Derleme
BibTex RIS Kaynak Göster

SÜRDÜRÜLEBİLİR HİDROJEN ÜRETİM TEKNOLOJİLERİ: BİYOKÜTLE TEMELLİ YAKLAŞIMLAR

Yıl 2022, Cilt: 5 Sayı: 1, 18 - 37, 31.07.2022
https://doi.org/10.55930/jonas.1101384

Öz

Önemli bir enerji taşıyıcısı olan hidrojen doğal bir enerji kaynağı olmayıp, başta doğalgaz olmak üzere su, kömür ve biyokütle kullanılarak üretilmektedir. Son yıllarda gerçekleştirilen çalışmalarda araştırmacılar mevcut hidrojen üretim kaynak ve teknolojilerinin geliştirilmesine alternatif olarak, sürdürülebilir hidrojen üretimi ve çevre dostu çözümlere yönelmiştir. Sürdürülebilir enerji teknolojilerinin gelişimi ve enerji arz güvenliğinin yenilenebilir kaynaklarla sağlanmasının gerekliliği olarak biyokütle temelli hidrojen üretim teknolojisi bu çalışmada araştırılmıştır. Biyokütle hammaddesinin hidrojene dönüştürülmesinin öneminin vurgulandığı bu çalışmada biyokütle esaslı hidrojen üretim termokimyasal, biyolojik ve elektrokimyasal dönüşüm yöntemleri olarak üç temel başlık ve bunlar içerisindeki farklı yöntemler üzerinden incelenmiştir.

Kaynakça

  • 1. Abdoulmoumine, N., Adhikari, S., Kulkarni, A. & Chattanathan, S. (2015). A review on biomass gasification syngas cleanup. Applied Energy, 155, 294–307.
  • 2. Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086.
  • 3. Acar, C. & Dincer, I. (2018). 3.1 Hydrogen Production. Comprehensive Energy Systems, 3, 1-40.
  • 4. Akubo, K., Nahil, M. A. & Williams, P. T. (2019). Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/ syngas, J. Energy Institute, 92 (6), 1987–1996.
  • 5. Alfano, M. & Cavazza, C. (2018). The biologically mediated water–gas shift reaction: structure, function and biosynthesis of monofunctional [NiFe]-carbon monoxide dehydrogenases, Sustainable Energy Fuels. 2 (2018) 1653–1670.
  • 6. Anniwaer, A., Chaihad, N., Zhang, M., Wang, C., Yu, T., Kasai, Y., Abudula, A. & Guan, G. (2021). Hydrogen-rich gas production from steam co-gasification of banana peel with agricultural residues and woody biomass. Waste Management, 125, 204–214.
  • 7. Argun, H. & Kargi, F., (2011). Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview, International Journal of Hydrogen Energy, 36, 7443–7459.
  • 8. Arregi, A., Amutio, M., Lopez, G., Bilbao, J. & Olazar, M. (2018). Evaluation of thermochemical routes for hydrogen production from biomass: A review. Energy Conversion and Management, 165, 696-719.
  • 9. Ayas, N. & Esen, T. (2016). Hydrogen production from tea waste. International Journal of Hydrogen Energy, 41(19), 8067-8072.
  • 10. Balat H. & Kırtay E. (2010). Hydrogen from biomass e present scenario and future prospects. International Journal of Hydrogen Energy 35, 7416-7426.
  • 11. Balat, M. (2010). Thermochemical Routes for Biomass-based Hydrogen Production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(15), 1388–1398.
  • 12. Balat, M., Balat, M., Kırtay, E. & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management, 50(12), 3147-3157.
  • 13. Baykara, S. Z. (2018). Hydrogen: a brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy, 43(23), 10605-10614.
  • 14. Becherif, M., Ramadan, H. S., Cabaret, K., Picard, F., Simoncini, N. & Béthoux, O. (2015). Hydrogen energy storage: new techno-economic emergence solution analysis. Energy Procedia, 74, 371-380.
  • 15. Blanquet, E. & Williams, P. T. (2021). Biomass pyrolysis coupled with non-thermal plasma/catalysis for hydrogen production: Influence of biomass components and catalyst properties. Journal of Analytical and Applied Pyrolysis, 159, 105325.
  • 16. Bordoloi, N., Narzari, R., Sut, D., Saikia, R., Chutia, R. S. & Kataki, R. (2016). Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus. Renewable Energy, 98, 245-253.
  • 17. Bridgwater A. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91(2–3):87–102.
  • 18. Cao, L., Iris, K. M., Xiong, X., Tsang, D. C., Zhang, S., Clark, J. H., Hu, C., Ng, Y. H., Shang, J. & Ok, Y. S. (2020). Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 186, 109547.
  • 19. Chen, D., Li, Y., Cen, K., Luo, M., Li, H. & Lu, B. (2016). Pyrolysis polygeneration of poplar wood: effect of heating rate and pyrolysis temperature, Bioresource Technology, 218, 780-788.
  • 20. Chen, F., Wu, C., Dong, L., Jin, F., Williams, P. T. & Huang, J. (2015). Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe-Zn/Al2O3 nanocatalysts, Fuel, 158, 999–1005.
  • 21. Cheng, J., Su, H., Zhou, J., Song, W. & Cen, K. (2011). Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. International Journal of Hydrogen Energy, 36(3), 2093–2101.
  • 22. Cieciura-Włoch, W., Borowski, S. & Domański, J. (2020). Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition. Bioresource Technology, 123713.
  • 23. Corrêa, D. O., Santos, B., Dias, F. G., Vargas, J. V. C., Mariano, A. B., Balmant, W., Rosa, M. P., Savi, D. C., Kava, V., Glienke, C. & Ordonez, J. C. (2017). Enhanced biohydrogen production from microalgae by diesel engine hazardous emissions fixation. International Journal of Hydrogen Energy, 42, 21463–21475.
  • 24. Dang, C., Liu, L., Yang, G., Cai, W., Long, J. & Yu, H. (2020). Mg-promoted Ni-CaO microsphere as bi-functional catalyst for hydrogen production from sorption-enhanced steam reforming of glycerol. Chemical Engineering Journal, 383, 123204.
  • 25. Demirbas, A. (2009). Thermochemical conversion of mosses and algae to gaseous products. Energy Sources, Part A, 31(9), 746-753.
  • 26. Demirbas, A. (2016). Comparison of thermochemical conversion processes of biomass to hydrogen-rich gas mixtures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(20), 2971-2976.
  • 27. Demirbaş, A. (2002). Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy Conversion and Management, 43(7), 897-909.
  • 28. Dincer, I. & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40, 11094–11111.
  • 29. Dincer, I., Eroglu, I. & Ozturk, M. (2021). Türkiye için Hidrojen Teknolojileri Yol Haritası. Hidrojen Teknolojileri Derneği Yayınları. ISBN: 978-605-66381-9-0.
  • 30. Dong, L., Wu, C., Ling, H., Shi, J., Williams, P. T. & Huang, J. (2017). Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on nanosized NiZnAlOx catalysts. Fuel, 188, 610–620.
  • 31. Du, C., Wu, J., Ma, D., Liu, Y., Qiu, P., Qiu, R., Liao, S. & Gao, D. (2015). Gasification of corn cob using non-thermal arc plasma. International Journal of Hydrogen Energy, 40(37), 12634–12649.
  • 32. Effendi, A., Gerhauser, H. & Bridgwater, A. V. (2008). Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews, 12(8), 2092-2116.
  • 33. Elliott, D. C., Beckman, D., Bridgwater, A. V, Diebold, J.P., Gevert, S. B. & Solantausta Y. (1991). Developments in direct thermochemical liquefaction of biomass: 1983–1990. Energy & Fuels, 5(3):399–410.
  • 34. Genç, N. (2009). Biyolojik hidrojen üretim prosesleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 17-36.
  • 35. Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L. & Esposito, G., (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95.
  • 36. Gopalakrishnan, B., Khanna, N. & Das, D. (2019). Dark-fermentative biohydrogen production. In: Pandey A, Mohan SV, Chang JS, Hallenbeck PC, Larroche C, editors. Biohydrogen. 2nd ed. Elsevier B.V.; p. 79-122.
  • 37. Guellout, Z., Francois-Lopez E., Benguerba Y., Dumas C., Kumar Yadav K., Fallatah A. M., Pugazhendhi A. & Ernst B. (2022). Dark fermentative biohydrogen production from vinicultural biomass without exogenous inoculum in a semi-batch reactor: A kinetic study. Journal of environmetal management, 305, 114393.
  • 38. Guo, F., Dong, Y., Fan, P., Lv, Z., Shuai, Y. & Lei, D. (2016). Detailed kinetic study of phenol decomposition under isothermal conditions to understand tar catalytic cracking process. Journal of Analytical Applied Pyrolsis; 118:155–63.
  • 39. Guo, J-X., Tan, X., Zhu, K. & Gu, B. (2022). Integrated management of mixed biomass for hydrogen production from gasification. Chemical Engineering Research and Design, 179, 41–55.
  • 40. Gupta, J., Papadikis, K., Konysheva, E. Y., Lin, Y., Kozhevnikov, I. V. & Li, J. (2021). CaO catalyst for multi-route conversion of oakwood biomass to value-added chemicals and fuel precursors in fast pyrolysis. Applied Catalysis B: Environmental, 285, 119858.
  • 41. Hallenbeck, P. C. & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11-12), 1185-1193.
  • 42. Hitam, C. N. C. & Jalil, A. A. (2020). A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Conversion and Biorefinery, 1-19.
  • 43. Hoang, A. T., Huang, Z. -H., Nižetić, S., Pandey, A., Nguyen, X. P., Luque, R., Ong, H. C., Said, Z., Le, T. H. & Pham, V. V. (2022). Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy. 47, 4394-4425.
  • 44. Hosseini, S. E., Abdul Wahid, M., Jamil, M. M., Azli, A. A. M. & Misbah, M. F. (2015). A review on biomass-based hydrogen production for renewable energy supply. International Journal of Energy Research, 39(12), 1597–1615.
  • 45. Hwang, H. T. & Varma, A. (2014). Hydrogen storage for fuel cell vehicles. Current Opinion in Chemical Engineering, 5, 42-48.
  • 46. Hydrogen Council (2017). Hydrogen scaling up. A sustainable pathway for the global energy transition; 2017 (Erişim tarihi: 22.12.2021)
  • 47. International Energy Agency (IEA). Technology roadmap: hydrogen and fuel cells. Paris; 2015 (Erişim tarihi: 24.12.2021)
  • 48. Jahirul, M. I., Rasul, M. G., Chowdhury, A. A. & Ashwath, N. (2012). Biofuels production through biomass pyrolysis—a technological review. Energies, 5(12), 4952-5001.
  • 49. Jalan R.K. & V.K. Srivastava, (1999). Studies on pyrolysis of a single biomass cylindrical pellet-kinetic and heat transfer effects, Energy Conversion and Management 40, 467.
  • 50. Javed, M. A., Zafar, A. M., Hassan, A. A., Zaidi, A. A., Farooq, M., Badawy, A. E., Lundquist, T., Mohamed , M. M. A. & Al-Zuhair, S. (2022). The role of oxygen regulation and algal growth parameters in hydrogen production via biophotolysis. Journal of Environmental Chemical Engineering, 10, 107003.
  • 51. Jin, F. Z., Sun, H., Wu, C. F., Ling, H. H., Jiang, Y. J., Williams, P. T. & Huang, J. (2018). Effect of calcium addition on MgAlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass, Catalysis Today, 309, 2–10.
  • 52. Jourabchi, S. A., Gan, S. & Ng, H. K. (2014). Pyrolysis of Jatropha curcas pressed cake for bio-oil production in a fixed-bed system, Energy Conversion Management, 78, 518-526.
  • 53. Kalinci, Y., Hepbasli, A. & Dincer, I. (2009). Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy, 34(21), 8799–8817.
  • 54. Kannah, R. Y., Kavitha, S., Karthikeyan, O. P., Kumar, G., Dai-Viet, N. V. & Banu, J. R. (2021). Techno-economic assessment of various hydrogen production methods–A review. Bioresource Technology, 319, 124175.
  • 55. Kaparaju, P., Serrano, M., Thomsen, A. B., Kongjan, P. & Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 100(9), 2562–2568.
  • 56. Kapdan, I. K. & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and microbial technology, 38(5), 569-582.
  • 57. Kapdan, I. K., Kargi, F., Oztekin, R. & Argun, H. (2009). Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. International Journal of Hydrogen Energy, 34(5), 2201-2207.
  • 58. Khanal S. (2003). Biological hydrogen production: effects ofpH and intermediate products. International Journal of Hydrogen Energy, 29(11), 1123–1131.
  • 59. Kim, D.H. & Kim, M.S. (2012). Thermophilic fermentative hy-drogen production from various carbon sources byanaerobic mixed cultures. International Journal of Hydrogen Energy, 37(2):2021–2027.
  • 60. Kongjan, P., O‐Thong, S., Kotay, M., Min, B. & Angelidaki, I. (2010). Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnology and Bioengineering, 105(5), 899-908.
  • 61. Kumar, G., Mathimani, T., Sivaramakrishnan, R., Shanmugam, S., Bhatia, S. K. & Pugazhendhi, A. (2020). Application of molecular techniques in biohydrogen production as a clean fuel. Science of The Total Environment, 722, 137795.
  • 62. Kumar, G., Sivagurunathan, P., Pugazhendhi, A., Thi, N. B. D., Zhen, G., Chandrasekhar, K. & Kadier, A. (2017) : A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options. Energy Conversion Management, 141:390-402.
  • 63. Kumar, G., Zhen, G., Kobayashi, T., Sivagurunathan, P., Kim, S. H. & Xu, K. Q. (2016). Impact of pH control and heat pre-treatment of seed inoculum in dark H2 fermentation: a feasibility report using mixed microalgae biomass as feedstock. International of Journal Hydrogen Energy, 41:4382-4392.
  • 64. Kumar, R. & Strezov, V. (2021). Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products. Renewable and Sustainable Energy Reviews, 135, 110152.
  • 65. Kwon, G., Park, Y.-K., Ok, Y. S., Kwon, E. E. & Song, H. (2019).Catalytic pyrolysis of low-rank coal using Fe-carbon composite as a catalyst. Energy Conversion Management, 199:111978.
  • 66. Larsen, H., Feidenhans'l, R. & Sønderberg Petersen, L. (2004). Risoe energy report 3. Hydrogen and its competitors.
  • 67. Lazaro, C. Z. & Hallenbeck, P. C. (2019). Fundamentals of biohydrogen production. In: Pandey A, Mohan SV, Chang J-S, Hallenbeck PC, Larroche C, editors. Biohydrogen. 2nd ed. Elsevier B.V.; p. 25-48.
  • 68. Lee, H.-S., Vermaas, W. F. & Rittmann, B. E. (2010). Biological hydrogen production: prospects and challenges, Trends Biotechnology. 28, 262–271.
  • 69. Leng, E., Zhang, Y., Peng, Y., Gong, X., Mao, M., Li, X. & Yu, Y. (2018). In situ structural changes of crystalline and amorphous cellulose during slow pyrolysis at low temperatures. Fuel, 216:313–21.
  • 70. Lepage, T., Kammoun, M., Schmetz, Q. & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920.
  • 71. Levin, D. B. & Chahine, R. (2010). Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy, 35(10), 4962-4969.
  • 72. Levin, D. B., Pitt, L. & Love, M. (2004). Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173-185.
  • 73. Li, A., Han, H., Hu, S., Zhu, M., Ren, Q., Wang, Y. & Xu, J. (2022a). A novel sludge pyrolysis and biomass gasification integrated method to enhance hydrogen-rich gas generation. Energy Conversion and Management 254, 115205.
  • 74. Li, Q., Guo, C. & Liu, C.-Z. (2014). Dynamic microwave-assisted alkali pretreatment of cornstalk to enhance hydrogen production via co-culture fermentation of Clostridium thermocellum and Clostridium thermosaccharolyticum. Biomass and Bioenergy, 64, 220–229.
  • 75. Li, S., Li, F., Zhu, X., Liao, Q., Chang, J.-S. & Ho, S.-H., (2022b). Biohydrogen production from microalgae for environmental sustainability. Chemosphere 291, 132717.
  • 76. Li, X., Krooss, B. M., Weniger, P. & Littke, R. (2017). Molecular hydrogen (H2) and light hydrocarbon gases generation from marine and lacustrine source rocks during closed-system laboratory pyrolysis experiments. Journal of Analytical and Applied Pyrolysis, 126, 275-287.
  • 77. Liu, W., Cui, Y., Du, X., Zhang, Z., Chao, Z. & Deng, Y. (2016). High efficiency hydrogen evolution from native biomass electrolysis. Energy & Environmental Science, 9(2), 467-472.
  • 78. Liu, W., Liu, C., Gogoi, P. & Deng, Y. (2020). Overview of biomass conversion to electricity and hydrogen and recent developments in low-temperature electrochemical approaches. Engineering, 6(12), 1351-1363.
  • 79. Lopez, G., Garcia, I., Arregi, A., Santamaria, L., Amutio, M., Artetxe, M., Bilbao, J. & Olazar, M. (2020). Thermodynamic assessment of the oxidative steam reforming of biomass fast pyrolysis volatiles. Energy Conversion Management, 214, 112889.
  • 80. Lopez-Hidalgo, A.M., Smolinski, A. & Sanchez, A. (2022). A meta-analysis of research trends on hydrogen production via dark fermentation. International Journal of Hydrogen Energy, 47, 13300-13339.
  • 81. Lu, C., Zhang, Z., Ge, X., Wang, Y., Zhou, X., You, X., Liu, H. & Zhang, Q. (2016). Bio-hydrogen production from apple waste by photosynthetic bacteria HAU-M1. International Journal of Hydrogen Energy, 41(31), 13399–13407.
  • 82. Lu, Y., Jin, H. & Zhang, R. (2019). Evaluation of stability and catalytic activity of Ni catalysts for hydrogen production by biomass gasification in supercritical water. Carbon Resources Conversion, 2(1), 95-101.
  • 83. Lu, Y., Lai, Q., Zhang, C., Zhao, H., Ma, K., Zhao, X., Chen, H., Liu, D. & Xing, X.-H. (2009). Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process. Bioresource Technology, 100(12), 2889–2895.
  • 84. Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A. & Kamiński, M. (2018). Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews 91, 665–694.
  • 85. Ly, H. V., Kim, S. -S., Choi, J. H., Woo, H. C. & Kim, J. (2016). Fast pyrolysis of Saccharina japonica alga in a fixed-bed reactor for bio-oil production, Energy Conversion Management 122, 526-534.
  • 86. Manish, S. & Banerjee, R. (2008). Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 33(1), 279-286.
  • 87. Marbán, G. & Valdés-Solís, T. (2007). Towards the hydrogen economy? International Journal of Hydrogen Energy, 32(12), 1625-1637.
  • 88. Mazlan, M. A. F., Uemura, Y., Osman, N. B. & Yusup, S. (2015). Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer, Energy Conversion Management, 98, 208-214.
  • 89. Minowa, T. & Ogi, T. (1998). Hydrogen production from cellulose using a reduced nickel catalyst. Catalysis Today, 45(1-4), 411-416.
  • 90. Mirza, S. S., Qazi, J. I., Zhao, Q. & Chen, S. (2013). Photo-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw. Biotechnology for Biofuels, 6(1), 1-12.
  • 91. Mishra, P., Krishnana, S., Rana, S., Singh, L., Sakinah, M. & Wahid, Z.Ab. (2019). Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Reviews 24, 27–37.
  • 92. Mona, S., Kumar, S. S., Kumar, V., Parveen, K., Saini, N., Deepak, B. & Pugazhendhi, A. (2020). Green technology for sustainable biohydrogen production (waste to energy): a review. Science of Total Environment 728, 138481.
  • 93. Moralı, U. & Sensoz, S. (2015). Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil (nd bio-char, Fuel, 150, 672-678.
  • 94. Moralı, U., Yavuzel, N. & Sensoz, S. (2016). Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: characterization of bio-oil and bio-char, Bioresource Technology, 221, 682-685.
  • 95. Nagarajan, D., Lee, D-J., Kondo, A. & Chang, J-S. (2017). Recent insights into biohydrogen production by microalgae – From biophotolysis to dark fermentation. Bioresource Technology, 227, 373–387.
  • 96. Ni, M., Leung, D. Y., Leung, M. K. & Sumathy, K. J. F. P. T. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461-472.
  • 97. Osada, M., Sato, T., Watanabe, M., Adschiri, T. & Arai, K. (2004). Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy & Fuels, 18(2), 327-333.
  • 98. Ozmihci, S. & Kargi, F. (2010). Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. International Journal of Hydrogen Energy, 35(13), 6674-6680.
  • 99. Pal, D. B., Singh, A. & Bhatnagar, A. (2021). A review on biomass based hydrogen production technologies. International Journal of Hydrogen Energy.
  • 100. Pandey, B., Prajapati, Y. K. & Sheth, P. N. (2019). Recent progress in thermochemical techniques to produce hydrogen gas from biomass: A state of the art review. International Journal of Hydrogen Energy, 44(47), 25384-25415.
  • 101. Parthasarathy, P. & Narayanan, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review. Renewable Energy, 66, 570–579.
  • 102. Prasertcharoensuk, P., Bull, S. J. & Phan, A. N. (2019). Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters. Renewable Energy, 143, 112-120.
  • 103. Prins, M. J., Ptasinski, K. J. & Janssen, F. J. J. G. (2003). Thermodynamics of gas-char reactions: first and second law analysis. Chemical Engineering Science, 58(3-6), 1003-1011.
  • 104. Quan, C., Gao, N. & Wu, C. (2018). Utilization of NiO/porous ceramic monolithic catalyst for upgrading biomass fuel gas. Journal of the Energy Institute, 91(3), 331–8.
  • 105. Rafieenia, R., Pivato, A., Schievano, A. & Lavagnolo, M. C. (2018). Dark fermentation metabolic models to study strategies for hydrogen consumers inhibition. Bioresource Technology. 267, 445-457.
  • 106. Rai, P. K. & Singh, S. P. (2016). Integrated dark- and photo-fermentation: Recent advances and provisions for improvement. International Journal of Hydrogen Energy, 41(44), 19957–19971.
  • 107. Rai, P. K., Singh, S. P., Asthana, R. K. & Singh, S. (2014). Biohydrogen production from sugarcane bagasse by integrating dark-and photo-fermentation. Bioresource Technology, 152, 140-146.
  • 108. Rand, D. A. J. (2011). A journey on the electrochemical road to sustainability. Journal of Solid State Electrochemistry, 15(7-8), 1579–1622.
  • 109. Reungsang, A., Zhong, N., Yang, Y., Sittijunda, S., Xia, A. & Liao, Q. (2018). Hydrogen from Photo Fermentation. Bioreactors for Microbial Biomass and Energy Conversion, 221–317.
  • 110. Rezaeitavabe, F., Saadat, S., Talebbeydokhti, N., Sartaj, M. & Tabatabaei, M. (2020). Enhancing bio-hydrogen production from food waste in single-stage hybrid dark-photo fermentation by addition of two waste materials (exhausted resin and biochar). Biomass and Bioenergy 143, 105846.
  • 111. Salam, M. A., Ahmed, K., Akter, N., Hossain, T. & Abdullah, B. (2018). A review of hydrogen production via biomass gasification and its prospect in Bangladesh. International Journal of Hydrogen Energy 43(32):14944-14973.
  • 112. Saleem, M., Lavagnolo, M. C. & Spagni, A. (2018). Biological hydrogen production via dark fermentation by using a side-stream dynamic membrane bioreactor: effect of substrate concentration. Chemical Engineering Journal, 349, 719-727.
  • 113. Santamaria, L., Arregi, A., Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. (2020). Effect of La2O3 promotion on a Ni/Al2O3 catalyst for H2 production in the in-line biomass pyrolysis-reforming. Fuel; 262, 116593.
  • 114. Saravanan, A., Kumar, P. S., Aron, N. S. M., Jeevanantham, S., Karishma, S., Yaashikaa, P. R., Chew, W.K. & Show, P. L. (2021). A review on bioconversion processes for hydrogen production from agro-industrial residues. International Journal of Hydrogen Energy. Article in Press.
  • 115. Sawai, O., Nunoura, T. & Yamamoto, K. (2014). Supercritical water gasification of sewage sludge using bench-scale batch reactor: advantages and drawbacks. Journal of Material Cycles and Waste Management, 16(1), 82-92.
  • 116. Saxena, R. C., Seal, D., Kumar, S. & Goyal, H. B. (2008). Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renewable and Sustainable Energy Reviews, 12(7), 1909-1927.
  • 117. Setiabudi, H.D., Aziz, M.A.A., Abdullah, S., Teh, L.P. & Jusoh, R. (2020). Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review. International Journal of Hydrogen Energy, 45, 18376-18397.
  • 118. Shayan, E., Zare, V. & Mirzaee I. (2018). Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Conversion Management, 159:30-41.
  • 119. Shin, J. H. & Park, T. H. (2013). Advancement of biohydrogen production and its integration with fuel cell technology. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 263-278.
  • 120. Shirley, J., Duarte, J. L., Alviso, D. & Rolon, J. C. (2016). Effect of temperature and particle size on the yield of bio-oil, produced from conventional coconut core pyrolysis, International Journal Cheical Engineering Appications. 7 (2), 102-108.
  • 121. Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y. & Chang, J. S. (2012). Biohydrogen production: Current perspectives and the way forward. International Journal of Hydrogen Energy, 37(20), 15616–15631.
  • 122. Show, K.-Y. & Lee, D.-J. (2013). Bioreactor and Bioprocess Design for Biohydrogen Production. Biohydrogen, 317–337.
  • 123. Show, K.-Y., Yan, Y.-G. & Lee, D.-J. (2019). Biohydrogen Production: Status and Perspectives. Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, 693–713.
  • 124. Sivagurunathan, P., Kumar, G., Mudhoo, A., Rene, E. R., Saratale, G. D., Kobayashi, T., Xu, K., Kim, S.-H. & Kim, D.-H. (2017). Fermentative hydrogen production using lignocellulose biomass: an overview of pretreatment methods, inhibitor effects and detoxification experiences. Renewable Sustainable Energy Review, 77:28-42.
  • 125. Siwal, S. S., Zhang, Q., Sun, C., Thakur, S., Gupta, V. K. & Thakur, V. K. (2020). Energy production from steam gasification processes and parameters that contemplate in biomass gasifier–A review. Bioresource Technology, 297, 122481.
  • 126. Song, Z.-X., Wang, Z.-Y., Wu, L.-Y., Fan, Y.-T. & Hou, H.-W. (2012). Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation. International Journal of Hydrogen Energy, 37(8), 6554–6561.
  • 127. Sorensen B. (2012). Hydrogen and Fuel Cells: Emerging Technologies and Applications, (2012). Academic Press, 2012, 492.
  • 128. Srivastava, N., Srivastava, M., Kushwaha, D., Gupta, V. K., Manikanta, A., Ramteke, P. W. & Mishra, P. K. (2017). Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresource Technology, 238, 552-558.
  • 129. Su, H., Yan, M. & Wang, S. (2022). Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production. Renewable and Sustainable Energy Reviews, 154, 111831.
  • 130. Tan, Y. L., Abdullah, A. Z. & Hameed, B. H. (2017). Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: pyrolysis behavior and product analyses, Bioresource Technology 243, 85-92.
  • 131. Tezer, Ö., Karabag, N., Ongen, A., Colpan, C. O. & Ayol, A. (2022). Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy, 47, 15419- 15433.
  • 132. Tian, Q.-Q., Liang, L. & Zhu, M.-J. (2015). Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO 3. Bioresource Technology, 197, 422–428.
  • 133. Tursun, Y., Xu, S., Abulikemu, A. & Dilinuer, T. (2019). Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine. Bioresour Technology, 272:241–8. 134. Valle, B., García-Gómez, N., Remiro, A., Bilbao, J. & Gayubo, A.G. (2020). Dual catalyst-sorbent role of dolomite in the steam reforming of raw bio-oil for producing H2-rich syngas. Fuel Process Technology; 200, 106316.
  • 135. Varma, A. K. & Mondal, P. (2017). Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Industrial Crops and Products, 95, 704-717.
  • 136. Waheed, Q. M. K., Wu, C. & Williams, P. T. (2016). Hydrogen production from high temperature steam catalytic gasification of bio-char. Journal of the Energy Institute, 89(2), 222–230.
  • 137. Wang, J. & Wan, W. (2009). Factors influencing fermentative hydrogen production: a review. International Journal of Hydrogen Energy, 34(2), 799-811.
  • 138. Wang, J. & Yin, Y. (2018). Fermentative hydrogen production using various biomass-based materials as feedstock. Renewable Sustainable Energy Review, 92, 284-306.
  • 139. Wang, J., Zhao, B., Liu, S., Zhu, D., Huang, F., Yang, H., Guan, H., Song, A., Xu, D., Sun, L., Xie, H., Wei, W., Zhang, W. & Pedersen, T. H. (2022). Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study. Energy Conversion and Management 254, 115246.
  • 140. Xu, C., Chen, S., Soomro, A., Sun, Z. & Xiang, W. (2018). Hydrogen rich syngas production from biomass gasification using synthesized Fe/CaO active catalysts. Journal of the Energy Institute, 91, 805-816.
  • 141. Yamaguchi, A., Hiyoshi, N., Sato, O., Bando, K. K., Osada, M. & Shirai, M. (2009). Hydrogen production from woody biomass over supported metal catalysts in supercritical water. Catalysis Today, 146(1-2), 192-195.
  • 142. Yang, H., Wang, D., Li, B., Zeng, Z., Qu, L., Zhang, W. & Chen, H. (2018). Effects of potassium salts loading on calcium oxide on the hydrogen production from pyrolysis-gasification of biomass. Bioresource Technology, 249:744–50.
  • 143. Yang, M., Shao, J., Yang, H., Zeng, K., Wu, Z., Chen, Y., Bai, X. & Chen, H. (2019). Enhancing the production of light olefins and aromatics from catalytic fast pyrolysis of cellulose in a dualcatalyst fixed bed reactor. Bioresource Technology; 273:77–85.
  • 144. Yang, S., Chen, L., Sun, L., Xie, X., Zhao, B., Si, H., Zhang, X. & Hua, D. (2021). Novel Ni-Al nanosheet catalyst with homogeneously embedded nickel nanoparticles for hydrogen-rich syngas production from biomass pyrolysis, International Journal of Hydrogen Energy. 46, 1762–1776.
  • 145. Yang, Z., Kumar, A., Huhnke, R. L., Buser, M. & Capareda, S. (2016). Pyrolysis of eastern redcedar: distribution and characteristics of fast and slow pyrolysis products, Fuel, 166, 157-165.
  • 146. Yanik, J., Ebale, S., Kruse, A., Saglam, M. & Yüksel, M. (2008). Biomass gasification in supercritical water: II. Effect of catalyst. International Journal of Hydrogen Energy, 33(17), 4520-4526.
  • 147. Yao, D., Hu, Q., Wang, D., Yang, H., Wu, C., Wang, X. & Chen, H. (2016). Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresource Technology, 216, 159–164.
  • 148. Yorgun, S. & Yıldız, D. (2015). Slow pyrolysis of paulownia wood: effects of pyrolysis parameters on product yields and bio-oil characterization, Journal of Analytical Applied Pyrolysis 114, 68-78.
  • 149. Yoshida, T., Oshima, Y. & Matsumura, Y. (2004). Gasification of biomass model compounds and real biomass in supercritical water. Biomass and Bioenergy, 26(1), 71-78.
  • 150. Zagrodnik, R. & Łaniecki, M. (2017). Hydrogen production from starch by co- culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid darkand photofermentation in repeated fed-batch reactor, Bioresource Technology 298–306.
  • 151. Zhang, Z., Yue, J., Zhou, X., Jing, Y., Jiang, D. & Zhang, Q. (2014). Photo-fermentative bio-hydrogen production from agricultural residue enzymatic hydrolyzate and the enzyme reuse. Bioresources, 9(2), 2299-2310.
  • 152. Zhao, B., Yang, H., Zhang, H., Zhong, C., Wang, J., Zhu, D., Guan, H., Sun, L., Yang, S., Chen, L. & Xie, H. (2021). Study on hydrogen-rich gas production by biomass catalytic pyrolysis assisted with magnetic field. Journal of Analytical and Applied Pyrolysis 157, 105227.
  • 153. Zhao, B., Zhang, X., Sun, L., Meng, G., Chen, L. & Xiaolu, Y. (2010). Hydrogen production from biomass combining pyrolysis and the secondary decomposition. International Journal of Hydrogen Energy, 35(7), 2606-2611.
  • 154. Zhao, B., Zhang, X., Xu, A., Ding, W., Sun, L., Chen, L., Guan, H., Yang, S. & Zhou, W. (2018). A study of the in-situ CO2 removal pyrolysis of Chinese herb residue for syngas production. Sci Total Environ; 626:703–9.

SUSTAINABLE HYDROGEN PRODUCTION TECHNOLOGIES: BIOMASS-BASED APPROACHES

Yıl 2022, Cilt: 5 Sayı: 1, 18 - 37, 31.07.2022
https://doi.org/10.55930/jonas.1101384

Öz

Hydrogen, an important energy carrier, is not a natural energy source but is produced using natural gas, water, coal, and biomass. In recent years, researchers have turned to sustainable hydrogen production and environmentally friendly solutions as an alternative to the development of existing hydrogen production sources and technologies. The necessity of developing sustainable energy technologies and ensuring energy supply security with renewable resources is investigated in this study, biomass-based hydrogen production technology. In this study, in which the importance of converting biomass raw materials to hydrogen is emphasized, hydrogen production from biomass is examined under three main headings: thermochemical, biological and electrochemical conversion methods and different methods within them. While thermochemical processes are explained as pyrolysis, gasification, and supercritical water, biological processes are examined in four groups as direct fermentation, indirect fermentation, photo fermentation, and dark fermentation. The electrochemical process is specified as PEM and MEC. Although literature studies mostly use thermochemical methods for hydrogen production, it is important to work with biological processes for longer-term sustainable results. Thermochemical processes are very high-efficiency processes and the development and use of suitable catalysts greatly affect the yield. The use of catalysts also reduces tar formation, which is very important for process efficiency. In particular, removing or significantly reducing tar, which is one of the biggest problems of biomass-based thermochemical processes, is important in making biomass-based hydrogen production processes more sustainable. Optimizing the process conditions in biological processes, making arrangements to make production economical, and increasing the efficiency of the amount of hydrogen produced by these methods are among the main objectives. In biological processes, hydrogen production by dark fermentation and photo fermentation methods comes to the fore. These methods, which have a lower efficiency compared to thermochemical methods in terms of hydrogen yields, are not yet economical compared to thermochemical processes. 

Kaynakça

  • 1. Abdoulmoumine, N., Adhikari, S., Kulkarni, A. & Chattanathan, S. (2015). A review on biomass gasification syngas cleanup. Applied Energy, 155, 294–307.
  • 2. Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086.
  • 3. Acar, C. & Dincer, I. (2018). 3.1 Hydrogen Production. Comprehensive Energy Systems, 3, 1-40.
  • 4. Akubo, K., Nahil, M. A. & Williams, P. T. (2019). Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/ syngas, J. Energy Institute, 92 (6), 1987–1996.
  • 5. Alfano, M. & Cavazza, C. (2018). The biologically mediated water–gas shift reaction: structure, function and biosynthesis of monofunctional [NiFe]-carbon monoxide dehydrogenases, Sustainable Energy Fuels. 2 (2018) 1653–1670.
  • 6. Anniwaer, A., Chaihad, N., Zhang, M., Wang, C., Yu, T., Kasai, Y., Abudula, A. & Guan, G. (2021). Hydrogen-rich gas production from steam co-gasification of banana peel with agricultural residues and woody biomass. Waste Management, 125, 204–214.
  • 7. Argun, H. & Kargi, F., (2011). Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview, International Journal of Hydrogen Energy, 36, 7443–7459.
  • 8. Arregi, A., Amutio, M., Lopez, G., Bilbao, J. & Olazar, M. (2018). Evaluation of thermochemical routes for hydrogen production from biomass: A review. Energy Conversion and Management, 165, 696-719.
  • 9. Ayas, N. & Esen, T. (2016). Hydrogen production from tea waste. International Journal of Hydrogen Energy, 41(19), 8067-8072.
  • 10. Balat H. & Kırtay E. (2010). Hydrogen from biomass e present scenario and future prospects. International Journal of Hydrogen Energy 35, 7416-7426.
  • 11. Balat, M. (2010). Thermochemical Routes for Biomass-based Hydrogen Production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(15), 1388–1398.
  • 12. Balat, M., Balat, M., Kırtay, E. & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management, 50(12), 3147-3157.
  • 13. Baykara, S. Z. (2018). Hydrogen: a brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy, 43(23), 10605-10614.
  • 14. Becherif, M., Ramadan, H. S., Cabaret, K., Picard, F., Simoncini, N. & Béthoux, O. (2015). Hydrogen energy storage: new techno-economic emergence solution analysis. Energy Procedia, 74, 371-380.
  • 15. Blanquet, E. & Williams, P. T. (2021). Biomass pyrolysis coupled with non-thermal plasma/catalysis for hydrogen production: Influence of biomass components and catalyst properties. Journal of Analytical and Applied Pyrolysis, 159, 105325.
  • 16. Bordoloi, N., Narzari, R., Sut, D., Saikia, R., Chutia, R. S. & Kataki, R. (2016). Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus. Renewable Energy, 98, 245-253.
  • 17. Bridgwater A. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91(2–3):87–102.
  • 18. Cao, L., Iris, K. M., Xiong, X., Tsang, D. C., Zhang, S., Clark, J. H., Hu, C., Ng, Y. H., Shang, J. & Ok, Y. S. (2020). Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 186, 109547.
  • 19. Chen, D., Li, Y., Cen, K., Luo, M., Li, H. & Lu, B. (2016). Pyrolysis polygeneration of poplar wood: effect of heating rate and pyrolysis temperature, Bioresource Technology, 218, 780-788.
  • 20. Chen, F., Wu, C., Dong, L., Jin, F., Williams, P. T. & Huang, J. (2015). Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe-Zn/Al2O3 nanocatalysts, Fuel, 158, 999–1005.
  • 21. Cheng, J., Su, H., Zhou, J., Song, W. & Cen, K. (2011). Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. International Journal of Hydrogen Energy, 36(3), 2093–2101.
  • 22. Cieciura-Włoch, W., Borowski, S. & Domański, J. (2020). Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition. Bioresource Technology, 123713.
  • 23. Corrêa, D. O., Santos, B., Dias, F. G., Vargas, J. V. C., Mariano, A. B., Balmant, W., Rosa, M. P., Savi, D. C., Kava, V., Glienke, C. & Ordonez, J. C. (2017). Enhanced biohydrogen production from microalgae by diesel engine hazardous emissions fixation. International Journal of Hydrogen Energy, 42, 21463–21475.
  • 24. Dang, C., Liu, L., Yang, G., Cai, W., Long, J. & Yu, H. (2020). Mg-promoted Ni-CaO microsphere as bi-functional catalyst for hydrogen production from sorption-enhanced steam reforming of glycerol. Chemical Engineering Journal, 383, 123204.
  • 25. Demirbas, A. (2009). Thermochemical conversion of mosses and algae to gaseous products. Energy Sources, Part A, 31(9), 746-753.
  • 26. Demirbas, A. (2016). Comparison of thermochemical conversion processes of biomass to hydrogen-rich gas mixtures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(20), 2971-2976.
  • 27. Demirbaş, A. (2002). Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy Conversion and Management, 43(7), 897-909.
  • 28. Dincer, I. & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40, 11094–11111.
  • 29. Dincer, I., Eroglu, I. & Ozturk, M. (2021). Türkiye için Hidrojen Teknolojileri Yol Haritası. Hidrojen Teknolojileri Derneği Yayınları. ISBN: 978-605-66381-9-0.
  • 30. Dong, L., Wu, C., Ling, H., Shi, J., Williams, P. T. & Huang, J. (2017). Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on nanosized NiZnAlOx catalysts. Fuel, 188, 610–620.
  • 31. Du, C., Wu, J., Ma, D., Liu, Y., Qiu, P., Qiu, R., Liao, S. & Gao, D. (2015). Gasification of corn cob using non-thermal arc plasma. International Journal of Hydrogen Energy, 40(37), 12634–12649.
  • 32. Effendi, A., Gerhauser, H. & Bridgwater, A. V. (2008). Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews, 12(8), 2092-2116.
  • 33. Elliott, D. C., Beckman, D., Bridgwater, A. V, Diebold, J.P., Gevert, S. B. & Solantausta Y. (1991). Developments in direct thermochemical liquefaction of biomass: 1983–1990. Energy & Fuels, 5(3):399–410.
  • 34. Genç, N. (2009). Biyolojik hidrojen üretim prosesleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 17-36.
  • 35. Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L. & Esposito, G., (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95.
  • 36. Gopalakrishnan, B., Khanna, N. & Das, D. (2019). Dark-fermentative biohydrogen production. In: Pandey A, Mohan SV, Chang JS, Hallenbeck PC, Larroche C, editors. Biohydrogen. 2nd ed. Elsevier B.V.; p. 79-122.
  • 37. Guellout, Z., Francois-Lopez E., Benguerba Y., Dumas C., Kumar Yadav K., Fallatah A. M., Pugazhendhi A. & Ernst B. (2022). Dark fermentative biohydrogen production from vinicultural biomass without exogenous inoculum in a semi-batch reactor: A kinetic study. Journal of environmetal management, 305, 114393.
  • 38. Guo, F., Dong, Y., Fan, P., Lv, Z., Shuai, Y. & Lei, D. (2016). Detailed kinetic study of phenol decomposition under isothermal conditions to understand tar catalytic cracking process. Journal of Analytical Applied Pyrolsis; 118:155–63.
  • 39. Guo, J-X., Tan, X., Zhu, K. & Gu, B. (2022). Integrated management of mixed biomass for hydrogen production from gasification. Chemical Engineering Research and Design, 179, 41–55.
  • 40. Gupta, J., Papadikis, K., Konysheva, E. Y., Lin, Y., Kozhevnikov, I. V. & Li, J. (2021). CaO catalyst for multi-route conversion of oakwood biomass to value-added chemicals and fuel precursors in fast pyrolysis. Applied Catalysis B: Environmental, 285, 119858.
  • 41. Hallenbeck, P. C. & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11-12), 1185-1193.
  • 42. Hitam, C. N. C. & Jalil, A. A. (2020). A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Conversion and Biorefinery, 1-19.
  • 43. Hoang, A. T., Huang, Z. -H., Nižetić, S., Pandey, A., Nguyen, X. P., Luque, R., Ong, H. C., Said, Z., Le, T. H. & Pham, V. V. (2022). Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy. 47, 4394-4425.
  • 44. Hosseini, S. E., Abdul Wahid, M., Jamil, M. M., Azli, A. A. M. & Misbah, M. F. (2015). A review on biomass-based hydrogen production for renewable energy supply. International Journal of Energy Research, 39(12), 1597–1615.
  • 45. Hwang, H. T. & Varma, A. (2014). Hydrogen storage for fuel cell vehicles. Current Opinion in Chemical Engineering, 5, 42-48.
  • 46. Hydrogen Council (2017). Hydrogen scaling up. A sustainable pathway for the global energy transition; 2017 (Erişim tarihi: 22.12.2021)
  • 47. International Energy Agency (IEA). Technology roadmap: hydrogen and fuel cells. Paris; 2015 (Erişim tarihi: 24.12.2021)
  • 48. Jahirul, M. I., Rasul, M. G., Chowdhury, A. A. & Ashwath, N. (2012). Biofuels production through biomass pyrolysis—a technological review. Energies, 5(12), 4952-5001.
  • 49. Jalan R.K. & V.K. Srivastava, (1999). Studies on pyrolysis of a single biomass cylindrical pellet-kinetic and heat transfer effects, Energy Conversion and Management 40, 467.
  • 50. Javed, M. A., Zafar, A. M., Hassan, A. A., Zaidi, A. A., Farooq, M., Badawy, A. E., Lundquist, T., Mohamed , M. M. A. & Al-Zuhair, S. (2022). The role of oxygen regulation and algal growth parameters in hydrogen production via biophotolysis. Journal of Environmental Chemical Engineering, 10, 107003.
  • 51. Jin, F. Z., Sun, H., Wu, C. F., Ling, H. H., Jiang, Y. J., Williams, P. T. & Huang, J. (2018). Effect of calcium addition on MgAlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass, Catalysis Today, 309, 2–10.
  • 52. Jourabchi, S. A., Gan, S. & Ng, H. K. (2014). Pyrolysis of Jatropha curcas pressed cake for bio-oil production in a fixed-bed system, Energy Conversion Management, 78, 518-526.
  • 53. Kalinci, Y., Hepbasli, A. & Dincer, I. (2009). Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy, 34(21), 8799–8817.
  • 54. Kannah, R. Y., Kavitha, S., Karthikeyan, O. P., Kumar, G., Dai-Viet, N. V. & Banu, J. R. (2021). Techno-economic assessment of various hydrogen production methods–A review. Bioresource Technology, 319, 124175.
  • 55. Kaparaju, P., Serrano, M., Thomsen, A. B., Kongjan, P. & Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 100(9), 2562–2568.
  • 56. Kapdan, I. K. & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and microbial technology, 38(5), 569-582.
  • 57. Kapdan, I. K., Kargi, F., Oztekin, R. & Argun, H. (2009). Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. International Journal of Hydrogen Energy, 34(5), 2201-2207.
  • 58. Khanal S. (2003). Biological hydrogen production: effects ofpH and intermediate products. International Journal of Hydrogen Energy, 29(11), 1123–1131.
  • 59. Kim, D.H. & Kim, M.S. (2012). Thermophilic fermentative hy-drogen production from various carbon sources byanaerobic mixed cultures. International Journal of Hydrogen Energy, 37(2):2021–2027.
  • 60. Kongjan, P., O‐Thong, S., Kotay, M., Min, B. & Angelidaki, I. (2010). Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnology and Bioengineering, 105(5), 899-908.
  • 61. Kumar, G., Mathimani, T., Sivaramakrishnan, R., Shanmugam, S., Bhatia, S. K. & Pugazhendhi, A. (2020). Application of molecular techniques in biohydrogen production as a clean fuel. Science of The Total Environment, 722, 137795.
  • 62. Kumar, G., Sivagurunathan, P., Pugazhendhi, A., Thi, N. B. D., Zhen, G., Chandrasekhar, K. & Kadier, A. (2017) : A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options. Energy Conversion Management, 141:390-402.
  • 63. Kumar, G., Zhen, G., Kobayashi, T., Sivagurunathan, P., Kim, S. H. & Xu, K. Q. (2016). Impact of pH control and heat pre-treatment of seed inoculum in dark H2 fermentation: a feasibility report using mixed microalgae biomass as feedstock. International of Journal Hydrogen Energy, 41:4382-4392.
  • 64. Kumar, R. & Strezov, V. (2021). Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products. Renewable and Sustainable Energy Reviews, 135, 110152.
  • 65. Kwon, G., Park, Y.-K., Ok, Y. S., Kwon, E. E. & Song, H. (2019).Catalytic pyrolysis of low-rank coal using Fe-carbon composite as a catalyst. Energy Conversion Management, 199:111978.
  • 66. Larsen, H., Feidenhans'l, R. & Sønderberg Petersen, L. (2004). Risoe energy report 3. Hydrogen and its competitors.
  • 67. Lazaro, C. Z. & Hallenbeck, P. C. (2019). Fundamentals of biohydrogen production. In: Pandey A, Mohan SV, Chang J-S, Hallenbeck PC, Larroche C, editors. Biohydrogen. 2nd ed. Elsevier B.V.; p. 25-48.
  • 68. Lee, H.-S., Vermaas, W. F. & Rittmann, B. E. (2010). Biological hydrogen production: prospects and challenges, Trends Biotechnology. 28, 262–271.
  • 69. Leng, E., Zhang, Y., Peng, Y., Gong, X., Mao, M., Li, X. & Yu, Y. (2018). In situ structural changes of crystalline and amorphous cellulose during slow pyrolysis at low temperatures. Fuel, 216:313–21.
  • 70. Lepage, T., Kammoun, M., Schmetz, Q. & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920.
  • 71. Levin, D. B. & Chahine, R. (2010). Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy, 35(10), 4962-4969.
  • 72. Levin, D. B., Pitt, L. & Love, M. (2004). Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173-185.
  • 73. Li, A., Han, H., Hu, S., Zhu, M., Ren, Q., Wang, Y. & Xu, J. (2022a). A novel sludge pyrolysis and biomass gasification integrated method to enhance hydrogen-rich gas generation. Energy Conversion and Management 254, 115205.
  • 74. Li, Q., Guo, C. & Liu, C.-Z. (2014). Dynamic microwave-assisted alkali pretreatment of cornstalk to enhance hydrogen production via co-culture fermentation of Clostridium thermocellum and Clostridium thermosaccharolyticum. Biomass and Bioenergy, 64, 220–229.
  • 75. Li, S., Li, F., Zhu, X., Liao, Q., Chang, J.-S. & Ho, S.-H., (2022b). Biohydrogen production from microalgae for environmental sustainability. Chemosphere 291, 132717.
  • 76. Li, X., Krooss, B. M., Weniger, P. & Littke, R. (2017). Molecular hydrogen (H2) and light hydrocarbon gases generation from marine and lacustrine source rocks during closed-system laboratory pyrolysis experiments. Journal of Analytical and Applied Pyrolysis, 126, 275-287.
  • 77. Liu, W., Cui, Y., Du, X., Zhang, Z., Chao, Z. & Deng, Y. (2016). High efficiency hydrogen evolution from native biomass electrolysis. Energy & Environmental Science, 9(2), 467-472.
  • 78. Liu, W., Liu, C., Gogoi, P. & Deng, Y. (2020). Overview of biomass conversion to electricity and hydrogen and recent developments in low-temperature electrochemical approaches. Engineering, 6(12), 1351-1363.
  • 79. Lopez, G., Garcia, I., Arregi, A., Santamaria, L., Amutio, M., Artetxe, M., Bilbao, J. & Olazar, M. (2020). Thermodynamic assessment of the oxidative steam reforming of biomass fast pyrolysis volatiles. Energy Conversion Management, 214, 112889.
  • 80. Lopez-Hidalgo, A.M., Smolinski, A. & Sanchez, A. (2022). A meta-analysis of research trends on hydrogen production via dark fermentation. International Journal of Hydrogen Energy, 47, 13300-13339.
  • 81. Lu, C., Zhang, Z., Ge, X., Wang, Y., Zhou, X., You, X., Liu, H. & Zhang, Q. (2016). Bio-hydrogen production from apple waste by photosynthetic bacteria HAU-M1. International Journal of Hydrogen Energy, 41(31), 13399–13407.
  • 82. Lu, Y., Jin, H. & Zhang, R. (2019). Evaluation of stability and catalytic activity of Ni catalysts for hydrogen production by biomass gasification in supercritical water. Carbon Resources Conversion, 2(1), 95-101.
  • 83. Lu, Y., Lai, Q., Zhang, C., Zhao, H., Ma, K., Zhao, X., Chen, H., Liu, D. & Xing, X.-H. (2009). Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process. Bioresource Technology, 100(12), 2889–2895.
  • 84. Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A. & Kamiński, M. (2018). Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews 91, 665–694.
  • 85. Ly, H. V., Kim, S. -S., Choi, J. H., Woo, H. C. & Kim, J. (2016). Fast pyrolysis of Saccharina japonica alga in a fixed-bed reactor for bio-oil production, Energy Conversion Management 122, 526-534.
  • 86. Manish, S. & Banerjee, R. (2008). Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 33(1), 279-286.
  • 87. Marbán, G. & Valdés-Solís, T. (2007). Towards the hydrogen economy? International Journal of Hydrogen Energy, 32(12), 1625-1637.
  • 88. Mazlan, M. A. F., Uemura, Y., Osman, N. B. & Yusup, S. (2015). Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer, Energy Conversion Management, 98, 208-214.
  • 89. Minowa, T. & Ogi, T. (1998). Hydrogen production from cellulose using a reduced nickel catalyst. Catalysis Today, 45(1-4), 411-416.
  • 90. Mirza, S. S., Qazi, J. I., Zhao, Q. & Chen, S. (2013). Photo-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw. Biotechnology for Biofuels, 6(1), 1-12.
  • 91. Mishra, P., Krishnana, S., Rana, S., Singh, L., Sakinah, M. & Wahid, Z.Ab. (2019). Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Reviews 24, 27–37.
  • 92. Mona, S., Kumar, S. S., Kumar, V., Parveen, K., Saini, N., Deepak, B. & Pugazhendhi, A. (2020). Green technology for sustainable biohydrogen production (waste to energy): a review. Science of Total Environment 728, 138481.
  • 93. Moralı, U. & Sensoz, S. (2015). Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil (nd bio-char, Fuel, 150, 672-678.
  • 94. Moralı, U., Yavuzel, N. & Sensoz, S. (2016). Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: characterization of bio-oil and bio-char, Bioresource Technology, 221, 682-685.
  • 95. Nagarajan, D., Lee, D-J., Kondo, A. & Chang, J-S. (2017). Recent insights into biohydrogen production by microalgae – From biophotolysis to dark fermentation. Bioresource Technology, 227, 373–387.
  • 96. Ni, M., Leung, D. Y., Leung, M. K. & Sumathy, K. J. F. P. T. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461-472.
  • 97. Osada, M., Sato, T., Watanabe, M., Adschiri, T. & Arai, K. (2004). Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy & Fuels, 18(2), 327-333.
  • 98. Ozmihci, S. & Kargi, F. (2010). Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. International Journal of Hydrogen Energy, 35(13), 6674-6680.
  • 99. Pal, D. B., Singh, A. & Bhatnagar, A. (2021). A review on biomass based hydrogen production technologies. International Journal of Hydrogen Energy.
  • 100. Pandey, B., Prajapati, Y. K. & Sheth, P. N. (2019). Recent progress in thermochemical techniques to produce hydrogen gas from biomass: A state of the art review. International Journal of Hydrogen Energy, 44(47), 25384-25415.
  • 101. Parthasarathy, P. & Narayanan, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review. Renewable Energy, 66, 570–579.
  • 102. Prasertcharoensuk, P., Bull, S. J. & Phan, A. N. (2019). Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters. Renewable Energy, 143, 112-120.
  • 103. Prins, M. J., Ptasinski, K. J. & Janssen, F. J. J. G. (2003). Thermodynamics of gas-char reactions: first and second law analysis. Chemical Engineering Science, 58(3-6), 1003-1011.
  • 104. Quan, C., Gao, N. & Wu, C. (2018). Utilization of NiO/porous ceramic monolithic catalyst for upgrading biomass fuel gas. Journal of the Energy Institute, 91(3), 331–8.
  • 105. Rafieenia, R., Pivato, A., Schievano, A. & Lavagnolo, M. C. (2018). Dark fermentation metabolic models to study strategies for hydrogen consumers inhibition. Bioresource Technology. 267, 445-457.
  • 106. Rai, P. K. & Singh, S. P. (2016). Integrated dark- and photo-fermentation: Recent advances and provisions for improvement. International Journal of Hydrogen Energy, 41(44), 19957–19971.
  • 107. Rai, P. K., Singh, S. P., Asthana, R. K. & Singh, S. (2014). Biohydrogen production from sugarcane bagasse by integrating dark-and photo-fermentation. Bioresource Technology, 152, 140-146.
  • 108. Rand, D. A. J. (2011). A journey on the electrochemical road to sustainability. Journal of Solid State Electrochemistry, 15(7-8), 1579–1622.
  • 109. Reungsang, A., Zhong, N., Yang, Y., Sittijunda, S., Xia, A. & Liao, Q. (2018). Hydrogen from Photo Fermentation. Bioreactors for Microbial Biomass and Energy Conversion, 221–317.
  • 110. Rezaeitavabe, F., Saadat, S., Talebbeydokhti, N., Sartaj, M. & Tabatabaei, M. (2020). Enhancing bio-hydrogen production from food waste in single-stage hybrid dark-photo fermentation by addition of two waste materials (exhausted resin and biochar). Biomass and Bioenergy 143, 105846.
  • 111. Salam, M. A., Ahmed, K., Akter, N., Hossain, T. & Abdullah, B. (2018). A review of hydrogen production via biomass gasification and its prospect in Bangladesh. International Journal of Hydrogen Energy 43(32):14944-14973.
  • 112. Saleem, M., Lavagnolo, M. C. & Spagni, A. (2018). Biological hydrogen production via dark fermentation by using a side-stream dynamic membrane bioreactor: effect of substrate concentration. Chemical Engineering Journal, 349, 719-727.
  • 113. Santamaria, L., Arregi, A., Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. (2020). Effect of La2O3 promotion on a Ni/Al2O3 catalyst for H2 production in the in-line biomass pyrolysis-reforming. Fuel; 262, 116593.
  • 114. Saravanan, A., Kumar, P. S., Aron, N. S. M., Jeevanantham, S., Karishma, S., Yaashikaa, P. R., Chew, W.K. & Show, P. L. (2021). A review on bioconversion processes for hydrogen production from agro-industrial residues. International Journal of Hydrogen Energy. Article in Press.
  • 115. Sawai, O., Nunoura, T. & Yamamoto, K. (2014). Supercritical water gasification of sewage sludge using bench-scale batch reactor: advantages and drawbacks. Journal of Material Cycles and Waste Management, 16(1), 82-92.
  • 116. Saxena, R. C., Seal, D., Kumar, S. & Goyal, H. B. (2008). Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renewable and Sustainable Energy Reviews, 12(7), 1909-1927.
  • 117. Setiabudi, H.D., Aziz, M.A.A., Abdullah, S., Teh, L.P. & Jusoh, R. (2020). Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review. International Journal of Hydrogen Energy, 45, 18376-18397.
  • 118. Shayan, E., Zare, V. & Mirzaee I. (2018). Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Conversion Management, 159:30-41.
  • 119. Shin, J. H. & Park, T. H. (2013). Advancement of biohydrogen production and its integration with fuel cell technology. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 263-278.
  • 120. Shirley, J., Duarte, J. L., Alviso, D. & Rolon, J. C. (2016). Effect of temperature and particle size on the yield of bio-oil, produced from conventional coconut core pyrolysis, International Journal Cheical Engineering Appications. 7 (2), 102-108.
  • 121. Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y. & Chang, J. S. (2012). Biohydrogen production: Current perspectives and the way forward. International Journal of Hydrogen Energy, 37(20), 15616–15631.
  • 122. Show, K.-Y. & Lee, D.-J. (2013). Bioreactor and Bioprocess Design for Biohydrogen Production. Biohydrogen, 317–337.
  • 123. Show, K.-Y., Yan, Y.-G. & Lee, D.-J. (2019). Biohydrogen Production: Status and Perspectives. Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, 693–713.
  • 124. Sivagurunathan, P., Kumar, G., Mudhoo, A., Rene, E. R., Saratale, G. D., Kobayashi, T., Xu, K., Kim, S.-H. & Kim, D.-H. (2017). Fermentative hydrogen production using lignocellulose biomass: an overview of pretreatment methods, inhibitor effects and detoxification experiences. Renewable Sustainable Energy Review, 77:28-42.
  • 125. Siwal, S. S., Zhang, Q., Sun, C., Thakur, S., Gupta, V. K. & Thakur, V. K. (2020). Energy production from steam gasification processes and parameters that contemplate in biomass gasifier–A review. Bioresource Technology, 297, 122481.
  • 126. Song, Z.-X., Wang, Z.-Y., Wu, L.-Y., Fan, Y.-T. & Hou, H.-W. (2012). Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation. International Journal of Hydrogen Energy, 37(8), 6554–6561.
  • 127. Sorensen B. (2012). Hydrogen and Fuel Cells: Emerging Technologies and Applications, (2012). Academic Press, 2012, 492.
  • 128. Srivastava, N., Srivastava, M., Kushwaha, D., Gupta, V. K., Manikanta, A., Ramteke, P. W. & Mishra, P. K. (2017). Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresource Technology, 238, 552-558.
  • 129. Su, H., Yan, M. & Wang, S. (2022). Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production. Renewable and Sustainable Energy Reviews, 154, 111831.
  • 130. Tan, Y. L., Abdullah, A. Z. & Hameed, B. H. (2017). Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: pyrolysis behavior and product analyses, Bioresource Technology 243, 85-92.
  • 131. Tezer, Ö., Karabag, N., Ongen, A., Colpan, C. O. & Ayol, A. (2022). Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy, 47, 15419- 15433.
  • 132. Tian, Q.-Q., Liang, L. & Zhu, M.-J. (2015). Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO 3. Bioresource Technology, 197, 422–428.
  • 133. Tursun, Y., Xu, S., Abulikemu, A. & Dilinuer, T. (2019). Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine. Bioresour Technology, 272:241–8. 134. Valle, B., García-Gómez, N., Remiro, A., Bilbao, J. & Gayubo, A.G. (2020). Dual catalyst-sorbent role of dolomite in the steam reforming of raw bio-oil for producing H2-rich syngas. Fuel Process Technology; 200, 106316.
  • 135. Varma, A. K. & Mondal, P. (2017). Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Industrial Crops and Products, 95, 704-717.
  • 136. Waheed, Q. M. K., Wu, C. & Williams, P. T. (2016). Hydrogen production from high temperature steam catalytic gasification of bio-char. Journal of the Energy Institute, 89(2), 222–230.
  • 137. Wang, J. & Wan, W. (2009). Factors influencing fermentative hydrogen production: a review. International Journal of Hydrogen Energy, 34(2), 799-811.
  • 138. Wang, J. & Yin, Y. (2018). Fermentative hydrogen production using various biomass-based materials as feedstock. Renewable Sustainable Energy Review, 92, 284-306.
  • 139. Wang, J., Zhao, B., Liu, S., Zhu, D., Huang, F., Yang, H., Guan, H., Song, A., Xu, D., Sun, L., Xie, H., Wei, W., Zhang, W. & Pedersen, T. H. (2022). Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study. Energy Conversion and Management 254, 115246.
  • 140. Xu, C., Chen, S., Soomro, A., Sun, Z. & Xiang, W. (2018). Hydrogen rich syngas production from biomass gasification using synthesized Fe/CaO active catalysts. Journal of the Energy Institute, 91, 805-816.
  • 141. Yamaguchi, A., Hiyoshi, N., Sato, O., Bando, K. K., Osada, M. & Shirai, M. (2009). Hydrogen production from woody biomass over supported metal catalysts in supercritical water. Catalysis Today, 146(1-2), 192-195.
  • 142. Yang, H., Wang, D., Li, B., Zeng, Z., Qu, L., Zhang, W. & Chen, H. (2018). Effects of potassium salts loading on calcium oxide on the hydrogen production from pyrolysis-gasification of biomass. Bioresource Technology, 249:744–50.
  • 143. Yang, M., Shao, J., Yang, H., Zeng, K., Wu, Z., Chen, Y., Bai, X. & Chen, H. (2019). Enhancing the production of light olefins and aromatics from catalytic fast pyrolysis of cellulose in a dualcatalyst fixed bed reactor. Bioresource Technology; 273:77–85.
  • 144. Yang, S., Chen, L., Sun, L., Xie, X., Zhao, B., Si, H., Zhang, X. & Hua, D. (2021). Novel Ni-Al nanosheet catalyst with homogeneously embedded nickel nanoparticles for hydrogen-rich syngas production from biomass pyrolysis, International Journal of Hydrogen Energy. 46, 1762–1776.
  • 145. Yang, Z., Kumar, A., Huhnke, R. L., Buser, M. & Capareda, S. (2016). Pyrolysis of eastern redcedar: distribution and characteristics of fast and slow pyrolysis products, Fuel, 166, 157-165.
  • 146. Yanik, J., Ebale, S., Kruse, A., Saglam, M. & Yüksel, M. (2008). Biomass gasification in supercritical water: II. Effect of catalyst. International Journal of Hydrogen Energy, 33(17), 4520-4526.
  • 147. Yao, D., Hu, Q., Wang, D., Yang, H., Wu, C., Wang, X. & Chen, H. (2016). Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresource Technology, 216, 159–164.
  • 148. Yorgun, S. & Yıldız, D. (2015). Slow pyrolysis of paulownia wood: effects of pyrolysis parameters on product yields and bio-oil characterization, Journal of Analytical Applied Pyrolysis 114, 68-78.
  • 149. Yoshida, T., Oshima, Y. & Matsumura, Y. (2004). Gasification of biomass model compounds and real biomass in supercritical water. Biomass and Bioenergy, 26(1), 71-78.
  • 150. Zagrodnik, R. & Łaniecki, M. (2017). Hydrogen production from starch by co- culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid darkand photofermentation in repeated fed-batch reactor, Bioresource Technology 298–306.
  • 151. Zhang, Z., Yue, J., Zhou, X., Jing, Y., Jiang, D. & Zhang, Q. (2014). Photo-fermentative bio-hydrogen production from agricultural residue enzymatic hydrolyzate and the enzyme reuse. Bioresources, 9(2), 2299-2310.
  • 152. Zhao, B., Yang, H., Zhang, H., Zhong, C., Wang, J., Zhu, D., Guan, H., Sun, L., Yang, S., Chen, L. & Xie, H. (2021). Study on hydrogen-rich gas production by biomass catalytic pyrolysis assisted with magnetic field. Journal of Analytical and Applied Pyrolysis 157, 105227.
  • 153. Zhao, B., Zhang, X., Sun, L., Meng, G., Chen, L. & Xiaolu, Y. (2010). Hydrogen production from biomass combining pyrolysis and the secondary decomposition. International Journal of Hydrogen Energy, 35(7), 2606-2611.
  • 154. Zhao, B., Zhang, X., Xu, A., Ding, W., Sun, L., Chen, L., Guan, H., Yang, S. & Zhou, W. (2018). A study of the in-situ CO2 removal pyrolysis of Chinese herb residue for syngas production. Sci Total Environ; 626:703–9.
Toplam 153 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Kübra Al

Ezgi Bayrakdar Ateş

Yayımlanma Tarihi 31 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 1

Kaynak Göster

APA Al, K., & Bayrakdar Ateş, E. (2022). SÜRDÜRÜLEBİLİR HİDROJEN ÜRETİM TEKNOLOJİLERİ: BİYOKÜTLE TEMELLİ YAKLAŞIMLAR. Bartın University International Journal of Natural and Applied Sciences, 5(1), 18-37. https://doi.org/10.55930/jonas.1101384
AMA Al K, Bayrakdar Ateş E. SÜRDÜRÜLEBİLİR HİDROJEN ÜRETİM TEKNOLOJİLERİ: BİYOKÜTLE TEMELLİ YAKLAŞIMLAR. JONAS. Temmuz 2022;5(1):18-37. doi:10.55930/jonas.1101384
Chicago Al, Kübra, ve Ezgi Bayrakdar Ateş. “SÜRDÜRÜLEBİLİR HİDROJEN ÜRETİM TEKNOLOJİLERİ: BİYOKÜTLE TEMELLİ YAKLAŞIMLAR”. Bartın University International Journal of Natural and Applied Sciences 5, sy. 1 (Temmuz 2022): 18-37. https://doi.org/10.55930/jonas.1101384.
EndNote Al K, Bayrakdar Ateş E (01 Temmuz 2022) SÜRDÜRÜLEBİLİR HİDROJEN ÜRETİM TEKNOLOJİLERİ: BİYOKÜTLE TEMELLİ YAKLAŞIMLAR. Bartın University International Journal of Natural and Applied Sciences 5 1 18–37.
IEEE K. Al ve E. Bayrakdar Ateş, “SÜRDÜRÜLEBİLİR HİDROJEN ÜRETİM TEKNOLOJİLERİ: BİYOKÜTLE TEMELLİ YAKLAŞIMLAR”, JONAS, c. 5, sy. 1, ss. 18–37, 2022, doi: 10.55930/jonas.1101384.
ISNAD Al, Kübra - Bayrakdar Ateş, Ezgi. “SÜRDÜRÜLEBİLİR HİDROJEN ÜRETİM TEKNOLOJİLERİ: BİYOKÜTLE TEMELLİ YAKLAŞIMLAR”. Bartın University International Journal of Natural and Applied Sciences 5/1 (Temmuz 2022), 18-37. https://doi.org/10.55930/jonas.1101384.
JAMA Al K, Bayrakdar Ateş E. SÜRDÜRÜLEBİLİR HİDROJEN ÜRETİM TEKNOLOJİLERİ: BİYOKÜTLE TEMELLİ YAKLAŞIMLAR. JONAS. 2022;5:18–37.
MLA Al, Kübra ve Ezgi Bayrakdar Ateş. “SÜRDÜRÜLEBİLİR HİDROJEN ÜRETİM TEKNOLOJİLERİ: BİYOKÜTLE TEMELLİ YAKLAŞIMLAR”. Bartın University International Journal of Natural and Applied Sciences, c. 5, sy. 1, 2022, ss. 18-37, doi:10.55930/jonas.1101384.
Vancouver Al K, Bayrakdar Ateş E. SÜRDÜRÜLEBİLİR HİDROJEN ÜRETİM TEKNOLOJİLERİ: BİYOKÜTLE TEMELLİ YAKLAŞIMLAR. JONAS. 2022;5(1):18-37.

Cited By

Hydrogen Production and Storage Methods
International Journal of Advanced Natural Sciences and Engineering Researches
https://doi.org/10.59287/ijanser.647