Derleme
BibTex RIS Kaynak Göster

MITOCHONDRIAL AGING

Yıl 2025, Cilt: 8 Sayı: 2, 293 - 307, 31.12.2025
https://doi.org/10.55930/jonas.1741124

Öz

Aging is a complex process characterized by a series of biological changes at the cellular and molecular levels. Mitochondria, as cellular organelles responsible for energy production, play a central role in the aging process. Mitochondrial dysfunction is considered one of the key biological hallmarks of aging. Mitochondria are critical for regulating energy metabolism and maintaining cellular homeostasis. With advancing age, mitochondrial functions decline, oxidative stress increases, and energy production decreases. This contributes to the onset of age-related diseases and metabolic disorders. Mitochondrial aging is triggered by various factors such as oxidative damage caused by free radicals, disruption of protein homeostasis, and genetic mutations. The free radical theory suggests that reactive oxygen species (ROS) produced within mitochondria damage mitochondrial DNA (mtDNA), thereby accelerating aging. This process adversely affects ATP production and leads to cellular energy imbalance. Consequently, mitochondrial dysfunction plays a significant role in age-associated diseases, including neurodegenerative disorders, cardiovascular conditions, diabetes, and cancer. Therefore, therapeutic approaches aimed at preserving and improving mitochondrial function have attracted considerable attention. Interventions such as exercise, dietary modifications, and certain pharmacological agents can support mitochondrial health and potentially slow the aging process. Today, scientific and medical advancements have made it possible for humans to live longer and healthier lives. While early research in this field primarily focused on finding an elixir for prolonged youth, current efforts are directed toward treating age-related diseases or alleviating their symptoms. Further investigation into the mechanisms of mitochondrial aging may represent a major step toward preventing age-related diseases in the future.

Kaynakça

  • Alharbi, M. A., Al-Kafaji, G., Khalaf, N. Ben, Messaoudi, S. A., Taha, S., Daif, A., & Bakhiet, M. (2019). Four novel mutations in the mitochondrial ND4 gene of complex I in patients with multiple sclerosis. Biomedical Reports, 11(6), 257-268. https://doi.org/10.3892/BR.2019.1250/DOWNLOAD
  • Anderson, A. P., Luo, X., Russell, W., & Yin, Y. W. (2020). Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity. academic.oup.comAP Anderson, X Luo, W Russell, YW YinNucleic acids research, 2020•academic.oup.com, 48(2), 817-829. https://doi.org/10.1093/NAR/GKZ1018
  • Ao, X., Ding, W., Li, X., Xu, Q., Chen, X., Zhou, X., Wang, J., & Liu, Y. (2023). Non-coding RNAs regulating mitochondrial function in cardiovascular diseases. SpringerX Ao, W Ding, X Li, Q Xu, X Chen, X Zhou, J Wang, Y LiuJournal of molecular medicine, 2023•Springer, 101(5), 501-526. https://doi.org/10.1007/+S00109-023-02305-8
  • Barbieri, E., transduction, P. S.-J. of signal, & 2012, undefined. (2012). Reactive oxygen species in skeletal muscle signaling. Wiley Online LibraryE Barbieri, P SestiliJournal of signal transduction, 2012•Wiley Online Library, 2012, 1-17. https://doi.org/10.1155/2012/982794
  • Bernardino Gomes, T. M., Ng, Y. S., Pickett, S. J., Turnbull, D. M., & Vincent, A. E. (2021). Mitochondrial DNA disorders: from pathogenic variants to preventing transmission. academic.oup.comTM Bernardino Gomes, YS Ng, SJ Pickett, DM Turnbull, AE VincentHuman Molecular Genetics, 2021•academic.oup.com, 30(R2), R245-R253. https://doi.org/10.1093/HMG/DDAB156
  • Cerella, C., Grandjenette, C., … M. D.-C. drug, & 2016, undefined. (2016). Roles of apoptosis and cellular senescence in cancer and aging. benthamdirect.comC Cerella, C Grandjenette, M Dicato, M DiederichCurrent drug targets, 2016•benthamdirect.com, 17(4), 405-415. https://doi.org/10.2174/1389450116666150202155915
  • Chan, S., BioEssays, J. P.-, & 2024, undefined. (t.y.-a). Can stable introns and noncoding RNAs be harnessed to improve health through activation of mitohormesis? Wiley Online Library. https://doi.org/10.1016/J.CMET.2023.10.+011
  • Chan, S., BioEssays, J. P.-, & 2024, undefined. (t.y.-b). Can stable introns and noncoding RNAs be harnessed to improve health through activation of mitohormesis? Wiley Online Library. https://doi.org/10.1016/J.CMET.2023.10.+011
  • Chemistry, M. Y.-A. in clinical, & 2012, undefined. (t.y.). Somatic mitochondrial DNA mutations in human cancers. pubmed.ncbi.nlm.nih.govM YuAdvances in clinical chemistry, 2012•pubmed.ncbi.nlm.nih.gov. Geliş tarihi 10 Temmuz 2025, gönderen https://pubmed.ncbi.nlm.nih.gov/22870588/
  • Chen, C., Turnbull, D. M., & Reeve, A. K. (2019). Mitochondrial dysfunction in Parkinson’s disease—cause or consequence? Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020038
  • Chen, J., Li, H., Liang, R., Huang, Y., & Tang, Q. (2025). Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. SpringerJ Chen, H Li, R Liang, Y Huang, Q TangBiogerontology, 2025•Springer, 26(1). https://doi.org/10.1007/S10522-024-10175-X
  • Couteur, D. Le, Solon-Biet, S., Parker, B., Metabolism, T. P.-C., & 2021, undefined. (t.y.). Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. cell.comDG Le Couteur, SM Solon-Biet, BL Parker, T Pulpitel, AE Brandon, NJ Hunt, JA WaliCell Metabolism, 2021•cell.com. Geliş tarihi 10 Temmuz 2025, gönderen https://www.cell.com/cell-metabolism/fulltext/S1550-4131(21)00528-3
  • Covarrubias, A. J., Perrone, R., Grozio, A., & Verdin, E. (2021). NAD+ metabolism and its roles in cellular processes during ageing. nature.comAJ Covarrubias, R Perrone, A Grozio, E VerdinNature reviews Molecular cell biology, 2021•nature.com, 22(2), 119-141. https://doi.org/10.1038/S41580-020-00313-X
  • Dar, G. M., Ahmad, E., Ali, A., Mahajan, B., Ashraf, G. M., & Saluja, S. S. (2023). Genetic aberration analysis of mitochondrial respiratory complex I implications in the development of neurological disorders and their clinical significance. ElsevierGM Dar, E Ahmad, A Ali, B Mahajan, GM Ashraf, SS SalujaAgeing research reviews, 2023•Elsevier, 87. https://doi.org/10.1016/J.ARR.2023.101906
  • D’Augustin, O., Gaudon, V., Siberchicot, C., Smith, R., Chapuis, C., Depagne, J., Veaute, X., Busso, D., Di Guilmi, A. M., Castaing, B., Radicella, J. P., Campalans, A., & Huet, S. (2023). Identification of key residues of the DNA glycosylase OGG1 controlling efficient DNA sampling and recruitment to oxidized bases in living cells. academic.oup.comO D’augustin, V Gaudon, C Siberchicot, R Smith, C Chapuis, J Depagne, X Veaute, D BussoNucleic Acids Research, 2023•academic.oup.com, 51(10), 4942-4958. https://doi.org/10.1093/NAR/GKAD243
  • Davis, H. M., Pacheco-Costa, R., Atkinson, E. G., Brun, L. R., Gortazar, A. R., Harris, J., Hiasa, M., Bolarinwa, S. A., Yoneda, T., Ivan, M., Bruzzaniti, A., Bellido, T., & Plotkin, L. I. (2017). Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Wiley Online LibraryHM Davis, R Pacheco‐Costa, EG Atkinson, LR Brun, AR Gortazar, J Harris, M HiasaAging cell, 2017•Wiley Online Library, 16(3), 551-563. https://doi.org/10.1111/ACEL.12586
  • De Barcelos, I. P., & Haas, R. H. (2019). Coq10 and aging. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020028,
  • De Barcelos, I. P., Troxell, R. M., & Graves, J. S. (2019). Mitochondrial dysfunction and multiple sclerosis. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020037
  • De Miguel, Z., Khoury, N., Betley, M. J., Lehallier, B., Willoughby, D., Olsson, N., Yang, A. C., Hahn, O., Lu, N., Vest, R. T., Bonanno, L. N., Yerra, L., Zhang, L., Saw, N. L., Fairchild, J. K., Lee, D., Zhang, H., McAlpine, P. L., Contrepois, K., … Wyss-Coray, T. (2021). Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature, 600(7889), 494-499. https://doi.org/10.1038/S41586-021-04183-X,
  • DeBalsi, K., Hoff, K., reviews, W. C.-A. research, & 2017, undefined. (t.y.). Mitokondriyal DNA replikasyon mekanizmasının mitokondriyal DNA mutagenezi, yaşlanma ve yaşa bağlı hastalıklardaki rolü. ElsevierKL DeBalsi, KE Hoff, WC CopelandYaşlanma araştırma incelemeleri, 2017 • Elsevier. https://doi.org/10.1016/J.ARR.+2016.04.006
  • Dhillon, V., Research, M. F.-M. R. in M., & 2014, undefined. (2014). Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. Elsevier, 759(1), 1-13. https://doi.org/10.1016/J.MRREV.2013.09.001
  • Duran, J., Martinez, A., & Adler, E. (2019). Cardiovascular manifestations of mitochondrial disease. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020034
  • Eells, J. T. (2019). Mitochondrial dysfunction in the aging retina. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020031
  • Eid, N., Culmsee, C., Bakula, D., & Scheibye-Knudsen, M. (2020). MitophAging : yaşlanma ve hastalıklarda mitofaji. Knudsen - hücre ve gelişimsel biyolojide, 8. https://doi.org/10.3389/FCELL.2020.00239/FULL
  • Elfawy, H., bilimleri, B. D.-Y., & 2019, undefined. (t.y.). Mitokondriyal disfonksiyon, oksidatif stres ve yaşa bağlı nörodejeneratif hastalık arasındaki etkileşim: Etiyolojiler ve tedavi stratejileri. ElsevierHA Elfawy , B DasYaşam bilimleri, 2019 • Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S0024320518308221
  • Elorza, A. A., & Soffia, J. P. (2021). mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/FCELL.2021.625020/FULL
  • Fakouri, N. B., Hansen, T. L., Desler, C., Anugula, S., & Rasmussen, L. J. (2019). From powerhouse to perpetrator—mitochondria in health and disease. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020035
  • Feno, S., Butera, G., Reane, D. V., Rizzuto, R., & Raffaello, A. (2019). Crosstalk between calcium and ROS in pathophysiological conditions. Wiley Online LibraryS Feno, G Butera, D Vecellio Reane, R Rizzuto, A RaffaelloOxidative medicine and cellular longevity, 2019•Wiley Online Library, 2019. https://doi.org/10.1155/2019/9324018
  • Fontana, G., araştırması, H. G.-N. asitler, & 2020, undefined. (2013). Mitokondriyal DNA delesyon oluşumunda replikasyon ve onarım mekanizmaları. academic.oup.comGA Fontana, HL GahlonNükleik asitler araştırması, 2020 • academic.oup.com, 1(1256879), 13-14. https://doi.org/10.1093/NAR/+GKAA80
  • Fontana, G., research, H. G.-N. acids, & 2020, undefined. (2013). Mechanisms of replication and repair in mitochondrial DNA deletion formation. academic.oup.comGA Fontana, HL GahlonNucleic acids research, 2020•academic.oup.com, 1(1256879), 13-14. https://doi.org/10.1093/NAR/+GKAA804
  • Gorelick, A. N., Kim, M., Chatila, W. K., La, K., Hakimi, A. A., Berger, M. F., Taylor, B. S., Gammage, P. A., & Reznik, E. (2021). Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. nature.comAN Gorelick, M Kim, WK Chatila, K La, AA Hakimi, MF Berger, BS Taylor, PA GammageNature metabolism, 2021•nature.com, 3(4), 558-570. https://doi.org/10.1038/S42255-021-00378-8
  • Granatiero, V., & Manfredi, G. (2019). Mitochondrial transport and turnover in the pathogenesis of amyotrophic lateral sclerosis. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020036
  • Grevendonk, L., Connell, N. J., McCrum, C., Fealy, C. E., Bilet, L., Bruls, Y. M. H., Mevenkamp, J., Schrauwen-Hinderling, V. B., Jörgensen, J. A., Moonen-Kornips, E., Schaart, G., Havekes, B., de Vogel-van den Bosch, J., Bragt, M. C. E., Meijer, K., Schrauwen, P., & Hoeks, J. (2021). Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. nature.comL Grevendonk, NJ Connell, C McCrum, CE Fealy, L Bilet, YMH Bruls, J MevenkampNature communications, 2021•nature.com, 12(1), 4773. https://doi.org/10.1038/+S41467-021-24956-2
  • Grevendonk, L., Connell, N. J., Mccrum, C., Fealy, C. E., Bilet, L., Bruls, Y. M. H., Mevenkamp, J., Schrauwen-Hinderling, V. B., Jörgensen, J. A., Moonen-Kornips, E., Schaart, G., Havekes, B., De Vogel-Van Den Bosch, J., Bragt, M. C. E., Meijer, K., Schrauwen, P., & Hoeks, J. (2021). Yaşlanma ve egzersizin iskelet kası mitokondriyal kapasitesi, enerji metabolizması ve fiziksel fonksiyon üzerindeki etkisi. Doğa. https://doi.org/10.1038/s41467-021-24956-2
  • Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. (2022). Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy 2022 7:1, 7(1), 1-40. https://doi.org/10.1038/s41392-022-01251-0
  • Guo, L., Karpac, J., Tran, S. L., & Jasper, H. (2014). PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell, 156(1-2), 109-122. https://doi.org/10.1016/j.cell.2013.12.018
  • Guo, Y., Guan, T., Shafiq, K., Yu, Q., Jiao, X., Na, D., … M. L.-A. research, & 2023, undefined. (t.y.). Mitochondrial dysfunction in aging. Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S1568163723001149
  • Haas, R. H. (2019). Yaşlanmada mitokondriyal işlev bozukluğu ve yaşlanmaya bağlı hastalıklar. Biyoloji, 8(2). https://doi.org/10.3390/BIOLOGY8020048
  • Hahn, A., Antioxidants, S. Z.-, & 2019, undefined. (t.y.). Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species. mdpi.comA Hahn, S ZurynAntioxidants, 2019•mdpi.com. https://doi.org/10.3390/ANTIO+X8090392
  • Ham, D. J., Börsch, A., Chojnowska, K., Lin, S., Leuchtman, A. B., Ham, A. S., Thürkauf, M., Delezie, J., Furrer, R., Burri, D., Sinnreich, M., Handschin, C., Tintignac, L. A., Zavolan, M., Mittal, N., & Rüegg, M. A. (2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nature Communications, 13(1). https://doi.org/10.1038/S41467-022-29714-6,
  • Hernandez, A. R., Hernandez, C. M., Campos, K., Truckenbrod, L., Federico, Q., Moon, B., McQuail, J. A., Maurer, A. P., Bizon, J. L., & Burke, S. N. (2018). A Ketogenic Diet Improves Cognition and Has Biochemical Effects in Prefrontal Cortex That Are Dissociable From Hippocampus. Frontiers in Aging Neuroscience, 10. https://doi.org/10.3389/FNAGI.2018.00391,
  • Horowitz, A. M., Fan, X., Bieri, G., Smith, L. K., Sanchez-Diaz, C. I., Schroer, A. B., Gontier, G., Casaletto, K. B., Kramer, J. H., Williams, K. E., & Villeda, S. A. (2020). Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science, 369(6500), 167-173. https://doi.org/10.1126/SCIENCE.AAW2622,
  • Hu, H., Lin, Y., Xu, X., Lin, S., Chen, X., & Wang, S. (2020). Koroner kalp hastalığında mitokondriyal DNA’daki değişiklikler. Deneysel ve moleküler. https://doi.org/10.1016/J.YEXMP.2020.+104412
  • Hu, L., Li, H., Zi, M., Li, W., Liu, J., Yang, Y., Zhou, D., Kong, Q.-P., Zhang, Y., & He, Y. (t.y.). Why senescent cells are resistant to apoptosis: an insight for senolytic development. frontiersin.orgL Hu, H Li, M Zi, W Li, J Liu, Y Yang, D Zhou, QP Kong, Y Zhang, Y HeFrontiers in Cell and Developmental Biology, 2022•frontiersin.org. https://doi.org/10.3389/FCELL.+2022.822816
  • Juan, C. A., de la Lastra, J. M. P., Plou, F. J., & Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences 2021, Vol. 22, Page 4642, 22(9), 4642. https://doi.org/10.3390/IJMS22094642
  • Kauppila, J. H. K., Bonekamp, N. A., Mourier, A., Isokallio, M. A., Just, A., Kauppila, T. E. S., Stewart, J. B., & Larsson, N. G. (2018). Base-excision repair deficiency alone or combined with increased oxidative stress does not increase mtDNA point mutations in mice. academic.oup.comJHK Kauppila, NA Bonekamp, A Mourier, MA Isokallio, A Just, TES Kauppila, JB StewartNucleic Acids Research, 2018•academic.oup.com, 46(13), 6642-6649. https://doi.org/10.1093/NAR/GKY456
  • Kauppila, T. E. S., Kauppila, J. H. K., & Larsson, N. G. (2017). Mammalian mitochondria and aging: an update. cell.comTES Kauppila, JHK Kauppila, NG LarssonCell metabolism, 2017•cell.com, 25(1), 57-71. https://doi.org/10.1016/J.CMET.2016.09.017
  • Kong, M., Guo, L., Xu, W., He, C., Jia, X., Zhao, Z., Medicine, Z. G.-L., & 2022, undefined. (2022). Aging-associated accumulation of mitochondrial DNA mutations in tumor origin. academic.oup.comM Kong, L Guo, W Xu, C He, X Jia, Z Zhao, Z GuLife Medicine, 2022•academic.oup.com, 1, 149-167. https://doi.org/10.1093/lifemedi/lnac014
  • Koshy, A., Okwose, N. C., Nunan, D., Toms, A., Brodie, D. A., Doherty, P., Seferovic, P., Ristic, A., Velicki, L., Filipovic, N., Popovic, D., Skinner, J., Bailey, K., MacGowan, G. A., & Jakovljevic, D. G. (2019). Association between heart rate variability and haemodynamic response to exercise in chronic heart failure. Taylor & FrancisA Koshy, NC Okwose, D Nunan, A Toms, DA Brodie, P Doherty, P Seferovic, A RisticScandinavian Cardiovascular Journal, 2019•Taylor & Francis, 53(2), 77-82. https://doi.org/10.1080/14017431.2019.1590629
  • Kumar, N., Theil, A. F., Roginskaya, V., Ali, Y., Calderon, M., Watkins, S. C., Barnes, R. P., Opresko, P. L., Pines, A., Lans, H., Vermeulen, W., & Van Houten, B. (2022). Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins. nature.comN Kumar, AF Theil, V Roginskaya, Y Ali, M Calderon, SC Watkins, RP Barnes, PL OpreskoNature Communications, 2022•nature.com, 13(1). https://doi.org/10.1038/S41467-022-28642-9
  • Lautrup, S., Sinclair, D., Mattson, M., metabolism, E. F.-C., & 2019, undefined. (t.y.). NAD+ in brain aging and neurodegenerative disorders. cell.comS Lautrup, DA Sinclair, MP Mattson, EF FangCell metabolism, 2019•cell.com. https://doi.org/10.1016/J.CMET.2019.+09.001
  • Le Couteur, D. G., Raubenheimer, D., Solon-Biet, S., de Cabo, R., & Simpson, S. J. (2024). Beslenme şekli yaşlanmayı etkiler mi? Hayvan çalışmaları kanıtları. Dahili Dergi, 295(4), 400-415. https://doi.org/10.1111/JOIM.13530
  • Lebraud, E., Pinna, G., Siberchicot, C., Depagne, J., Busso, D., Fantini, D., Irbah, L., Robeska, E., Kratassiouk, G., Ravanat, J. L., Epe, B., Radicella, J. P., & Campalans, A. (2020). Chromatin recruitment of OGG1 requires cohesin and mediator and is essential for efficient 8-oxoG removal. academic.oup.comE Lebraud, G Pinna, C Siberchicot, J Depagne, D Busso, D Fantini, L Irbah, E RobeskaNucleic acids research, 2020•academic.oup.com, 48(16), 9082-9097. https://doi.org/10.1093/NAR/GKAA611
  • Lee, C., Park, S., Genomics, S. Y.-G. &, & 2023, undefined. (2023). Genetic mutations affecting mitochondrial function in cancer drug resistance. SpringerC Lee, SH Park, SK YoonGenes & Genomics, 2023•Springer, 45(3), 261-270. https://doi.org/10.1007/+S13258-022-01359-1
  • Leuthner, T., reports, J. M.-C. environmental health, & 2021, undefined. (2021). Mitochondrial DNA mutagenesis: feature of and biomarker for environmental exposures and aging. SpringerTC Leuthner, JN MeyerCurrent environmental health reports, 2021•Springer, 8(4), 294-308. https://doi.org/10.1007/S40572-021-00329-1
  • Levytskyy, R. M., Germany, E. M., & Khalimonchuk, O. (2016). Mitochondrial quality control proteases in neuronal welfare. SpringerRM Levytskyy, EM Germany, O KhalimonchukJournal of Neuroimmune Pharmacology, 2016•Springer, 11(4), 629-644. https://doi.org/10.1007/S11481-016-9683-8
  • Leyane, T. S., Jere, S. W., & Houreld, N. N. (2022). Oxidative stress in ageing and chronic degenerative pathologies: molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. mdpi.comTS Leyane, SW Jere, NN HoureldInternational journal of molecular sciences, 2022•mdpi.com, 23(13). https://doi.org/10.3390/IJMS23137273
  • Li, Y., Tian, X., Luo, J., Bao, T., Wang, S., & Wu, X. (2024). Molecular mechanisms of aging and anti-aging strategies. Cell Communication and Signaling 2024 22:1, 22(1), 1-24. https://doi.org/10.1186/S12964-024-01663-1
  • Lin, Y.-H. ;, Lim, S.-N. ;, Chen, C.-Y. ;, Chi, H.-C. ;, Yeh, C.-T. ;, Lin, W.-R., Lin, Y.-H., Lim, S.-N., Chen, C.-Y., Chi, H.-C., Yeh, C.-T., & Lin, W.-R. (2022). Functional role of mitochondrial DNA in cancer progression. mdpi.comYH Lin, SN Lim, CY Chen, HC Chi, CT Yeh, WR LinInternational journal of molecular sciences, 2022•mdpi.com, 23(3), 1659. https://doi.org/10.3390/IJMS23031659
  • Liu, X., & Shan, G. (2021). Mitochondria Encoded Non-coding RNAs in Cell Physiology. Frontiers in Cell and Developmental Biology, 9, 713729. https://doi.org/10.3389/FCELL.2021.713729/FULL
  • Macao, B., Uhler, J. P., Siibak, T., Zhu, X., Shi, Y., Sheng, W., Olsson, M., Stewart, J. B., Gustafsson, C. M., & Falkenberg, M. (2015). The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication. nature.comB Macao, JP Uhler, T Siibak, X Zhu, Y Shi, W Sheng, M Olsson, JB Stewart, CM GustafssonNature communications, 2015•nature.com, 6. https://doi.org/10.1038/NCOMMS8303
  • Macêdo, A., Silva, A. da, & Muñoz, V. (2021). Mitokondriyal işlev bozukluğu yaşlanan yağ dokusunun yeniden şekillenmesinde önemli bir rol oynar. Yaşlanma Mekanizmaları. https://www.sciencedirect.com/science/article/pii/S0047637421001706
  • Madreiter-Sokolowski, C., Thomas, C., biology, M. R.-R., & 2020, undefined. (t.y.). Yaşlanma ve yaşa bağlı hastalıklarda ROS ve Ca2+ arasındaki ilişki. ElsevierCT Madreiter-Sokolowski , C Thomas, M RistowRedoks biyolojisi, 2020 • Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S2213231720308831
  • McGuire, P. J. (2019). Mitochondrial dysfunction and the aging immune system. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020026
  • Mishra, A., Mirzaei, H., Guidi, N., Vinciguerra, M., Mouton, A., Linardic, M., Rappa, F., Barone, R., Navarrete, G., Wei, M., Brandhorst, S., Di Biase, S., Morgan, T. E., Ram Kumar, S., Conti, P. S., Pellegrini, M., Bernier, M., de Cabo, R., & Longo, V. D. (2021). Fasting-mimicking diet prevents high-fat diet effect on cardiometabolic risk and lifespan. Nature Metabolism, 3(10), 1342-1356. https://doi.org/10.1038/S42255-021-00469-6,
  • Mongelli, A., Mengozzi, A., Geiger, M., Gorica, E., Mohammed, S. A., Paneni, F., Ruschitzka, F., & Costantino, S. (2023). Mitochondrial epigenetics in aging and cardiovascular diseases. frontiersin.orgA Mongelli, A Mengozzi, M Geiger, E Gorica, SA Mohammed, F Paneni, F RuschitzkaFrontiers in cardiovascular medicine, 2023•frontiersin.org, 10. https://doi.org/10.3389/+FCVM.2023.1204483
  • Montgomery, M. K. (2019). Mitochondrial dysfunction and diabetes: Is mitochondrial transfer a friend or foe? Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020033
  • Mutharasu, G., Murugesan, A., Kondamani, S., Thiyagarajan, R., Yli-Harja, O., & Kandhavelu, M. (2023). Signaling landscape of mitochondrial non-coding RNAs. Taylor & FrancisG Mutharasu, A Murugesan, S Kondamani, R Thiyagarajan, O Yli-Harja, M KandhaveluJournal of Biomolecular Structure and Dynamics, 2023•Taylor & Francis, 41(21), 12016-12025. https://doi.org/10.1080/07391102.2022.2164520
  • Nacarelli, T., Lau, L., Fukumoto, T., Zundell, J., Fatkhutdinov, N., Wu, S., Aird, K. M., Iwasaki, O., Kossenkov, A. V., Schultz, D., Noma, K., Baur, J. A., Schug, Z., Tang, H.-Y., Speicher, D. W., David, G., & Zhang, R. (2019). NAD+ metabolism governs the proinflammatory senescence-associated secretome. nature.comT Nacarelli, L Lau, T Fukumoto, J Zundell, N Fatkhutdinov, S Wu, KM Aird, O IwasakiNature cell biology, 2019•nature.com, 21(3), 397-407. https://doi.org/10.1038/+S41556-019-0287-4
  • Nadalutti, C. A., Ayala-Peña, S., & Santos, J. H. (2022). Hücresel sonuçların itici gücü olarak mitokondriyal DNA hasarı. American Journal of, 322(2), C136-C150. https://doi.org/10.1152/AJPCELL.00389.2021
  • Naresh, N., Harbor, C. H.-C. S., & 2019, undefined. (2019). Signaling and regulation of the mitochondrial unfolded protein response. cshperspectives.cshlp.orgNU Naresh, CM HaynesCold Spring Harbor Perspectives in Biology, 2019•cshperspectives.cshlp.org. https://doi.org/10.1101/cshperspect.a033944
  • Newman, J. C., Covarrubias, A. J., Zhao, M., Yu, X., Gut, P., Ng, C. P., Huang, Y., Haldar, S., & Verdin, E. (2017). Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice. Cell Metabolism, 26(3), 547-557.e8. https://doi.org/10.1016/j.cmet.2017.08.004
  • Nilsson, M. I., & Tarnopolsky, M. A. (2019a). Mitochondria and aging—the role of exercise as a countermeasure. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020040
  • Nissanka, N., Minczuk, M., trendler, C. M.-G., & 2019, undefined. (t.y.). Mitokondriyal DNA delesyonunun oluşum mekanizmaları. cell.comN Nissanka , M Minczuk , CT MoraesGenetikteki trendler, 2019 • cell.com. https://doi.org/10.1016/J.TIG.2019.01.+001
  • Partridge, L., Fuentealba, M., & Kennedy, B. K. (2020). The quest to slow ageing through drug discovery. Nature Reviews Drug Discovery, 19(8), 513-532. https://doi.org/10.1038/S41573-020-0067-7,
  • Pawlosky, R., Kashiwaya, Y., … M. K.-I. journal of, & 2020, undefined. (t.y.). A dietary ketone ester normalizes abnormal behavior in a mouse model of Alzheimer’s disease. mdpi.comRJ Pawlosky, Y Kashiwaya, MT King, RL VeechInternational journal of molecular sciences, 2020•mdpi.com. https://doi.org/10.3390/ijms21031044
  • Pereira, C., Gitschlag, B., in, M. P.-C. reviews, & 2021, undefined. (2021). Cellular mechanisms of mtDNA heteroplasmy dynamics. Taylor & FrancisCV Pereira, BL Gitschlag, MR PatelCritical reviews in biochemistry and molecular biology, 2021•Taylor & Francis, 56(5), 510-525. https://doi.org/10.1080/+10409238.2021.1934812
  • Pervaiz, S., Bellot, G., Lemoine, A., incelemesi, C. B.-H. verinin uluslararası, & 2020, undefined. (t.y.). İnsan hastalıklarının patogenezinde redoks sinyalizasyonu ve otofaji düzenleyici rolü. Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S1937644820300253
  • Picca, A., Guerra, F., Calvani, R., … R. R.-S. in cell &, & 2023, undefined. (t.y.). Mitochondrial-derived vesicles in skeletal muscle remodeling and adaptation. ElsevierA Picca, F Guerra, R Calvani, R Romano, HJ Coelho-Junior, C Bucci, C LeeuwenburghSeminars in cell & developmental biology, 2023•Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S1084952122000957
  • Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe? ElsevierSK Powers, R Deminice, M Ozdemir, T Yoshihara, MP Bomkamp, H HyattJournal of sport and health science, 2020•Elsevier, 9(5), 415-425. https://doi.org/10.1016/J.JSHS.2020.04.001
  • Ramos, E. S. (2018). Memeli mitokondriyal nükleoidlerinin bakımı ve dağıtımı. https://kups.ub.uni-koeln.de/9138/
  • reviews, S. R.-A. research, & 2008, undefined. (2008). Hormesis in aging. ElsevierSIS RattanAgeing research reviews, 2008•Elsevier, 7(1), 63-78. https://doi.org/10.1016/J.ARR.2007.03.002
  • Roberts, M. N., Wallace, M. A., Tomilov, A. A., Zhou, Z., Marcotte, G. R., Tran, D., Perez, G., Gutierrez-Casado, E., Koike, S., Knotts, T. A., Imai, D. M., Griffey, S. M., Kim, K., Hagopian, K., McMackin, M. Z., Haj, F. G., Baar, K., Cortopassi, G. A., Ramsey, J. J., & Lopez-Dominguez, J. A. (2018). Erratum: A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice (Cell Metabolism (2017) 26(3) (539–546.e5)(S1550413117304904)(10.1016/j.cmet.2017.08.005)). Cell Metabolism, 27(5), 1156. https://doi.org/10.1016/j.cmet.2018.04.005
  • Ruegsegger, G. N., Creo, A. L., Cortes, T. M., Dasari, S., & Nair, K. S. (2018). Altered mitochondrial function in insulin-deficient and insulin-resistant states. jci.orgGN Ruegsegger, AL Creo, TM Cortes, S Dasari, KS NairThe Journal of clinical investigation, 2018•jci.org, 128(9), 3671-3681. https://doi.org/10.1172/JCI120843
  • Rygiel, K., Tuppen, H., Grady, J., … A. V.-N. acids, & 2016, undefined. (2013). Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis. academic.oup.comKA Rygiel, HA Tuppen, JP Grady, A Vincent, EL Blakely, AK Reeve, RW Taylor, M PicardNucleic acids research, 2016•academic.oup.com, 1(1256879), 13-14. https://doi.org/10.1093/NAR/+GKW382
  • Ryu, S., Sidorov, S., Ravussin, E., Artyomov, M., Iwasaki, A., Wang, A., & Dixit, V. D. (2022). The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity, 55(9), 1609-1626.e7. https://doi.org/10.1016/j.immuni.2022.07.007
  • Sanchez-Contreras, M., aging, S. K.-F. in, & 2022, undefined. (t.y.). The complicated nature of somatic mtDNA mutations in aging. frontiersin.orgM Sanchez-Contreras, SR KennedyFrontiers in aging, 2022•frontiersin.org. https://doi.org/10.3389/FRAGI.2021.+805126
  • Santos, M., Franco, F., … C. C.-A. of gerontology, & 2021, undefined. (t.y.). Antioxidant effect of Resveratrol: Change in MAPK cell signaling pathway during the aging process. Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S0167494320302636
  • sciences, F. C.-I. journal of molecular, & 2019, undefined. (t.y.). Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. mdpi.comF CollinInternational journal of molecular sciences, 2019•mdpi.com. Geliş tarihi 09 Temmuz 2025, gönderen https://www.mdpi.com/1422-0067/20/10/2407
  • Sena, L., cell, N. C.-M., & 2012, undefined. (t.y.). Physiological roles of mitochondrial reactive oxygen species. cell.comLA Sena, NS ChandelMolecular cell, 2012•cell.com. Geliş tarihi 09 Temmuz 2025, gönderen https://www.cell.com/molecular-cell/fulltext/S1097-2765(12)00825-8?_
  • Silva-Pinheiro, P., … C. P.-H.-N. A., & 2021, undefined. (2013). DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion. academic.oup.comP Silva-Pinheiro, C Pardo-Hernández, A Reyes, L Tilokani, A Mishra, R Cerutti, S LiNucleic Acids Research, 2021•academic.oup.com, 1(1256879), 13-14. https://doi.org/10.1093/NAR/+GKAB282
  • Singh, A., Kukreti, R., Saso, L., Molecules, S. K.-, & 2019, undefined. (t.y.). Oxidative stress: a key modulator in neurodegenerative diseases. mdpi.comA Singh, R Kukreti, L Saso, S KukretiMolecules, 2019•mdpi.com. Geliş tarihi 09 Temmuz 2025, gönderen https://www.mdpi.com/1420-3049/24/8/1583
  • Sinyali, V. G.-A. ve redoks, & 2014, undefined. (2014). Yaşlanmanın serbest radikal teorisi öldü. Yaşasın hasar teorisi! liebertpub.comVN GladyshevAntioksidanlar ve redoks sinyalizasyonu, 2014 • liebertpub.com, 20(4), 727-731. https://doi.org/10.1089/ARS.2013.5228
  • Stewart, J., Genetics, P. C.-N. R., & 2021, undefined. (t.y.). Extreme heterogeneity of human mitochondrial DNA from organelles to populations. nature.comJB Stewart, PF ChinneryNature Reviews Genetics, 2021•nature.com. Geliş tarihi 09 Temmuz 2025, gönderen https://www.nature.com/articles/s41576-020-00284-x
  • Stout, R., & Birch-Machin, M. (2019). Mitochondria’s role in skin ageing. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020029
  • Szczepanowska, K., & Trifunovic, A. (2017). Origins of mtDNA mutations in ageing. portlandpress.comK Szczepanowska, A TrifunovicEssays in biochemistry, 2017•portlandpress.com, 61(3), 325-337. https://doi.org/10.1042/EBC20160090
  • Takagi, S., Kime, R., Murase, N., Niwayama, M., Sakamoto, S., & Katsumura, T. (2021). Skeletal muscle deoxygenation and its relationship to aerobic capacity during early and late stages of aging. SpringerS Takagi, R Kime, N Murase, M Niwayama, S Sakamoto, T KatsumuraOxygen Transport to Tissue XLII, 2021•Springer, 1269, 77-82. https://doi.org/10.1007/978-3-030-48238-1_12
  • Tian, G., Katchur, S. R., Jiang, Y., Briand, J., Schaber, M., Kreatsoulas, C., Schwartz, B., Thrall, S., Davis, A. M., Duvall, S., Kaufman, B. A., & Rumsey, W. L. (2022). Small molecule-mediated allosteric activation of the base excision repair enzyme 8-oxoguanine DNA glycosylase and its impact on mitochondrial function. nature.comG Tian, SR Katchur, Y Jiang, J Briand, M Schaber, C Kreatsoulas, B Schwartz, S ThrallScientific Reports, 2022•nature.com, 12(1), 14685. https://doi.org/10.1038/S41598-022-18878-2
  • Timblin, G. A., Tharp, K. M., Ford, B., Winchester, J. M., Wang, J., Zhu, S., Khan, R. I., Louie, S. K., Iavarone, A. T., ten Hoeve, J., Nomura, D. K., Stahl, A., & Saijo, K. (2021). Mitohormesis reprogrammes macrophage metabolism to enforce tolerance. nature.comGA Timblin, KM Tharp, B Ford, JM Winchester, J Wang, S Zhu, RI Khan, SK LouieNature metabolism, 2021•nature.com, 3(5), 618-635. https://doi.org/10.1038/+S42255-021-00392-W
  • Tzimou, A., Benaki, D., Nikolaidis, S., Mikros, E., Taitzoglou, I., & Mougios, V. (2020). Effects of lifelong exercise and aging on the blood metabolic fingerprint of rats. Biogerontology, 21(5), 577-591. https://doi.org/10.1007/S10522-020-09871-1,
  • Vercellino, I., biology, L. S.-N. reviews M. cell, & 2022, undefined. (2022). The assembly, regulation and function of the mitochondrial respiratory chain. nature.comI Vercellino, LA SazanovNature reviews Molecular cell biology, 2022•nature.com, 23(2), 141-161. https://doi.org/10.1038/+S41580-021-00415-0
  • Vida, C., de Toda, I. M., Garrido, A., Carro, E., Molina, J. A., & De la Fuente, M. (2018). Impairment of several immune functions and redox state in blood cells of Alzheimer’s disease patients. Relevant role of neutrophils in oxidative stress. Frontiers in Immunology, 8(JAN). https://doi.org/10.3389/FIMMU.2017.01974/FULL
  • Waller, A., George, M., … A. K.-… et B. A. (BBA, & 2013, undefined. (t.y.). GLUT12 functions as a basal and insulin-independent glucose transporter in the heart. ElsevierAP Waller, M George, A Kalyanasundaram, C Kang, M Periasamy, K Hu, VA LacombeBiochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2013•Elsevier. https://doi.org/10.1016/J.BBADIS.+2018.06.014
  • Waltz, F., sciences, P. G.-T. in biochemical, & 2020, undefined. (t.y.). Striking diversity of mitochondria-specific translation processes across eukaryotes. cell.comF Waltz, P GiegéTrends in biochemical sciences, 2020•cell.com. Geliş tarihi 09 Temmuz 2025, gönderen https://www.cell.com/trends/biochemical-sciences/abstract/S0968-0004(19)30205-1
  • Wan, W., Zhang, L., Lin, Y., Rao, X., Wang, X., Hua, F., & Ying, J. (2023). Mitochondria-derived peptide MOTS-c: effects and mechanisms related to stress, metabolism and aging. Journal of Translational Medicine, 21(1), 36. https://doi.org/10.1186/S12967-023-03885-2
  • Wang, T., Tian, X., Kim, H. B., Jang, Y., Huang, Z., Na, C. H., & Wang, J. (2022). Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules. nature.comT Wang, X Tian, HB Kim, Y Jang, Z Huang, CH Na, J WangNature Communications, 2022•nature.com, 13(1), 5584. https://doi.org/10.1038/+S41467-022-33079-1
  • Wei, W., Schon, K. R., Elgar, G., Orioli, A., Tanguy, M., Giess, A., Tischkowitz, M., Caulfield, M. J., & Chinnery, P. F. (2022). Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. nature.comW Wei, KR Schon, G Elgar, A Orioli, M Tanguy, A Giess, M Tischkowitz, MJ CaulfieldNature, 2022•nature.com, 611(7934), 105-114. https://doi.org/10.1038/+S41586-022-05288-7
  • Weidling, I., & Swerdlow, R. H. (2019). Mitochondrial dysfunction and stress responses in Alzheimer’s disease. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020039
  • Wen, D., Zheng, L., Li, J., Lu, K., NY), W. H.-A. (Albany, & 2019, undefined. (t.y.). The activation of cardiac dSir2-related pathways mediates physical exercise resistance to heart aging in old Drosophila. pmc.ncbi.nlm.nih.govDT Wen, L Zheng, JX Li, K Lu, WQ HouAging (Albany NY), 2019•pmc.ncbi.nlm.nih.gov. Geliş tarihi 10 Temmuz 2025, gönderen https://pmc.ncbi.nlm.nih.gov/articles/PMC6756900/
  • Will, Y., Shields, J. E., & Wallace, K. B. (2019). Drug-induced mitochondrial toxicity in the geriatric population: Challenges and future directions. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020032
  • Wimalawansa, S. J. (2019). Vitamin D deficiency: Effects on oxidative stress, epigenetics, gene regulation, and aging. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020030
  • Xu, Z., Huang, J., Gao, M., Guo, G., Zeng, S., Chen, X., Wang, X., Gong, Z., & Yan, Y. (2021). Current perspectives on the clinical implications of oxidative RNA damage in aging research: challenges and opportunities. SpringerZ Xu, J Huang, M Gao, G Guo, S Zeng, X Chen, X Wang, Z Gong, Y YanGeroscience, 2021•Springer, 43(2), 487-505. https://doi.org/10.1007/+S11357-020-00209-W
  • Yang, L., Lin, X., Tang, H., Fan, Y., Zeng, S., Jia, L., Li, Y., Shi, Y., He, S., Wang, H., Hu, Z., Gong, X., Liang, X., Yang, Y., & Liu, X. (2020). Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD+ redox. Wiley Online LibraryL Yang, X Lin, H Tang, Y Fan, S Zeng, L Jia, Y Li, Y Shi, S He, H Wang, Z Hu, X GongAging Cell, 2020•Wiley Online Library, 19(9). https://doi.org/10.1111/ACEL.13206
  • Yang, S., Park, J., neurodegeneration, H. L.-M., & 2023, undefined. (2023). Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. SpringerS Yang, JH Park, HC LuMolecular neurodegeneration, 2023•Springer, 18(1), 49. https://doi.org/10.1186/+S13024-023-00634-3
  • Yasukawa, T., biochemistry, D. K.-T. journal of, & 2018, undefined. (2018). An overview of mammalian mitochondrial DNA replication mechanisms. academic.oup.comT Yasukawa, D KangThe journal of biochemistry, 2018•academic.oup.com, 164(3), 183-193. https://doi.org/10.1093/JB/+MVY058
  • Yosef, R., Pilpel, N., Tokarsky-Amiel, R., Biran, A., Ovadya, Y., Cohen, S., Vadai, E., Dassa, L., Shahar, E., Condiotti, R., Ben-Porath, I., & Krizhanovsky, V. (2016). BCL-W ve BCL-XL inhibisyonu yoluyla yaşlı hücrelerin yönlendirilmiş eliminasyonu. Doğa. https://doi.org/10.1038/ncomms11190
  • Yoshino, J., Baur, J., metabolizması, S. I.-H., & 2018, undefined. (t.y.). NAD+ ara maddeleri: NMN ve NR’nin biyolojisi ve terapötik potansiyeli. cell.comJ Yoshino, JA Baur , S ImaiHücre metabolizması, 2018 • cell.com. https://doi.org/10.1016/J.CMET.2017.+11.002
  • Zaidieh, T., Smith, J., Ball, K., cancer, Q. A.-B., & 2021, undefined. (2021). Mitochondrial DNA abnormalities provide mechanistic insight and predict reactive oxygen species-stimulating drug efficacy. SpringerT Zaidieh, JR Smith, KE Ball, Q AnBMC cancer, 2021•Springer, 21(1), 427. https://doi.org/10.1186/+S12885-021-08155-2
  • Zhou, W., Qu, J., Xie, S., … Y. S.-O. M. and, & 2021, undefined. (t.y.). Mitochondrial dysfunction in chronic respiratory diseases: implications for the pathogenesis and potential therapeutics. Wiley Online LibraryW Zhou, J Qu, S Xie, Y Sun, H YaoOxidative Medicine and Cellular Longevity, 2021•Wiley Online Library. https://doi.org/10.1155/2021/51883+06
  • Zhu, L., Zhou, Q., He, L., Medicine, L. C.-F. R. B. and, & 2021, undefined. (t.y.). Mitochondrial unfolded protein response: An emerging pathway in human diseases. ElsevierL Zhu, Q Zhou, L He, L ChenFree Radical Biology and Medicine, 2021•Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S0891584920316762
  • Ziada, A. S., Smith, M. S. R., & Côté, H. C. F. (2020). Updating the Free Radical Theory of Aging. Frontiers in Cell and Developmental Biology, 8, 575645. https://doi.org/10.3389/FCELL.2020.575645/FULL

MİTOKONDRİYAL YAŞLANMA

Yıl 2025, Cilt: 8 Sayı: 2, 293 - 307, 31.12.2025
https://doi.org/10.55930/jonas.1741124

Öz

Yaşlanma, hücresel ve moleküler seviyede bir dizi biyolojik değişiklikle karakterize edilen karmaşık bir süreçtir. Mitokondriler, enerji üretiminden sorumlu hücresel organel olarak, yaşlanma sürecinde merkezi bir rol oynar. Mitokondriyal işlev bozukluğu, yaşlanmanın temel biyolojik belirteçlerinden biridir. Mitokondri, enerji metabolizmasını yöneten ve hücresel homeostazda kritik rol oynayan organeldir. Yaşlanma süreci ile birlikte mitokondriyal fonksiyonlar bozulur, oksidatif stres artar ve enerji üretimi azalır. Bu durum, yaşa bağlı hastalıkların ve metabolik bozuklukların ortaya çıkmasına neden olabilmektedir. Mitokondriyal yaşlanma, serbest radikallerin neden olduğu oksidatif hasar, protein homeostazının bozulması ve genetik mutasyonlar gibi çeşitli faktörler tarafından tetiklenmektedir. Serbest radikal teorisi, mitokondrilerde oluşan reaktif oksijen türlerinin (ROS), mitokondriyal DNA'ya (mtDNA) zarar vererek yaşlanmayı hızlandırdığını öne sürülmüştür. Bu süreç, ATP üretimini olumsuz etkileyerek hücresel enerji dengesizliğine yol açmaktadır. Bu durum, nörodejeneratif hastalıklar, kardiyovasküler rahatsızlıklar, diyabet ve kanser gibi yaşla ilişkili hastalıklarda önemli rol oynar. Bu nedenle, mitokondriyal fonksiyonu korumaya ve iyileştirmeye yönelik terapötik yaklaşımlar büyük ilgi görmektedir. Egzersiz, beslenme düzenlemeleri ve bazı farmakolojik ajanlar, mitokondriyal sağlığı destekleyerek yaşlanma sürecini yavaşlatabilir. Günümüzde bilimsel ve tıbbi gelişmelerin insanların ömrünü daha uzun ve daha sağlıklı hale gelmesine olanak sağlamıştır. İlk başlarda bu konularda ki araştırmalar daha uzun süreli gençlik iksiri için kullanılmış olsa da günümüzde yaşa bağlı olan hastalıkların tedavi edilmesi veya belirtilerinin azaltılması üzerine gidilmiştir. Mitokodriyal yaşlanmanın mekanizmalarını daha fazla araştırmak ilerleyen dönemlerde yaşlılığa bağlı hastalıkları önlemek için büyük bir adım olabilir.

Kaynakça

  • Alharbi, M. A., Al-Kafaji, G., Khalaf, N. Ben, Messaoudi, S. A., Taha, S., Daif, A., & Bakhiet, M. (2019). Four novel mutations in the mitochondrial ND4 gene of complex I in patients with multiple sclerosis. Biomedical Reports, 11(6), 257-268. https://doi.org/10.3892/BR.2019.1250/DOWNLOAD
  • Anderson, A. P., Luo, X., Russell, W., & Yin, Y. W. (2020). Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity. academic.oup.comAP Anderson, X Luo, W Russell, YW YinNucleic acids research, 2020•academic.oup.com, 48(2), 817-829. https://doi.org/10.1093/NAR/GKZ1018
  • Ao, X., Ding, W., Li, X., Xu, Q., Chen, X., Zhou, X., Wang, J., & Liu, Y. (2023). Non-coding RNAs regulating mitochondrial function in cardiovascular diseases. SpringerX Ao, W Ding, X Li, Q Xu, X Chen, X Zhou, J Wang, Y LiuJournal of molecular medicine, 2023•Springer, 101(5), 501-526. https://doi.org/10.1007/+S00109-023-02305-8
  • Barbieri, E., transduction, P. S.-J. of signal, & 2012, undefined. (2012). Reactive oxygen species in skeletal muscle signaling. Wiley Online LibraryE Barbieri, P SestiliJournal of signal transduction, 2012•Wiley Online Library, 2012, 1-17. https://doi.org/10.1155/2012/982794
  • Bernardino Gomes, T. M., Ng, Y. S., Pickett, S. J., Turnbull, D. M., & Vincent, A. E. (2021). Mitochondrial DNA disorders: from pathogenic variants to preventing transmission. academic.oup.comTM Bernardino Gomes, YS Ng, SJ Pickett, DM Turnbull, AE VincentHuman Molecular Genetics, 2021•academic.oup.com, 30(R2), R245-R253. https://doi.org/10.1093/HMG/DDAB156
  • Cerella, C., Grandjenette, C., … M. D.-C. drug, & 2016, undefined. (2016). Roles of apoptosis and cellular senescence in cancer and aging. benthamdirect.comC Cerella, C Grandjenette, M Dicato, M DiederichCurrent drug targets, 2016•benthamdirect.com, 17(4), 405-415. https://doi.org/10.2174/1389450116666150202155915
  • Chan, S., BioEssays, J. P.-, & 2024, undefined. (t.y.-a). Can stable introns and noncoding RNAs be harnessed to improve health through activation of mitohormesis? Wiley Online Library. https://doi.org/10.1016/J.CMET.2023.10.+011
  • Chan, S., BioEssays, J. P.-, & 2024, undefined. (t.y.-b). Can stable introns and noncoding RNAs be harnessed to improve health through activation of mitohormesis? Wiley Online Library. https://doi.org/10.1016/J.CMET.2023.10.+011
  • Chemistry, M. Y.-A. in clinical, & 2012, undefined. (t.y.). Somatic mitochondrial DNA mutations in human cancers. pubmed.ncbi.nlm.nih.govM YuAdvances in clinical chemistry, 2012•pubmed.ncbi.nlm.nih.gov. Geliş tarihi 10 Temmuz 2025, gönderen https://pubmed.ncbi.nlm.nih.gov/22870588/
  • Chen, C., Turnbull, D. M., & Reeve, A. K. (2019). Mitochondrial dysfunction in Parkinson’s disease—cause or consequence? Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020038
  • Chen, J., Li, H., Liang, R., Huang, Y., & Tang, Q. (2025). Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. SpringerJ Chen, H Li, R Liang, Y Huang, Q TangBiogerontology, 2025•Springer, 26(1). https://doi.org/10.1007/S10522-024-10175-X
  • Couteur, D. Le, Solon-Biet, S., Parker, B., Metabolism, T. P.-C., & 2021, undefined. (t.y.). Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. cell.comDG Le Couteur, SM Solon-Biet, BL Parker, T Pulpitel, AE Brandon, NJ Hunt, JA WaliCell Metabolism, 2021•cell.com. Geliş tarihi 10 Temmuz 2025, gönderen https://www.cell.com/cell-metabolism/fulltext/S1550-4131(21)00528-3
  • Covarrubias, A. J., Perrone, R., Grozio, A., & Verdin, E. (2021). NAD+ metabolism and its roles in cellular processes during ageing. nature.comAJ Covarrubias, R Perrone, A Grozio, E VerdinNature reviews Molecular cell biology, 2021•nature.com, 22(2), 119-141. https://doi.org/10.1038/S41580-020-00313-X
  • Dar, G. M., Ahmad, E., Ali, A., Mahajan, B., Ashraf, G. M., & Saluja, S. S. (2023). Genetic aberration analysis of mitochondrial respiratory complex I implications in the development of neurological disorders and their clinical significance. ElsevierGM Dar, E Ahmad, A Ali, B Mahajan, GM Ashraf, SS SalujaAgeing research reviews, 2023•Elsevier, 87. https://doi.org/10.1016/J.ARR.2023.101906
  • D’Augustin, O., Gaudon, V., Siberchicot, C., Smith, R., Chapuis, C., Depagne, J., Veaute, X., Busso, D., Di Guilmi, A. M., Castaing, B., Radicella, J. P., Campalans, A., & Huet, S. (2023). Identification of key residues of the DNA glycosylase OGG1 controlling efficient DNA sampling and recruitment to oxidized bases in living cells. academic.oup.comO D’augustin, V Gaudon, C Siberchicot, R Smith, C Chapuis, J Depagne, X Veaute, D BussoNucleic Acids Research, 2023•academic.oup.com, 51(10), 4942-4958. https://doi.org/10.1093/NAR/GKAD243
  • Davis, H. M., Pacheco-Costa, R., Atkinson, E. G., Brun, L. R., Gortazar, A. R., Harris, J., Hiasa, M., Bolarinwa, S. A., Yoneda, T., Ivan, M., Bruzzaniti, A., Bellido, T., & Plotkin, L. I. (2017). Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Wiley Online LibraryHM Davis, R Pacheco‐Costa, EG Atkinson, LR Brun, AR Gortazar, J Harris, M HiasaAging cell, 2017•Wiley Online Library, 16(3), 551-563. https://doi.org/10.1111/ACEL.12586
  • De Barcelos, I. P., & Haas, R. H. (2019). Coq10 and aging. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020028,
  • De Barcelos, I. P., Troxell, R. M., & Graves, J. S. (2019). Mitochondrial dysfunction and multiple sclerosis. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020037
  • De Miguel, Z., Khoury, N., Betley, M. J., Lehallier, B., Willoughby, D., Olsson, N., Yang, A. C., Hahn, O., Lu, N., Vest, R. T., Bonanno, L. N., Yerra, L., Zhang, L., Saw, N. L., Fairchild, J. K., Lee, D., Zhang, H., McAlpine, P. L., Contrepois, K., … Wyss-Coray, T. (2021). Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature, 600(7889), 494-499. https://doi.org/10.1038/S41586-021-04183-X,
  • DeBalsi, K., Hoff, K., reviews, W. C.-A. research, & 2017, undefined. (t.y.). Mitokondriyal DNA replikasyon mekanizmasının mitokondriyal DNA mutagenezi, yaşlanma ve yaşa bağlı hastalıklardaki rolü. ElsevierKL DeBalsi, KE Hoff, WC CopelandYaşlanma araştırma incelemeleri, 2017 • Elsevier. https://doi.org/10.1016/J.ARR.+2016.04.006
  • Dhillon, V., Research, M. F.-M. R. in M., & 2014, undefined. (2014). Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. Elsevier, 759(1), 1-13. https://doi.org/10.1016/J.MRREV.2013.09.001
  • Duran, J., Martinez, A., & Adler, E. (2019). Cardiovascular manifestations of mitochondrial disease. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020034
  • Eells, J. T. (2019). Mitochondrial dysfunction in the aging retina. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020031
  • Eid, N., Culmsee, C., Bakula, D., & Scheibye-Knudsen, M. (2020). MitophAging : yaşlanma ve hastalıklarda mitofaji. Knudsen - hücre ve gelişimsel biyolojide, 8. https://doi.org/10.3389/FCELL.2020.00239/FULL
  • Elfawy, H., bilimleri, B. D.-Y., & 2019, undefined. (t.y.). Mitokondriyal disfonksiyon, oksidatif stres ve yaşa bağlı nörodejeneratif hastalık arasındaki etkileşim: Etiyolojiler ve tedavi stratejileri. ElsevierHA Elfawy , B DasYaşam bilimleri, 2019 • Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S0024320518308221
  • Elorza, A. A., & Soffia, J. P. (2021). mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/FCELL.2021.625020/FULL
  • Fakouri, N. B., Hansen, T. L., Desler, C., Anugula, S., & Rasmussen, L. J. (2019). From powerhouse to perpetrator—mitochondria in health and disease. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020035
  • Feno, S., Butera, G., Reane, D. V., Rizzuto, R., & Raffaello, A. (2019). Crosstalk between calcium and ROS in pathophysiological conditions. Wiley Online LibraryS Feno, G Butera, D Vecellio Reane, R Rizzuto, A RaffaelloOxidative medicine and cellular longevity, 2019•Wiley Online Library, 2019. https://doi.org/10.1155/2019/9324018
  • Fontana, G., araştırması, H. G.-N. asitler, & 2020, undefined. (2013). Mitokondriyal DNA delesyon oluşumunda replikasyon ve onarım mekanizmaları. academic.oup.comGA Fontana, HL GahlonNükleik asitler araştırması, 2020 • academic.oup.com, 1(1256879), 13-14. https://doi.org/10.1093/NAR/+GKAA80
  • Fontana, G., research, H. G.-N. acids, & 2020, undefined. (2013). Mechanisms of replication and repair in mitochondrial DNA deletion formation. academic.oup.comGA Fontana, HL GahlonNucleic acids research, 2020•academic.oup.com, 1(1256879), 13-14. https://doi.org/10.1093/NAR/+GKAA804
  • Gorelick, A. N., Kim, M., Chatila, W. K., La, K., Hakimi, A. A., Berger, M. F., Taylor, B. S., Gammage, P. A., & Reznik, E. (2021). Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. nature.comAN Gorelick, M Kim, WK Chatila, K La, AA Hakimi, MF Berger, BS Taylor, PA GammageNature metabolism, 2021•nature.com, 3(4), 558-570. https://doi.org/10.1038/S42255-021-00378-8
  • Granatiero, V., & Manfredi, G. (2019). Mitochondrial transport and turnover in the pathogenesis of amyotrophic lateral sclerosis. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020036
  • Grevendonk, L., Connell, N. J., McCrum, C., Fealy, C. E., Bilet, L., Bruls, Y. M. H., Mevenkamp, J., Schrauwen-Hinderling, V. B., Jörgensen, J. A., Moonen-Kornips, E., Schaart, G., Havekes, B., de Vogel-van den Bosch, J., Bragt, M. C. E., Meijer, K., Schrauwen, P., & Hoeks, J. (2021). Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. nature.comL Grevendonk, NJ Connell, C McCrum, CE Fealy, L Bilet, YMH Bruls, J MevenkampNature communications, 2021•nature.com, 12(1), 4773. https://doi.org/10.1038/+S41467-021-24956-2
  • Grevendonk, L., Connell, N. J., Mccrum, C., Fealy, C. E., Bilet, L., Bruls, Y. M. H., Mevenkamp, J., Schrauwen-Hinderling, V. B., Jörgensen, J. A., Moonen-Kornips, E., Schaart, G., Havekes, B., De Vogel-Van Den Bosch, J., Bragt, M. C. E., Meijer, K., Schrauwen, P., & Hoeks, J. (2021). Yaşlanma ve egzersizin iskelet kası mitokondriyal kapasitesi, enerji metabolizması ve fiziksel fonksiyon üzerindeki etkisi. Doğa. https://doi.org/10.1038/s41467-021-24956-2
  • Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. (2022). Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy 2022 7:1, 7(1), 1-40. https://doi.org/10.1038/s41392-022-01251-0
  • Guo, L., Karpac, J., Tran, S. L., & Jasper, H. (2014). PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell, 156(1-2), 109-122. https://doi.org/10.1016/j.cell.2013.12.018
  • Guo, Y., Guan, T., Shafiq, K., Yu, Q., Jiao, X., Na, D., … M. L.-A. research, & 2023, undefined. (t.y.). Mitochondrial dysfunction in aging. Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S1568163723001149
  • Haas, R. H. (2019). Yaşlanmada mitokondriyal işlev bozukluğu ve yaşlanmaya bağlı hastalıklar. Biyoloji, 8(2). https://doi.org/10.3390/BIOLOGY8020048
  • Hahn, A., Antioxidants, S. Z.-, & 2019, undefined. (t.y.). Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species. mdpi.comA Hahn, S ZurynAntioxidants, 2019•mdpi.com. https://doi.org/10.3390/ANTIO+X8090392
  • Ham, D. J., Börsch, A., Chojnowska, K., Lin, S., Leuchtman, A. B., Ham, A. S., Thürkauf, M., Delezie, J., Furrer, R., Burri, D., Sinnreich, M., Handschin, C., Tintignac, L. A., Zavolan, M., Mittal, N., & Rüegg, M. A. (2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nature Communications, 13(1). https://doi.org/10.1038/S41467-022-29714-6,
  • Hernandez, A. R., Hernandez, C. M., Campos, K., Truckenbrod, L., Federico, Q., Moon, B., McQuail, J. A., Maurer, A. P., Bizon, J. L., & Burke, S. N. (2018). A Ketogenic Diet Improves Cognition and Has Biochemical Effects in Prefrontal Cortex That Are Dissociable From Hippocampus. Frontiers in Aging Neuroscience, 10. https://doi.org/10.3389/FNAGI.2018.00391,
  • Horowitz, A. M., Fan, X., Bieri, G., Smith, L. K., Sanchez-Diaz, C. I., Schroer, A. B., Gontier, G., Casaletto, K. B., Kramer, J. H., Williams, K. E., & Villeda, S. A. (2020). Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science, 369(6500), 167-173. https://doi.org/10.1126/SCIENCE.AAW2622,
  • Hu, H., Lin, Y., Xu, X., Lin, S., Chen, X., & Wang, S. (2020). Koroner kalp hastalığında mitokondriyal DNA’daki değişiklikler. Deneysel ve moleküler. https://doi.org/10.1016/J.YEXMP.2020.+104412
  • Hu, L., Li, H., Zi, M., Li, W., Liu, J., Yang, Y., Zhou, D., Kong, Q.-P., Zhang, Y., & He, Y. (t.y.). Why senescent cells are resistant to apoptosis: an insight for senolytic development. frontiersin.orgL Hu, H Li, M Zi, W Li, J Liu, Y Yang, D Zhou, QP Kong, Y Zhang, Y HeFrontiers in Cell and Developmental Biology, 2022•frontiersin.org. https://doi.org/10.3389/FCELL.+2022.822816
  • Juan, C. A., de la Lastra, J. M. P., Plou, F. J., & Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences 2021, Vol. 22, Page 4642, 22(9), 4642. https://doi.org/10.3390/IJMS22094642
  • Kauppila, J. H. K., Bonekamp, N. A., Mourier, A., Isokallio, M. A., Just, A., Kauppila, T. E. S., Stewart, J. B., & Larsson, N. G. (2018). Base-excision repair deficiency alone or combined with increased oxidative stress does not increase mtDNA point mutations in mice. academic.oup.comJHK Kauppila, NA Bonekamp, A Mourier, MA Isokallio, A Just, TES Kauppila, JB StewartNucleic Acids Research, 2018•academic.oup.com, 46(13), 6642-6649. https://doi.org/10.1093/NAR/GKY456
  • Kauppila, T. E. S., Kauppila, J. H. K., & Larsson, N. G. (2017). Mammalian mitochondria and aging: an update. cell.comTES Kauppila, JHK Kauppila, NG LarssonCell metabolism, 2017•cell.com, 25(1), 57-71. https://doi.org/10.1016/J.CMET.2016.09.017
  • Kong, M., Guo, L., Xu, W., He, C., Jia, X., Zhao, Z., Medicine, Z. G.-L., & 2022, undefined. (2022). Aging-associated accumulation of mitochondrial DNA mutations in tumor origin. academic.oup.comM Kong, L Guo, W Xu, C He, X Jia, Z Zhao, Z GuLife Medicine, 2022•academic.oup.com, 1, 149-167. https://doi.org/10.1093/lifemedi/lnac014
  • Koshy, A., Okwose, N. C., Nunan, D., Toms, A., Brodie, D. A., Doherty, P., Seferovic, P., Ristic, A., Velicki, L., Filipovic, N., Popovic, D., Skinner, J., Bailey, K., MacGowan, G. A., & Jakovljevic, D. G. (2019). Association between heart rate variability and haemodynamic response to exercise in chronic heart failure. Taylor & FrancisA Koshy, NC Okwose, D Nunan, A Toms, DA Brodie, P Doherty, P Seferovic, A RisticScandinavian Cardiovascular Journal, 2019•Taylor & Francis, 53(2), 77-82. https://doi.org/10.1080/14017431.2019.1590629
  • Kumar, N., Theil, A. F., Roginskaya, V., Ali, Y., Calderon, M., Watkins, S. C., Barnes, R. P., Opresko, P. L., Pines, A., Lans, H., Vermeulen, W., & Van Houten, B. (2022). Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins. nature.comN Kumar, AF Theil, V Roginskaya, Y Ali, M Calderon, SC Watkins, RP Barnes, PL OpreskoNature Communications, 2022•nature.com, 13(1). https://doi.org/10.1038/S41467-022-28642-9
  • Lautrup, S., Sinclair, D., Mattson, M., metabolism, E. F.-C., & 2019, undefined. (t.y.). NAD+ in brain aging and neurodegenerative disorders. cell.comS Lautrup, DA Sinclair, MP Mattson, EF FangCell metabolism, 2019•cell.com. https://doi.org/10.1016/J.CMET.2019.+09.001
  • Le Couteur, D. G., Raubenheimer, D., Solon-Biet, S., de Cabo, R., & Simpson, S. J. (2024). Beslenme şekli yaşlanmayı etkiler mi? Hayvan çalışmaları kanıtları. Dahili Dergi, 295(4), 400-415. https://doi.org/10.1111/JOIM.13530
  • Lebraud, E., Pinna, G., Siberchicot, C., Depagne, J., Busso, D., Fantini, D., Irbah, L., Robeska, E., Kratassiouk, G., Ravanat, J. L., Epe, B., Radicella, J. P., & Campalans, A. (2020). Chromatin recruitment of OGG1 requires cohesin and mediator and is essential for efficient 8-oxoG removal. academic.oup.comE Lebraud, G Pinna, C Siberchicot, J Depagne, D Busso, D Fantini, L Irbah, E RobeskaNucleic acids research, 2020•academic.oup.com, 48(16), 9082-9097. https://doi.org/10.1093/NAR/GKAA611
  • Lee, C., Park, S., Genomics, S. Y.-G. &, & 2023, undefined. (2023). Genetic mutations affecting mitochondrial function in cancer drug resistance. SpringerC Lee, SH Park, SK YoonGenes & Genomics, 2023•Springer, 45(3), 261-270. https://doi.org/10.1007/+S13258-022-01359-1
  • Leuthner, T., reports, J. M.-C. environmental health, & 2021, undefined. (2021). Mitochondrial DNA mutagenesis: feature of and biomarker for environmental exposures and aging. SpringerTC Leuthner, JN MeyerCurrent environmental health reports, 2021•Springer, 8(4), 294-308. https://doi.org/10.1007/S40572-021-00329-1
  • Levytskyy, R. M., Germany, E. M., & Khalimonchuk, O. (2016). Mitochondrial quality control proteases in neuronal welfare. SpringerRM Levytskyy, EM Germany, O KhalimonchukJournal of Neuroimmune Pharmacology, 2016•Springer, 11(4), 629-644. https://doi.org/10.1007/S11481-016-9683-8
  • Leyane, T. S., Jere, S. W., & Houreld, N. N. (2022). Oxidative stress in ageing and chronic degenerative pathologies: molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. mdpi.comTS Leyane, SW Jere, NN HoureldInternational journal of molecular sciences, 2022•mdpi.com, 23(13). https://doi.org/10.3390/IJMS23137273
  • Li, Y., Tian, X., Luo, J., Bao, T., Wang, S., & Wu, X. (2024). Molecular mechanisms of aging and anti-aging strategies. Cell Communication and Signaling 2024 22:1, 22(1), 1-24. https://doi.org/10.1186/S12964-024-01663-1
  • Lin, Y.-H. ;, Lim, S.-N. ;, Chen, C.-Y. ;, Chi, H.-C. ;, Yeh, C.-T. ;, Lin, W.-R., Lin, Y.-H., Lim, S.-N., Chen, C.-Y., Chi, H.-C., Yeh, C.-T., & Lin, W.-R. (2022). Functional role of mitochondrial DNA in cancer progression. mdpi.comYH Lin, SN Lim, CY Chen, HC Chi, CT Yeh, WR LinInternational journal of molecular sciences, 2022•mdpi.com, 23(3), 1659. https://doi.org/10.3390/IJMS23031659
  • Liu, X., & Shan, G. (2021). Mitochondria Encoded Non-coding RNAs in Cell Physiology. Frontiers in Cell and Developmental Biology, 9, 713729. https://doi.org/10.3389/FCELL.2021.713729/FULL
  • Macao, B., Uhler, J. P., Siibak, T., Zhu, X., Shi, Y., Sheng, W., Olsson, M., Stewart, J. B., Gustafsson, C. M., & Falkenberg, M. (2015). The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication. nature.comB Macao, JP Uhler, T Siibak, X Zhu, Y Shi, W Sheng, M Olsson, JB Stewart, CM GustafssonNature communications, 2015•nature.com, 6. https://doi.org/10.1038/NCOMMS8303
  • Macêdo, A., Silva, A. da, & Muñoz, V. (2021). Mitokondriyal işlev bozukluğu yaşlanan yağ dokusunun yeniden şekillenmesinde önemli bir rol oynar. Yaşlanma Mekanizmaları. https://www.sciencedirect.com/science/article/pii/S0047637421001706
  • Madreiter-Sokolowski, C., Thomas, C., biology, M. R.-R., & 2020, undefined. (t.y.). Yaşlanma ve yaşa bağlı hastalıklarda ROS ve Ca2+ arasındaki ilişki. ElsevierCT Madreiter-Sokolowski , C Thomas, M RistowRedoks biyolojisi, 2020 • Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S2213231720308831
  • McGuire, P. J. (2019). Mitochondrial dysfunction and the aging immune system. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020026
  • Mishra, A., Mirzaei, H., Guidi, N., Vinciguerra, M., Mouton, A., Linardic, M., Rappa, F., Barone, R., Navarrete, G., Wei, M., Brandhorst, S., Di Biase, S., Morgan, T. E., Ram Kumar, S., Conti, P. S., Pellegrini, M., Bernier, M., de Cabo, R., & Longo, V. D. (2021). Fasting-mimicking diet prevents high-fat diet effect on cardiometabolic risk and lifespan. Nature Metabolism, 3(10), 1342-1356. https://doi.org/10.1038/S42255-021-00469-6,
  • Mongelli, A., Mengozzi, A., Geiger, M., Gorica, E., Mohammed, S. A., Paneni, F., Ruschitzka, F., & Costantino, S. (2023). Mitochondrial epigenetics in aging and cardiovascular diseases. frontiersin.orgA Mongelli, A Mengozzi, M Geiger, E Gorica, SA Mohammed, F Paneni, F RuschitzkaFrontiers in cardiovascular medicine, 2023•frontiersin.org, 10. https://doi.org/10.3389/+FCVM.2023.1204483
  • Montgomery, M. K. (2019). Mitochondrial dysfunction and diabetes: Is mitochondrial transfer a friend or foe? Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020033
  • Mutharasu, G., Murugesan, A., Kondamani, S., Thiyagarajan, R., Yli-Harja, O., & Kandhavelu, M. (2023). Signaling landscape of mitochondrial non-coding RNAs. Taylor & FrancisG Mutharasu, A Murugesan, S Kondamani, R Thiyagarajan, O Yli-Harja, M KandhaveluJournal of Biomolecular Structure and Dynamics, 2023•Taylor & Francis, 41(21), 12016-12025. https://doi.org/10.1080/07391102.2022.2164520
  • Nacarelli, T., Lau, L., Fukumoto, T., Zundell, J., Fatkhutdinov, N., Wu, S., Aird, K. M., Iwasaki, O., Kossenkov, A. V., Schultz, D., Noma, K., Baur, J. A., Schug, Z., Tang, H.-Y., Speicher, D. W., David, G., & Zhang, R. (2019). NAD+ metabolism governs the proinflammatory senescence-associated secretome. nature.comT Nacarelli, L Lau, T Fukumoto, J Zundell, N Fatkhutdinov, S Wu, KM Aird, O IwasakiNature cell biology, 2019•nature.com, 21(3), 397-407. https://doi.org/10.1038/+S41556-019-0287-4
  • Nadalutti, C. A., Ayala-Peña, S., & Santos, J. H. (2022). Hücresel sonuçların itici gücü olarak mitokondriyal DNA hasarı. American Journal of, 322(2), C136-C150. https://doi.org/10.1152/AJPCELL.00389.2021
  • Naresh, N., Harbor, C. H.-C. S., & 2019, undefined. (2019). Signaling and regulation of the mitochondrial unfolded protein response. cshperspectives.cshlp.orgNU Naresh, CM HaynesCold Spring Harbor Perspectives in Biology, 2019•cshperspectives.cshlp.org. https://doi.org/10.1101/cshperspect.a033944
  • Newman, J. C., Covarrubias, A. J., Zhao, M., Yu, X., Gut, P., Ng, C. P., Huang, Y., Haldar, S., & Verdin, E. (2017). Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice. Cell Metabolism, 26(3), 547-557.e8. https://doi.org/10.1016/j.cmet.2017.08.004
  • Nilsson, M. I., & Tarnopolsky, M. A. (2019a). Mitochondria and aging—the role of exercise as a countermeasure. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020040
  • Nissanka, N., Minczuk, M., trendler, C. M.-G., & 2019, undefined. (t.y.). Mitokondriyal DNA delesyonunun oluşum mekanizmaları. cell.comN Nissanka , M Minczuk , CT MoraesGenetikteki trendler, 2019 • cell.com. https://doi.org/10.1016/J.TIG.2019.01.+001
  • Partridge, L., Fuentealba, M., & Kennedy, B. K. (2020). The quest to slow ageing through drug discovery. Nature Reviews Drug Discovery, 19(8), 513-532. https://doi.org/10.1038/S41573-020-0067-7,
  • Pawlosky, R., Kashiwaya, Y., … M. K.-I. journal of, & 2020, undefined. (t.y.). A dietary ketone ester normalizes abnormal behavior in a mouse model of Alzheimer’s disease. mdpi.comRJ Pawlosky, Y Kashiwaya, MT King, RL VeechInternational journal of molecular sciences, 2020•mdpi.com. https://doi.org/10.3390/ijms21031044
  • Pereira, C., Gitschlag, B., in, M. P.-C. reviews, & 2021, undefined. (2021). Cellular mechanisms of mtDNA heteroplasmy dynamics. Taylor & FrancisCV Pereira, BL Gitschlag, MR PatelCritical reviews in biochemistry and molecular biology, 2021•Taylor & Francis, 56(5), 510-525. https://doi.org/10.1080/+10409238.2021.1934812
  • Pervaiz, S., Bellot, G., Lemoine, A., incelemesi, C. B.-H. verinin uluslararası, & 2020, undefined. (t.y.). İnsan hastalıklarının patogenezinde redoks sinyalizasyonu ve otofaji düzenleyici rolü. Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S1937644820300253
  • Picca, A., Guerra, F., Calvani, R., … R. R.-S. in cell &, & 2023, undefined. (t.y.). Mitochondrial-derived vesicles in skeletal muscle remodeling and adaptation. ElsevierA Picca, F Guerra, R Calvani, R Romano, HJ Coelho-Junior, C Bucci, C LeeuwenburghSeminars in cell & developmental biology, 2023•Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S1084952122000957
  • Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe? ElsevierSK Powers, R Deminice, M Ozdemir, T Yoshihara, MP Bomkamp, H HyattJournal of sport and health science, 2020•Elsevier, 9(5), 415-425. https://doi.org/10.1016/J.JSHS.2020.04.001
  • Ramos, E. S. (2018). Memeli mitokondriyal nükleoidlerinin bakımı ve dağıtımı. https://kups.ub.uni-koeln.de/9138/
  • reviews, S. R.-A. research, & 2008, undefined. (2008). Hormesis in aging. ElsevierSIS RattanAgeing research reviews, 2008•Elsevier, 7(1), 63-78. https://doi.org/10.1016/J.ARR.2007.03.002
  • Roberts, M. N., Wallace, M. A., Tomilov, A. A., Zhou, Z., Marcotte, G. R., Tran, D., Perez, G., Gutierrez-Casado, E., Koike, S., Knotts, T. A., Imai, D. M., Griffey, S. M., Kim, K., Hagopian, K., McMackin, M. Z., Haj, F. G., Baar, K., Cortopassi, G. A., Ramsey, J. J., & Lopez-Dominguez, J. A. (2018). Erratum: A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice (Cell Metabolism (2017) 26(3) (539–546.e5)(S1550413117304904)(10.1016/j.cmet.2017.08.005)). Cell Metabolism, 27(5), 1156. https://doi.org/10.1016/j.cmet.2018.04.005
  • Ruegsegger, G. N., Creo, A. L., Cortes, T. M., Dasari, S., & Nair, K. S. (2018). Altered mitochondrial function in insulin-deficient and insulin-resistant states. jci.orgGN Ruegsegger, AL Creo, TM Cortes, S Dasari, KS NairThe Journal of clinical investigation, 2018•jci.org, 128(9), 3671-3681. https://doi.org/10.1172/JCI120843
  • Rygiel, K., Tuppen, H., Grady, J., … A. V.-N. acids, & 2016, undefined. (2013). Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis. academic.oup.comKA Rygiel, HA Tuppen, JP Grady, A Vincent, EL Blakely, AK Reeve, RW Taylor, M PicardNucleic acids research, 2016•academic.oup.com, 1(1256879), 13-14. https://doi.org/10.1093/NAR/+GKW382
  • Ryu, S., Sidorov, S., Ravussin, E., Artyomov, M., Iwasaki, A., Wang, A., & Dixit, V. D. (2022). The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity, 55(9), 1609-1626.e7. https://doi.org/10.1016/j.immuni.2022.07.007
  • Sanchez-Contreras, M., aging, S. K.-F. in, & 2022, undefined. (t.y.). The complicated nature of somatic mtDNA mutations in aging. frontiersin.orgM Sanchez-Contreras, SR KennedyFrontiers in aging, 2022•frontiersin.org. https://doi.org/10.3389/FRAGI.2021.+805126
  • Santos, M., Franco, F., … C. C.-A. of gerontology, & 2021, undefined. (t.y.). Antioxidant effect of Resveratrol: Change in MAPK cell signaling pathway during the aging process. Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S0167494320302636
  • sciences, F. C.-I. journal of molecular, & 2019, undefined. (t.y.). Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. mdpi.comF CollinInternational journal of molecular sciences, 2019•mdpi.com. Geliş tarihi 09 Temmuz 2025, gönderen https://www.mdpi.com/1422-0067/20/10/2407
  • Sena, L., cell, N. C.-M., & 2012, undefined. (t.y.). Physiological roles of mitochondrial reactive oxygen species. cell.comLA Sena, NS ChandelMolecular cell, 2012•cell.com. Geliş tarihi 09 Temmuz 2025, gönderen https://www.cell.com/molecular-cell/fulltext/S1097-2765(12)00825-8?_
  • Silva-Pinheiro, P., … C. P.-H.-N. A., & 2021, undefined. (2013). DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion. academic.oup.comP Silva-Pinheiro, C Pardo-Hernández, A Reyes, L Tilokani, A Mishra, R Cerutti, S LiNucleic Acids Research, 2021•academic.oup.com, 1(1256879), 13-14. https://doi.org/10.1093/NAR/+GKAB282
  • Singh, A., Kukreti, R., Saso, L., Molecules, S. K.-, & 2019, undefined. (t.y.). Oxidative stress: a key modulator in neurodegenerative diseases. mdpi.comA Singh, R Kukreti, L Saso, S KukretiMolecules, 2019•mdpi.com. Geliş tarihi 09 Temmuz 2025, gönderen https://www.mdpi.com/1420-3049/24/8/1583
  • Sinyali, V. G.-A. ve redoks, & 2014, undefined. (2014). Yaşlanmanın serbest radikal teorisi öldü. Yaşasın hasar teorisi! liebertpub.comVN GladyshevAntioksidanlar ve redoks sinyalizasyonu, 2014 • liebertpub.com, 20(4), 727-731. https://doi.org/10.1089/ARS.2013.5228
  • Stewart, J., Genetics, P. C.-N. R., & 2021, undefined. (t.y.). Extreme heterogeneity of human mitochondrial DNA from organelles to populations. nature.comJB Stewart, PF ChinneryNature Reviews Genetics, 2021•nature.com. Geliş tarihi 09 Temmuz 2025, gönderen https://www.nature.com/articles/s41576-020-00284-x
  • Stout, R., & Birch-Machin, M. (2019). Mitochondria’s role in skin ageing. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020029
  • Szczepanowska, K., & Trifunovic, A. (2017). Origins of mtDNA mutations in ageing. portlandpress.comK Szczepanowska, A TrifunovicEssays in biochemistry, 2017•portlandpress.com, 61(3), 325-337. https://doi.org/10.1042/EBC20160090
  • Takagi, S., Kime, R., Murase, N., Niwayama, M., Sakamoto, S., & Katsumura, T. (2021). Skeletal muscle deoxygenation and its relationship to aerobic capacity during early and late stages of aging. SpringerS Takagi, R Kime, N Murase, M Niwayama, S Sakamoto, T KatsumuraOxygen Transport to Tissue XLII, 2021•Springer, 1269, 77-82. https://doi.org/10.1007/978-3-030-48238-1_12
  • Tian, G., Katchur, S. R., Jiang, Y., Briand, J., Schaber, M., Kreatsoulas, C., Schwartz, B., Thrall, S., Davis, A. M., Duvall, S., Kaufman, B. A., & Rumsey, W. L. (2022). Small molecule-mediated allosteric activation of the base excision repair enzyme 8-oxoguanine DNA glycosylase and its impact on mitochondrial function. nature.comG Tian, SR Katchur, Y Jiang, J Briand, M Schaber, C Kreatsoulas, B Schwartz, S ThrallScientific Reports, 2022•nature.com, 12(1), 14685. https://doi.org/10.1038/S41598-022-18878-2
  • Timblin, G. A., Tharp, K. M., Ford, B., Winchester, J. M., Wang, J., Zhu, S., Khan, R. I., Louie, S. K., Iavarone, A. T., ten Hoeve, J., Nomura, D. K., Stahl, A., & Saijo, K. (2021). Mitohormesis reprogrammes macrophage metabolism to enforce tolerance. nature.comGA Timblin, KM Tharp, B Ford, JM Winchester, J Wang, S Zhu, RI Khan, SK LouieNature metabolism, 2021•nature.com, 3(5), 618-635. https://doi.org/10.1038/+S42255-021-00392-W
  • Tzimou, A., Benaki, D., Nikolaidis, S., Mikros, E., Taitzoglou, I., & Mougios, V. (2020). Effects of lifelong exercise and aging on the blood metabolic fingerprint of rats. Biogerontology, 21(5), 577-591. https://doi.org/10.1007/S10522-020-09871-1,
  • Vercellino, I., biology, L. S.-N. reviews M. cell, & 2022, undefined. (2022). The assembly, regulation and function of the mitochondrial respiratory chain. nature.comI Vercellino, LA SazanovNature reviews Molecular cell biology, 2022•nature.com, 23(2), 141-161. https://doi.org/10.1038/+S41580-021-00415-0
  • Vida, C., de Toda, I. M., Garrido, A., Carro, E., Molina, J. A., & De la Fuente, M. (2018). Impairment of several immune functions and redox state in blood cells of Alzheimer’s disease patients. Relevant role of neutrophils in oxidative stress. Frontiers in Immunology, 8(JAN). https://doi.org/10.3389/FIMMU.2017.01974/FULL
  • Waller, A., George, M., … A. K.-… et B. A. (BBA, & 2013, undefined. (t.y.). GLUT12 functions as a basal and insulin-independent glucose transporter in the heart. ElsevierAP Waller, M George, A Kalyanasundaram, C Kang, M Periasamy, K Hu, VA LacombeBiochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2013•Elsevier. https://doi.org/10.1016/J.BBADIS.+2018.06.014
  • Waltz, F., sciences, P. G.-T. in biochemical, & 2020, undefined. (t.y.). Striking diversity of mitochondria-specific translation processes across eukaryotes. cell.comF Waltz, P GiegéTrends in biochemical sciences, 2020•cell.com. Geliş tarihi 09 Temmuz 2025, gönderen https://www.cell.com/trends/biochemical-sciences/abstract/S0968-0004(19)30205-1
  • Wan, W., Zhang, L., Lin, Y., Rao, X., Wang, X., Hua, F., & Ying, J. (2023). Mitochondria-derived peptide MOTS-c: effects and mechanisms related to stress, metabolism and aging. Journal of Translational Medicine, 21(1), 36. https://doi.org/10.1186/S12967-023-03885-2
  • Wang, T., Tian, X., Kim, H. B., Jang, Y., Huang, Z., Na, C. H., & Wang, J. (2022). Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules. nature.comT Wang, X Tian, HB Kim, Y Jang, Z Huang, CH Na, J WangNature Communications, 2022•nature.com, 13(1), 5584. https://doi.org/10.1038/+S41467-022-33079-1
  • Wei, W., Schon, K. R., Elgar, G., Orioli, A., Tanguy, M., Giess, A., Tischkowitz, M., Caulfield, M. J., & Chinnery, P. F. (2022). Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. nature.comW Wei, KR Schon, G Elgar, A Orioli, M Tanguy, A Giess, M Tischkowitz, MJ CaulfieldNature, 2022•nature.com, 611(7934), 105-114. https://doi.org/10.1038/+S41586-022-05288-7
  • Weidling, I., & Swerdlow, R. H. (2019). Mitochondrial dysfunction and stress responses in Alzheimer’s disease. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020039
  • Wen, D., Zheng, L., Li, J., Lu, K., NY), W. H.-A. (Albany, & 2019, undefined. (t.y.). The activation of cardiac dSir2-related pathways mediates physical exercise resistance to heart aging in old Drosophila. pmc.ncbi.nlm.nih.govDT Wen, L Zheng, JX Li, K Lu, WQ HouAging (Albany NY), 2019•pmc.ncbi.nlm.nih.gov. Geliş tarihi 10 Temmuz 2025, gönderen https://pmc.ncbi.nlm.nih.gov/articles/PMC6756900/
  • Will, Y., Shields, J. E., & Wallace, K. B. (2019). Drug-induced mitochondrial toxicity in the geriatric population: Challenges and future directions. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020032
  • Wimalawansa, S. J. (2019). Vitamin D deficiency: Effects on oxidative stress, epigenetics, gene regulation, and aging. Biology, 8(2). https://doi.org/10.3390/BIOLOGY8020030
  • Xu, Z., Huang, J., Gao, M., Guo, G., Zeng, S., Chen, X., Wang, X., Gong, Z., & Yan, Y. (2021). Current perspectives on the clinical implications of oxidative RNA damage in aging research: challenges and opportunities. SpringerZ Xu, J Huang, M Gao, G Guo, S Zeng, X Chen, X Wang, Z Gong, Y YanGeroscience, 2021•Springer, 43(2), 487-505. https://doi.org/10.1007/+S11357-020-00209-W
  • Yang, L., Lin, X., Tang, H., Fan, Y., Zeng, S., Jia, L., Li, Y., Shi, Y., He, S., Wang, H., Hu, Z., Gong, X., Liang, X., Yang, Y., & Liu, X. (2020). Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD+ redox. Wiley Online LibraryL Yang, X Lin, H Tang, Y Fan, S Zeng, L Jia, Y Li, Y Shi, S He, H Wang, Z Hu, X GongAging Cell, 2020•Wiley Online Library, 19(9). https://doi.org/10.1111/ACEL.13206
  • Yang, S., Park, J., neurodegeneration, H. L.-M., & 2023, undefined. (2023). Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. SpringerS Yang, JH Park, HC LuMolecular neurodegeneration, 2023•Springer, 18(1), 49. https://doi.org/10.1186/+S13024-023-00634-3
  • Yasukawa, T., biochemistry, D. K.-T. journal of, & 2018, undefined. (2018). An overview of mammalian mitochondrial DNA replication mechanisms. academic.oup.comT Yasukawa, D KangThe journal of biochemistry, 2018•academic.oup.com, 164(3), 183-193. https://doi.org/10.1093/JB/+MVY058
  • Yosef, R., Pilpel, N., Tokarsky-Amiel, R., Biran, A., Ovadya, Y., Cohen, S., Vadai, E., Dassa, L., Shahar, E., Condiotti, R., Ben-Porath, I., & Krizhanovsky, V. (2016). BCL-W ve BCL-XL inhibisyonu yoluyla yaşlı hücrelerin yönlendirilmiş eliminasyonu. Doğa. https://doi.org/10.1038/ncomms11190
  • Yoshino, J., Baur, J., metabolizması, S. I.-H., & 2018, undefined. (t.y.). NAD+ ara maddeleri: NMN ve NR’nin biyolojisi ve terapötik potansiyeli. cell.comJ Yoshino, JA Baur , S ImaiHücre metabolizması, 2018 • cell.com. https://doi.org/10.1016/J.CMET.2017.+11.002
  • Zaidieh, T., Smith, J., Ball, K., cancer, Q. A.-B., & 2021, undefined. (2021). Mitochondrial DNA abnormalities provide mechanistic insight and predict reactive oxygen species-stimulating drug efficacy. SpringerT Zaidieh, JR Smith, KE Ball, Q AnBMC cancer, 2021•Springer, 21(1), 427. https://doi.org/10.1186/+S12885-021-08155-2
  • Zhou, W., Qu, J., Xie, S., … Y. S.-O. M. and, & 2021, undefined. (t.y.). Mitochondrial dysfunction in chronic respiratory diseases: implications for the pathogenesis and potential therapeutics. Wiley Online LibraryW Zhou, J Qu, S Xie, Y Sun, H YaoOxidative Medicine and Cellular Longevity, 2021•Wiley Online Library. https://doi.org/10.1155/2021/51883+06
  • Zhu, L., Zhou, Q., He, L., Medicine, L. C.-F. R. B. and, & 2021, undefined. (t.y.). Mitochondrial unfolded protein response: An emerging pathway in human diseases. ElsevierL Zhu, Q Zhou, L He, L ChenFree Radical Biology and Medicine, 2021•Elsevier. Geliş tarihi 09 Temmuz 2025, gönderen https://www.sciencedirect.com/science/article/pii/S0891584920316762
  • Ziada, A. S., Smith, M. S. R., & Côté, H. C. F. (2020). Updating the Free Radical Theory of Aging. Frontiers in Cell and Developmental Biology, 8, 575645. https://doi.org/10.3389/FCELL.2020.575645/FULL
Toplam 121 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Derleme
Yazarlar

Elif Sarak 0009-0009-8410-5662

Yusuf Ceylan 0000-0001-8186-7252

Gönderilme Tarihi 12 Temmuz 2025
Kabul Tarihi 10 Ağustos 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Sarak, E., & Ceylan, Y. (2025). MİTOKONDRİYAL YAŞLANMA. Bartın University International Journal of Natural and Applied Sciences, 8(2), 293-307. https://doi.org/10.55930/jonas.1741124
AMA Sarak E, Ceylan Y. MİTOKONDRİYAL YAŞLANMA. JONAS. Aralık 2025;8(2):293-307. doi:10.55930/jonas.1741124
Chicago Sarak, Elif, ve Yusuf Ceylan. “MİTOKONDRİYAL YAŞLANMA”. Bartın University International Journal of Natural and Applied Sciences 8, sy. 2 (Aralık 2025): 293-307. https://doi.org/10.55930/jonas.1741124.
EndNote Sarak E, Ceylan Y (01 Aralık 2025) MİTOKONDRİYAL YAŞLANMA. Bartın University International Journal of Natural and Applied Sciences 8 2 293–307.
IEEE E. Sarak ve Y. Ceylan, “MİTOKONDRİYAL YAŞLANMA”, JONAS, c. 8, sy. 2, ss. 293–307, 2025, doi: 10.55930/jonas.1741124.
ISNAD Sarak, Elif - Ceylan, Yusuf. “MİTOKONDRİYAL YAŞLANMA”. Bartın University International Journal of Natural and Applied Sciences 8/2 (Aralık2025), 293-307. https://doi.org/10.55930/jonas.1741124.
JAMA Sarak E, Ceylan Y. MİTOKONDRİYAL YAŞLANMA. JONAS. 2025;8:293–307.
MLA Sarak, Elif ve Yusuf Ceylan. “MİTOKONDRİYAL YAŞLANMA”. Bartın University International Journal of Natural and Applied Sciences, c. 8, sy. 2, 2025, ss. 293-07, doi:10.55930/jonas.1741124.
Vancouver Sarak E, Ceylan Y. MİTOKONDRİYAL YAŞLANMA. JONAS. 2025;8(2):293-307.