Derleme
BibTex RIS Kaynak Göster

Investigation of Spectrofluorimetric and Electrochemical Properties of Schiff Bases and Metal Complexes

Yıl 2023, Cilt: 1 Sayı: 1, 20 - 31, 20.06.2023

Öz

In this review article, the electrochemical and fluorescence properties of Schiff bases are discussed. Schif bases are structures that contain primary amines as a result of the condensation of aldehydes or ketones. They become radical with the excitation of electrons from the amine groups in their structures and show fluorescence properties. Likewise, radicalized electrons are an important container in electrochemical applications, especially in sensor applications, and Schiff bases such as ferrocene have shown significant sensitivity in suitable buffer solutions. This review article is informative for electrochemical and fluorescence applications with Schiff bases.

Kaynakça

  • Alizadeh, M., Asrami, P. N., Altuner, E. E., Gulbagca, F., Tiri, R. N. E., Aygun, A., Kaynak, İ., Sen, F., & Cheraghi, S. (2022). An ultra-sensitive rifampicin electrochemical sensor based on Fe3O4 nanoparticles anchored Multiwalled Carbon nanotube modified glassy carbon electrode. Chemosphere, 136566. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136566
  • Altuner, E. E., Ozalp, V. C., Yilmaz, M. D., Bekmezci, M., & Sen, F. (2022). High-efficiency application of CTS-Co NPs mimicking peroxidase enzyme on TMB(ox). Chemosphere, 292, 133429. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133429
  • Altuner, E. E., Ozalp, V. C., Yilmaz, M. D., Sudagidan, M., Aygun, A., Acar, E. E., Tasbasi, B. B., & Sen, F. (2022). Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles. Chemosphere, 297, 134077. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134077
  • Beer, M., & Longuet-Higgins, H. C. (2004). Anomalous Light Emission of Azulene. The Journal of Chemical Physics, 23(8), 1390. https://doi.org/10.1063/1.1742314
  • Burinsky, D. J., Campana, J. E., & Cooks, R. G. (1984). Bimolecular condensation reactions in the gas phase. The Schiff base synthesis. International Journal of Mass Spectrometry and Ion Processes, 62(3), 303–315. https://doi.org/10.1016/0168-1176(84)87117-7
  • Carlson, B. A. (2015). Animal Behavior: Electric Eels Amp Up for an Easy Meal. Current Biology, 25(22), R1070–R1072. https://doi.org/10.1016/J.CUB.2015.09.051
  • Cordes, E. H., & Jencks, W. P. (1962). Nucleophilic Catalysis of Semicarbazone Formation by Anilines. Journal of the American Chemical Society, 84(5), 826–831. https://doi.org/10.1021/JA00864A030/ASSET/JA00864A030.FP.PNG_V03
  • Dolman, S. J., Gosselin, F., O’Shea, P. D., & Davies, I. W. (2006). Superior reactivity of thiosemicarbazides in the synthesis of 2-amino-1,3,4-oxadiazoles. Journal of Organic Chemistry, 71(25), 9548–9551. https://doi.org/10.1021/JO0618730/SUPPL_FILE/JO0618730SI20061010_111644.PDF
  • Dunant, Y., & Israel, M. (1985). The Release of Acetylcholine . JSTOR, 252(52).
  • Feuell, A. J., & Skellon, J. H. (1953). The determination of carbonyl compounds by semicarbazide and hydroxylamine. With special reference to fatty-acid oxidation products. Analyst, 78(924), 135–140. https://doi.org/10.1039/AN9537800135
  • Frantz, R., Durand, J. O., & Lanneau, G. F. (2004). Substituent effects of phosphonate groups electronic repartition of π-conjugated ferrocene analogues of stilbene. Journal of Organometallic Chemistry, 689(11), 1867–1871. https://doi.org/10.1016/J.JORGANCHEM.2004.03.007
  • Friedman, M. (2004). Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. Journal of Agricultural and Food Chemistry, 52(3), 385–406. https://doi.org/10.1021/JF030490P
  • Gary D, C., & Purnendu K, D. (2013). Analytical Chemistry  (SKOOG).
  • Gheller, S. F., Bradbury, J. R., Mackay, M. F., & Wedd, A. G. (1981). Quadridentate Schiff Base Complexes of Oxomolybdenum(V). Crystal and Molecular Structure of trans-[N,N’-Ethylenebis(salicylideniminato)](methanol)oxomolybdenum(V) Bromide. Inorganic Chemistry, 20(11), 3899–3904. https://doi.org/10.1021/IC50225A060/SUPPL_FILE/IC50225A060_SI_001.PDF
  • Gomez, S., Peters, J. A., & Maschmeyer, T. (n.d.). The Reductive Amination of Aldehydes and Ketones and the Hydrogenation of Nitriles: Mechanistic Aspects and Selectivity Control. https://doi.org/10.1002/1615-4169
  • Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S., & Vandersypen, L. M. K. (2007). Spins in few-electron quantum dots. Reviews of Modern Physics, 79(4), 1217–1265. https://doi.org/10.1103/REVMODPHYS.79.1217/FIGURES/49/MEDIUM
  • Kaczmarek, M. T., Zabiszak, M., Nowak, M., & Jastrzab, R. (2018). Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coordination Chemistry Reviews, 370, 42–54. https://doi.org/10.1016/J.CCR.2018.05.012
  • Layer, R. W. (1963). The chemistry of imines. Chemical Reviews, 63(5), 489–510. https://doi.org/10.1021/CR60225A003/ASSET/CR60225A003.FP.PNG_V03
  • Lichtman, J. W., & Conchello, J. A. (2005). Fluorescence microscopy. Nature Methods 2005 2:12, 2(12), 910–919. https://doi.org/10.1038/nmeth817
  • Liu, Y., Ai, K., & Lu, L. (2014). Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 114(9), 5057–5115. https://doi.org/10.1021/CR400407A/ASSET/IMAGES/CR400407A.SOCIAL.JPEG_V03
  • Lower, S. K., & El-Sayed, M. A. (1966). The triplet state and molecular electronic processes in organic molecules. Chemical Reviews, 66(2), 199–241. https://doi.org/10.1021/CR60240A004/ASSET/CR60240A004.FP.PNG_V03
  • Malik, M. A., Dar, O. A., Gull, P., Wani, M. Y., & Hashmi, A. A. (2018). Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm, 9(3), 409–436. https://doi.org/10.1039/C7MD00526A
  • More, M. S., Joshi, P. G., Mishra, Y. K., & Khanna, P. K. (2019). Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Materials Today Chemistry, 14, 100195. https://doi.org/10.1016/J.MTCHEM.2019.100195
  • Myers, A. B., Mathies, R. A., Tannor, D. J., & Heller, E. J. (1998). Excited state geometry changes from preresonance Raman intensities: Isoprene and hexatriene. The Journal of Chemical Physics, 77(8), 3857. https://doi.org/10.1063/1.444339
  • Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., & Madaj, J. (2022). Different Schiff Bases—Structure, Importance and Classification. Molecules 2022, Vol. 27, Page 787, 27(3), 787. https://doi.org/10.3390/MOLECULES27030787
  • Radanović, M. M., Holló, B. B., Radanović, M. M., & Holló, B. B. (2022). Some Aromatic Schiff Bases and Their Metal Complexes. Schiff Base in Organic, Inorganic and Physical Chemistry. https://doi.org/10.5772/INTECHOPEN.107405
  • Scottwell, S., Shaffer, K. J., McAdam, C. J., & Crowley, J. D. (2014). 5-Ferrocenyl-2,2′-bipyridine ligands: Synthesis, palladium(II) and copper(I) complexes, optical and electrochemical properties. RSC Advances, 4(67), 35726–35734. https://doi.org/10.1039/C4RA05333H
  • Štěpnička, P., Císařová, I., Podlaha, J., Ludvík, J., & Nejezchleba, M. (1999). Synthesis, characterization and X-ray structural, electrochemical and Mössbauer study of mercury(II) complexes with 1′-(diphenylphosphino)ferrocenecarboxylic acid. Journal of Organometallic Chemistry, 582(2), 319–327. https://doi.org/10.1016/S0022-328X(99)00071-6
  • Subasi, N. T., & Subasi, N. T. (2022). Overview of Schiff Bases. Schiff Base in Organic, Inorganic and Physical Chemistry. https://doi.org/10.5772/INTECHOPEN.108178
  • Szarka, Z., Skoda-Földes, R., & Kollár, L. (2001). Facile synthesis of novel ferrocene α-ketoamides via homogeneous catalytic carbonylation. Tetrahedron Letters, 42(4), 739–741. https://doi.org/10.1016/S0040-4039(00)02049-9
  • Talukder, R. M. (2005b). Design and development of a rupturable drug delivery system for delivering drug to the distal gastrointestinal tract-colon [Ph.D., Temple University]. In ProQuest Dissertations and Theses (305442786). ProQuest Dissertations & Theses Global. https://www.proquest.com/dissertations-theses/design-development-rupturable-drug-delivery/docview/305442786/se-2?accountid=207579
  • Tuna Subasi, N. (2023). Overview of Schiff Bases. In T. Akitsu (Ed.), Schiff Base in Organic, Inorganic and Physical Chemistry. IntechOpen. https://doi.org/10.5772/intechopen.108178
  • Vincett, P. S., Voigt, E. M., & Rieckhoff, K. E. (2003). Phosphorescence and Fluorescence of Phthalocyanines. The Journal of Chemical Physics, 55(8), 4131. https://doi.org/10.1063/1.1676714
  • Wachter, R. M., Elsliger, M. A., Kallio, K., Hanson, G. T., & Remington, S. J. (1998). Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure, 6(10), 1267–1277. https://doi.org/10.1016/S0969-2126(98)00127-0
  • Westermayr, J., & Marquetand, P. (2021). Machine Learning for Electronically Excited States of Molecules. Chemical Reviews, 121(16), 9873–9926. https://doi.org/10.1021/ACS.CHEMREV.0C00749/ASSET/IMAGES/LARGE/CR0C00749_0011.JPEG
  • Wong, W. Y., Lu, G. L., Ng, K. F., Wong, C. K., & Choi, K. H. (2001). Synthesis, structures and electrochemistry of bis(alkynylferrocene) complexes with fluorene spacers. Journal of Organometallic Chemistry, 637–639, 159–166. https://doi.org/10.1016/S0022-328X(01)00897-X
  • Woo Rhee, S., Hwan Na, Y., Do, Y., & Kim, J. (2000). Synthesis, structures and electrochemical characterization of ferrocene-substituted porphyrin and porphodimethene. Inorganica Chimica Acta, 309(1–2), 49–56. https://doi.org/10.1016/S0020-1693(00)00228-0
  • Ye, B. X., Xu, Y., Wang, F., Fu, Y., & Song, M. P. (2005). Synthesis, structures and electrochemistry of two Schiff base compounds bearing phenylferrocene. Inorganic Chemistry Communications, 8(1), 44–47. https://doi.org/10.1016/J.INOCHE.2004.09.024
  • Yu, H., & Ji, M. (2021). Recent Advances of Organic Near-Infrared II Fluorophores in Optical Properties and Imaging Functions. Molecular Imaging and Biology, 23(2), 160–172. https://doi.org/10.1007/S11307-020-01545-1/FIGURES/4
  • Yu, Y., Mallick, S., Wang, M., & Börjesson, K. (2021). Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling. Nature Communications 2021 12:1, 12(1), 1–8. https://doi.org/10.1038/s41467-021-23481-6

Schiff Bazları ve Metal Komplekslerinin Spektroflorimetrik ve Elektrokimyasal Özelliklerinin İncelenmesi

Yıl 2023, Cilt: 1 Sayı: 1, 20 - 31, 20.06.2023

Öz

Bu derleme yazısında Schiff bazlarının elektrokimyasal ve floresans özellikleri tartışılmıştır. Schif bazları, aldehitlerin veya ketonların yoğunlaşması sonucu birincil aminler içeren yapılardır. Yapılarındaki amin gruplarından elektronların uyarılması ile radikalleşirler ve floresans özelliği gösterirler. Aynı şekilde, radikalleşmiş elektronlar, elektrokimyasal uygulamalarda, özellikle sensör uygulamalarında önemli bir kaptır ve ferrosen gibi Schiff bazları, uygun tampon çözeltilerde önemli bir hassasiyet göstermiştir. Bu derleme makalesi, Schiff bazları ile elektrokimyasal ve floresan uygulamaları için bilgilendiricidir.

Kaynakça

  • Alizadeh, M., Asrami, P. N., Altuner, E. E., Gulbagca, F., Tiri, R. N. E., Aygun, A., Kaynak, İ., Sen, F., & Cheraghi, S. (2022). An ultra-sensitive rifampicin electrochemical sensor based on Fe3O4 nanoparticles anchored Multiwalled Carbon nanotube modified glassy carbon electrode. Chemosphere, 136566. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136566
  • Altuner, E. E., Ozalp, V. C., Yilmaz, M. D., Bekmezci, M., & Sen, F. (2022). High-efficiency application of CTS-Co NPs mimicking peroxidase enzyme on TMB(ox). Chemosphere, 292, 133429. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133429
  • Altuner, E. E., Ozalp, V. C., Yilmaz, M. D., Sudagidan, M., Aygun, A., Acar, E. E., Tasbasi, B. B., & Sen, F. (2022). Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles. Chemosphere, 297, 134077. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134077
  • Beer, M., & Longuet-Higgins, H. C. (2004). Anomalous Light Emission of Azulene. The Journal of Chemical Physics, 23(8), 1390. https://doi.org/10.1063/1.1742314
  • Burinsky, D. J., Campana, J. E., & Cooks, R. G. (1984). Bimolecular condensation reactions in the gas phase. The Schiff base synthesis. International Journal of Mass Spectrometry and Ion Processes, 62(3), 303–315. https://doi.org/10.1016/0168-1176(84)87117-7
  • Carlson, B. A. (2015). Animal Behavior: Electric Eels Amp Up for an Easy Meal. Current Biology, 25(22), R1070–R1072. https://doi.org/10.1016/J.CUB.2015.09.051
  • Cordes, E. H., & Jencks, W. P. (1962). Nucleophilic Catalysis of Semicarbazone Formation by Anilines. Journal of the American Chemical Society, 84(5), 826–831. https://doi.org/10.1021/JA00864A030/ASSET/JA00864A030.FP.PNG_V03
  • Dolman, S. J., Gosselin, F., O’Shea, P. D., & Davies, I. W. (2006). Superior reactivity of thiosemicarbazides in the synthesis of 2-amino-1,3,4-oxadiazoles. Journal of Organic Chemistry, 71(25), 9548–9551. https://doi.org/10.1021/JO0618730/SUPPL_FILE/JO0618730SI20061010_111644.PDF
  • Dunant, Y., & Israel, M. (1985). The Release of Acetylcholine . JSTOR, 252(52).
  • Feuell, A. J., & Skellon, J. H. (1953). The determination of carbonyl compounds by semicarbazide and hydroxylamine. With special reference to fatty-acid oxidation products. Analyst, 78(924), 135–140. https://doi.org/10.1039/AN9537800135
  • Frantz, R., Durand, J. O., & Lanneau, G. F. (2004). Substituent effects of phosphonate groups electronic repartition of π-conjugated ferrocene analogues of stilbene. Journal of Organometallic Chemistry, 689(11), 1867–1871. https://doi.org/10.1016/J.JORGANCHEM.2004.03.007
  • Friedman, M. (2004). Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. Journal of Agricultural and Food Chemistry, 52(3), 385–406. https://doi.org/10.1021/JF030490P
  • Gary D, C., & Purnendu K, D. (2013). Analytical Chemistry  (SKOOG).
  • Gheller, S. F., Bradbury, J. R., Mackay, M. F., & Wedd, A. G. (1981). Quadridentate Schiff Base Complexes of Oxomolybdenum(V). Crystal and Molecular Structure of trans-[N,N’-Ethylenebis(salicylideniminato)](methanol)oxomolybdenum(V) Bromide. Inorganic Chemistry, 20(11), 3899–3904. https://doi.org/10.1021/IC50225A060/SUPPL_FILE/IC50225A060_SI_001.PDF
  • Gomez, S., Peters, J. A., & Maschmeyer, T. (n.d.). The Reductive Amination of Aldehydes and Ketones and the Hydrogenation of Nitriles: Mechanistic Aspects and Selectivity Control. https://doi.org/10.1002/1615-4169
  • Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S., & Vandersypen, L. M. K. (2007). Spins in few-electron quantum dots. Reviews of Modern Physics, 79(4), 1217–1265. https://doi.org/10.1103/REVMODPHYS.79.1217/FIGURES/49/MEDIUM
  • Kaczmarek, M. T., Zabiszak, M., Nowak, M., & Jastrzab, R. (2018). Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coordination Chemistry Reviews, 370, 42–54. https://doi.org/10.1016/J.CCR.2018.05.012
  • Layer, R. W. (1963). The chemistry of imines. Chemical Reviews, 63(5), 489–510. https://doi.org/10.1021/CR60225A003/ASSET/CR60225A003.FP.PNG_V03
  • Lichtman, J. W., & Conchello, J. A. (2005). Fluorescence microscopy. Nature Methods 2005 2:12, 2(12), 910–919. https://doi.org/10.1038/nmeth817
  • Liu, Y., Ai, K., & Lu, L. (2014). Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 114(9), 5057–5115. https://doi.org/10.1021/CR400407A/ASSET/IMAGES/CR400407A.SOCIAL.JPEG_V03
  • Lower, S. K., & El-Sayed, M. A. (1966). The triplet state and molecular electronic processes in organic molecules. Chemical Reviews, 66(2), 199–241. https://doi.org/10.1021/CR60240A004/ASSET/CR60240A004.FP.PNG_V03
  • Malik, M. A., Dar, O. A., Gull, P., Wani, M. Y., & Hashmi, A. A. (2018). Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm, 9(3), 409–436. https://doi.org/10.1039/C7MD00526A
  • More, M. S., Joshi, P. G., Mishra, Y. K., & Khanna, P. K. (2019). Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Materials Today Chemistry, 14, 100195. https://doi.org/10.1016/J.MTCHEM.2019.100195
  • Myers, A. B., Mathies, R. A., Tannor, D. J., & Heller, E. J. (1998). Excited state geometry changes from preresonance Raman intensities: Isoprene and hexatriene. The Journal of Chemical Physics, 77(8), 3857. https://doi.org/10.1063/1.444339
  • Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., & Madaj, J. (2022). Different Schiff Bases—Structure, Importance and Classification. Molecules 2022, Vol. 27, Page 787, 27(3), 787. https://doi.org/10.3390/MOLECULES27030787
  • Radanović, M. M., Holló, B. B., Radanović, M. M., & Holló, B. B. (2022). Some Aromatic Schiff Bases and Their Metal Complexes. Schiff Base in Organic, Inorganic and Physical Chemistry. https://doi.org/10.5772/INTECHOPEN.107405
  • Scottwell, S., Shaffer, K. J., McAdam, C. J., & Crowley, J. D. (2014). 5-Ferrocenyl-2,2′-bipyridine ligands: Synthesis, palladium(II) and copper(I) complexes, optical and electrochemical properties. RSC Advances, 4(67), 35726–35734. https://doi.org/10.1039/C4RA05333H
  • Štěpnička, P., Císařová, I., Podlaha, J., Ludvík, J., & Nejezchleba, M. (1999). Synthesis, characterization and X-ray structural, electrochemical and Mössbauer study of mercury(II) complexes with 1′-(diphenylphosphino)ferrocenecarboxylic acid. Journal of Organometallic Chemistry, 582(2), 319–327. https://doi.org/10.1016/S0022-328X(99)00071-6
  • Subasi, N. T., & Subasi, N. T. (2022). Overview of Schiff Bases. Schiff Base in Organic, Inorganic and Physical Chemistry. https://doi.org/10.5772/INTECHOPEN.108178
  • Szarka, Z., Skoda-Földes, R., & Kollár, L. (2001). Facile synthesis of novel ferrocene α-ketoamides via homogeneous catalytic carbonylation. Tetrahedron Letters, 42(4), 739–741. https://doi.org/10.1016/S0040-4039(00)02049-9
  • Talukder, R. M. (2005b). Design and development of a rupturable drug delivery system for delivering drug to the distal gastrointestinal tract-colon [Ph.D., Temple University]. In ProQuest Dissertations and Theses (305442786). ProQuest Dissertations & Theses Global. https://www.proquest.com/dissertations-theses/design-development-rupturable-drug-delivery/docview/305442786/se-2?accountid=207579
  • Tuna Subasi, N. (2023). Overview of Schiff Bases. In T. Akitsu (Ed.), Schiff Base in Organic, Inorganic and Physical Chemistry. IntechOpen. https://doi.org/10.5772/intechopen.108178
  • Vincett, P. S., Voigt, E. M., & Rieckhoff, K. E. (2003). Phosphorescence and Fluorescence of Phthalocyanines. The Journal of Chemical Physics, 55(8), 4131. https://doi.org/10.1063/1.1676714
  • Wachter, R. M., Elsliger, M. A., Kallio, K., Hanson, G. T., & Remington, S. J. (1998). Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure, 6(10), 1267–1277. https://doi.org/10.1016/S0969-2126(98)00127-0
  • Westermayr, J., & Marquetand, P. (2021). Machine Learning for Electronically Excited States of Molecules. Chemical Reviews, 121(16), 9873–9926. https://doi.org/10.1021/ACS.CHEMREV.0C00749/ASSET/IMAGES/LARGE/CR0C00749_0011.JPEG
  • Wong, W. Y., Lu, G. L., Ng, K. F., Wong, C. K., & Choi, K. H. (2001). Synthesis, structures and electrochemistry of bis(alkynylferrocene) complexes with fluorene spacers. Journal of Organometallic Chemistry, 637–639, 159–166. https://doi.org/10.1016/S0022-328X(01)00897-X
  • Woo Rhee, S., Hwan Na, Y., Do, Y., & Kim, J. (2000). Synthesis, structures and electrochemical characterization of ferrocene-substituted porphyrin and porphodimethene. Inorganica Chimica Acta, 309(1–2), 49–56. https://doi.org/10.1016/S0020-1693(00)00228-0
  • Ye, B. X., Xu, Y., Wang, F., Fu, Y., & Song, M. P. (2005). Synthesis, structures and electrochemistry of two Schiff base compounds bearing phenylferrocene. Inorganic Chemistry Communications, 8(1), 44–47. https://doi.org/10.1016/J.INOCHE.2004.09.024
  • Yu, H., & Ji, M. (2021). Recent Advances of Organic Near-Infrared II Fluorophores in Optical Properties and Imaging Functions. Molecular Imaging and Biology, 23(2), 160–172. https://doi.org/10.1007/S11307-020-01545-1/FIGURES/4
  • Yu, Y., Mallick, S., Wang, M., & Börjesson, K. (2021). Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling. Nature Communications 2021 12:1, 12(1), 1–8. https://doi.org/10.1038/s41467-021-23481-6
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Derlemeler
Yazarlar

Elif Esra Altuner 0000-0001-7663-6898

Havva Nur Tatlı 0000-0003-0766-0290

Yener Tekeli 0000-0003-1524-457X

Yayımlanma Tarihi 20 Haziran 2023
Gönderilme Tarihi 7 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 1 Sayı: 1

Kaynak Göster

APA Altuner, E. E., Tatlı, H. N., & Tekeli, Y. (2023). Investigation of Spectrofluorimetric and Electrochemical Properties of Schiff Bases and Metal Complexes. Journal of Kocaeli Health and Technology University, 1(1), 20-31.


Bu dergideki tüm makaleler Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası (CC BY-NC-SA 4.0) ile lisans altına alınmıştır.



TAM Akademi Dergisi açık erişimli bir dergidir. Okuyucular tüm makalelere üye olmadan ve ücret ödemeden erişebilir.