, “OX-LDL İLE NÖTROFİL AKTİVASYONU SIRASINDA OLUŞAN DNA HASARININ KOMET ASSAY İLE DEĞERLENDİRİLMESİ”, Journal of Human Rhythm, c. 4, sy. 4, ss. 183–189, 2018.
ISNAD Serinkan-cinemre, Fatma Behice vd. “OX-LDL İLE NÖTROFİL AKTİVASYONU SIRASINDA OLUŞAN DNA HASARININ KOMET ASSAY İLE DEĞERLENDİRİLMESİ”. Journal of Human Rhythm 4/4 (Aralık 2018), 183-189.
JAMA Serinkan-cinemre FB, Sevinc L, Aydemir B, Cinemre H. OX-LDL İLE NÖTROFİL AKTİVASYONU SIRASINDA OLUŞAN DNA HASARININ KOMET ASSAY İLE DEĞERLENDİRİLMESİ. Journal of Human Rhythm. 2018;4:183–189.
MLA Serinkan-cinemre, Fatma Behice vd. “OX-LDL İLE NÖTROFİL AKTİVASYONU SIRASINDA OLUŞAN DNA HASARININ KOMET ASSAY İLE DEĞERLENDİRİLMESİ”. Journal of Human Rhythm, c. 4, sy. 4, 2018, ss. 183-9.
Vancouver Serinkan-cinemre FB, Sevinc L, Aydemir B, Cinemre H. OX-LDL İLE NÖTROFİL AKTİVASYONU SIRASINDA OLUŞAN DNA HASARININ KOMET ASSAY İLE DEĞERLENDİRİLMESİ. Journal of Human Rhythm. 2018;4(4):183-9.