Araştırma Makalesi
BibTex RIS Kaynak Göster

Akut ve Kronik Enfarktüslerde Beyin Omurilik Sıvısındaki Değişikliklerin Bilgisayarlı Tomografi Kullanılarak Değerlendirilmesi

Yıl 2025, Cilt: 4 Sayı: 3, 79 - 83, 31.12.2025
https://doi.org/10.58651/jomtu.1818474

Öz

Amaç: Bu araştırma, akut enfarktüslü, kronik enfarktüslü ve normal sağlıklı kontroller arasında beyin omurilik sıvısı yoğunluğunu beyin bilgisayarlı tomografi (BT) taramaları ile değerlendirerek beyin omurilik sıvısındaki farklılıkları incelemeyi amaçlamaktadır.
Materyal ve Metot: Bu araştırmada, 128 hastadan oluşan bir örneklemde lateral ventrikülden beyin omurilik sıvısının yoğunluk ölçümleri retrospektif olarak gerçekleştirilmiştir. Analiz, beyin BT taramalarının yanı sıra difüzyon ağırlıklı manyetik rezonans görüntüleme (DAG) yöntemlerini de içermektedir. Her bir olguda yoğunluk ölçümleri için 0,25 cm² alana sahip dairesel bir ilgi alanı (ROI) uygulanmıştır.
Bulgular: Ortalama intraventriküler yoğunluk değerlerinin enfarktüs durumuna göre analizi, akut enfarktüsü olan bireylerin ortalama yoğunluğunun 5,79 HU olduğunu ve bunun kaydedilen en düşük değer olduğunu, enfarktüsü olmayan bireylerin ise ortalama yoğunluğunun 6,36 HU olduğunu ve bunun en yüksek değer olduğunu ortaya koymuştur.
Sonuç: Akut ve kronik inme durumlarında bilgisayarlı tomografi (BT) kullanılarak beyin omurilik sıvısındaki (BOS) değişikliklerin analizi, nörolojik hasarın boyutunun anlaşılmasında ve uygun terapötik müdahalelerin geliştirilmesinde hayati bir rol oynar. Akut ve kronik enfarktüslerde beyin omurilik sıvısındaki değişikliklerin değerlendirilmesi, hastalığın seyrinin anlaşılmasında kritik bir rol oynar.

Etik Beyan

Approval for ethical considerations was secured from the Ethics Committee and indicated by 06.02.2022 Decision No: 2022/25.

Kaynakça

  • 1. Salaudeen MA, Bello N, Danraka RN, Ammani ML. Understanding the Pathophysiology of Ischemic Stroke: The Basis of Current Therapies and Opportunity for New Ones. Biomolecules. 2024;14(3):305.
  • 2. Anwar F, Zhang K, Sun C, et al. Hydrocephalus: An update on latest progress in pathophysiological and therapeutic research. Biomed Pharmacother. 2024; 181:117702.
  • 3. Huff T, Tadi P, Weisbrod LJ, Varacallo M. Neuroanatomy, Cerebrospinal Fluid. 2023 Aug 28. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–.
  • 4. Alsbrook DL, Di Napoli M, Bhatia K, et al. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep. 2023 Aug;23(8):407-431.
  • 5. Kakkar P, Kakkar T, Patankar T, et al. Current approaches and advances in the imaging of stroke. Dis Model Mech. 2021 Dec 1;14(12): dmm048785. Doi: 10.1242/dmm.048785. Epub 2021 Dec 7.
  • 6. Tadi P, Lui F. Acute Stroke. 2023 Aug 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–.
  • 7. Nehring SM, Tadi P, Tenny S. Cerebral Edema. 2023 Jul 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–.
  • 8. Tomsick TA, Brott TG, Chambers AA, et al. Hyperdense middle cerebral artery sign on CT: efficacy in detecting middle cerebral artery thrombosis. AJNR Am J Neuroradiol. 1990 May;11(3):473-7.
  • 9. Shirota G, Gonoi W, Ishida M, et al. Brain Swelling and Loss of Gray and White Matter Differentiation in Human Postmortem Cases by Computed Tomography. PLoS One. 2015 Nov 30;10(11): e0143848.
  • 10. Farb R, Rovira À. Hydrocephalus and CSF Disorders. 2020 Feb 15. In: Hodler J, Kubik-Huch RA, von Schulthess GK, editors. Diseases of the Brain, Head and Neck, Spine 2020–2023: Diagnostic Imaging [Internet]. Cham (CH): Springer; 2020. Chapter 2.
  • 11. Pensato U, Demchuk AM, Menon BK, et al. Cerebral Infarct Growth: Pathophysiology, Pragmatic Assessment, and Clinical Implications. Stroke. 2024 Nov 15. doi: 10.1161/STROKEAHA.124.049013. Epub ahead of print.
  • 12. Harris TC, de Rooij R, Kuhl E. The Shrinking Brain: Cerebral Atrophy Following Traumatic Brain Injury. Ann Biomed Eng. 2019 Sep;47(9):1941-1959. Doi: 10.1007/s10439-018-02148-2. Epub 2018 Oct 17.
  • 13.Zbesko JC, Nguyen TV, Yang T, et al. Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts. Neurobiol Dis. 2018 Apr; 112:63- 78. doi: 10.1016/j.nbd.2018.01.007. Epub 2018 Jan 10.
  • 14.Saade C, Najem E, Asmar K, et al. Intracranial calcifications on CT: an updated review. J Radiol Case Rep. 2019 Aug 31;13(8):1-18. doi: 10.3941/jrcr. v13i8.3633.
  • 15.Nowinski WL, Walecki J, Półtorak-Szymczak G, et al. Ischemic infarct detection, localization, and segmentation in noncontrast CT human brain scans: review of automated methods. PeerJ. 2020 Dec 18;8: e10444.
  • 16. Maas AI. Cerebrospinal fluid enzymes in acute brain injury. 1. Dynamics of changes in CSF enzyme activity after acute experimental brain injury. J Neurol Neurosurg Psychiatry. 1977 Jul;40(7):655-65.
  • 17. Nian K, Harding IC, Herman IM, et al. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front Physiol. 2020 Dec 22; 11:605398.
  • 18.Hrishi AP, Sethuraman M. Cerebrospinal Fluid (CSF) Analysis and Interpretation in Neurocritical Care for Acute Neurological Conditions. Indian J Crit Care Med. 2019 Jun;23(Suppl 2): S115-S119.
  • 19. Pinto VL, Tadi P, Adeyinka A. Increased Intracranial Pressure. [Updated 2023 Jul 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.
  • 20. Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem. 2015;22(10):1258-77.
  • 21. Cummings J. The Role of Biomarkers in Alzheimer’s Disease Drug Development. Adv Exp Med Biol. 2019; 1118:29-61

Assessment of Alterations in Cerebrospinal Fluid in Acute and Chronic Infarcts Utilizing Computed Tomography

Yıl 2025, Cilt: 4 Sayı: 3, 79 - 83, 31.12.2025
https://doi.org/10.58651/jomtu.1818474

Öz

Objective: This study aims to examine the differences in cerebrospinal fluid among patients with acute infarcts, chronic infarcts, and healthy controls by evaluating the density of cerebrospinal fluid via computed tomography (CT) scans of the brain.
Materials and Methods: In this study, density measurements of cerebrospinal fluid (CSF) were retrospectively conducted from the lateral ventricle in a sample of 128 patients. The analysis incorporated diffusion-weighted magnetic resonance imaging (DWI) alongside CT scans of the brain. A circular region of interest (ROI) with an area of 0.25 cm² was consistently applied for the density measurements in each case.
Results: The analysis of mean intraventricular density values in relation to infarct status revealed that individuals with acute infarction exhibited a mean density of 5.79 HU, which was the lowest recorded, while those without infarction had a mean density of 6.36 HU, representing the highest value.
Conclusions: The analysis of changes in CSF using CT in acute and chronic stroke conditions plays a vital role in understanding the extent of neurological injury and in the development of appropriate therapeutic interventions. Evaluation of changes in CSF in acute and chronic infarctions plays a critical role in understanding the course of the disease.

Etik Beyan

Approval for ethical considerations was secured from the Ethics Committee and indicated by 06.02.2022 Decision No: 2022/25.

Kaynakça

  • 1. Salaudeen MA, Bello N, Danraka RN, Ammani ML. Understanding the Pathophysiology of Ischemic Stroke: The Basis of Current Therapies and Opportunity for New Ones. Biomolecules. 2024;14(3):305.
  • 2. Anwar F, Zhang K, Sun C, et al. Hydrocephalus: An update on latest progress in pathophysiological and therapeutic research. Biomed Pharmacother. 2024; 181:117702.
  • 3. Huff T, Tadi P, Weisbrod LJ, Varacallo M. Neuroanatomy, Cerebrospinal Fluid. 2023 Aug 28. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–.
  • 4. Alsbrook DL, Di Napoli M, Bhatia K, et al. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep. 2023 Aug;23(8):407-431.
  • 5. Kakkar P, Kakkar T, Patankar T, et al. Current approaches and advances in the imaging of stroke. Dis Model Mech. 2021 Dec 1;14(12): dmm048785. Doi: 10.1242/dmm.048785. Epub 2021 Dec 7.
  • 6. Tadi P, Lui F. Acute Stroke. 2023 Aug 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–.
  • 7. Nehring SM, Tadi P, Tenny S. Cerebral Edema. 2023 Jul 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–.
  • 8. Tomsick TA, Brott TG, Chambers AA, et al. Hyperdense middle cerebral artery sign on CT: efficacy in detecting middle cerebral artery thrombosis. AJNR Am J Neuroradiol. 1990 May;11(3):473-7.
  • 9. Shirota G, Gonoi W, Ishida M, et al. Brain Swelling and Loss of Gray and White Matter Differentiation in Human Postmortem Cases by Computed Tomography. PLoS One. 2015 Nov 30;10(11): e0143848.
  • 10. Farb R, Rovira À. Hydrocephalus and CSF Disorders. 2020 Feb 15. In: Hodler J, Kubik-Huch RA, von Schulthess GK, editors. Diseases of the Brain, Head and Neck, Spine 2020–2023: Diagnostic Imaging [Internet]. Cham (CH): Springer; 2020. Chapter 2.
  • 11. Pensato U, Demchuk AM, Menon BK, et al. Cerebral Infarct Growth: Pathophysiology, Pragmatic Assessment, and Clinical Implications. Stroke. 2024 Nov 15. doi: 10.1161/STROKEAHA.124.049013. Epub ahead of print.
  • 12. Harris TC, de Rooij R, Kuhl E. The Shrinking Brain: Cerebral Atrophy Following Traumatic Brain Injury. Ann Biomed Eng. 2019 Sep;47(9):1941-1959. Doi: 10.1007/s10439-018-02148-2. Epub 2018 Oct 17.
  • 13.Zbesko JC, Nguyen TV, Yang T, et al. Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts. Neurobiol Dis. 2018 Apr; 112:63- 78. doi: 10.1016/j.nbd.2018.01.007. Epub 2018 Jan 10.
  • 14.Saade C, Najem E, Asmar K, et al. Intracranial calcifications on CT: an updated review. J Radiol Case Rep. 2019 Aug 31;13(8):1-18. doi: 10.3941/jrcr. v13i8.3633.
  • 15.Nowinski WL, Walecki J, Półtorak-Szymczak G, et al. Ischemic infarct detection, localization, and segmentation in noncontrast CT human brain scans: review of automated methods. PeerJ. 2020 Dec 18;8: e10444.
  • 16. Maas AI. Cerebrospinal fluid enzymes in acute brain injury. 1. Dynamics of changes in CSF enzyme activity after acute experimental brain injury. J Neurol Neurosurg Psychiatry. 1977 Jul;40(7):655-65.
  • 17. Nian K, Harding IC, Herman IM, et al. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front Physiol. 2020 Dec 22; 11:605398.
  • 18.Hrishi AP, Sethuraman M. Cerebrospinal Fluid (CSF) Analysis and Interpretation in Neurocritical Care for Acute Neurological Conditions. Indian J Crit Care Med. 2019 Jun;23(Suppl 2): S115-S119.
  • 19. Pinto VL, Tadi P, Adeyinka A. Increased Intracranial Pressure. [Updated 2023 Jul 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.
  • 20. Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem. 2015;22(10):1258-77.
  • 21. Cummings J. The Role of Biomarkers in Alzheimer’s Disease Drug Development. Adv Exp Med Biol. 2019; 1118:29-61
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Radyoloji ve Organ Görüntüleme
Bölüm Araştırma Makalesi
Yazarlar

Serkan Ünlü 0000-0001-7535-0812

Bulent Petik 0000-0003-3759-3244

Mehmet Akçiçek 0000-0002-0232-1284

Mehtap Ilgar 0000-0001-9064-8123

Gönderilme Tarihi 7 Kasım 2025
Kabul Tarihi 11 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 3

Kaynak Göster

APA Ünlü, S., Petik, B., Akçiçek, M., Ilgar, M. (2025). Assessment of Alterations in Cerebrospinal Fluid in Acute and Chronic Infarcts Utilizing Computed Tomography. Journal of Medical Topics and Updates, 4(3), 79-83. https://doi.org/10.58651/jomtu.1818474