Derleme
BibTex RIS Kaynak Göster

THE EFFECT OF SOME PLANT NUTRIENT ELEMENTS ON PLANT PARASITE NEMATODES

Yıl 2022, Cilt: 5 Sayı: 2, 114 - 121, 31.12.2022
https://doi.org/10.55930/jonas.1185112

Öz

Plant parasitic nematodes are obligate agricultural organisms that cause significant economic losses and damage to many plant species worldwide. Most of the plant parasitic nematodes can damage the roots of their hosts, while a very small number of them can damage the above-ground parts of plants such as leaves, flowers or seed. As a result of the feeding of plant parasitic nematodes on the roots, the ability of the plant to adsorb water and nutrients decreases. They damage the host plant by causing wounds on the plant roots and some microbial diseases with the stylet they use during feeding, by forming brown spots on the root and swelling or rotting of the tubers on the above-ground parts of the plant. Plant nutrients have an important place to overcome the damage of plant parasitic nematodes. Nutrients can reduce or increase nematode populations. This effect depends on the nutrient element and the source of nutrient used. Plant nutrition and plant parasitic nematodes interaction have generally shown that nitrogen, phosphorus, and potassium. The form in which the nutrient (ammonium or nitrate) is present has a greater influence on the severity of nematode attack than the amount of nitrogen present. It is stated that the use of ammonium is better than nitrate in reducing the plant parasitic nematode population. Phosphorus has direct microbial activity against pathogens as well as the ability to stimulate plant defense mechanisms through the production of phytoalexins. Adequate plant nutrition with potassium is thought to reduce disease occurrence due to increased resistance to the penetration and development of pathogens. A balanced application of macro and micro nutrients to the soil is the best way to ensure that the plant can withstand the damage caused by nematodes. In this study, the information obtained about the effects of the use of some plant nutrients in fertilization against plant parasitic nematodes has been reviewed.

Destekleyen Kurum

x

Proje Numarası

x

Kaynakça

  • 1. Abbas H., Nazir Javed, M. K. & Khan S. A. (2022). Impact of Integrative Management Strategies on the Reproduction of Root Knot Nematode, Meloidogyne incognita. Pakistan Journal of Zoology, 1-7.
  • 2. Agrios G.N. (2005). Plant Pathology. 5ª ed. London: Elsevier Academic Press. P. 922.
  • 3. Akhtar M.F. & Malik A. (2000). Role of organic soil amendments and soil organisms in the biological control of plant parasitic nematodes: A review. Bioresource Technology, 74 (1): 35- 47.
  • 4. Al-Hazmi A.S. & Dawabah A.A.M. (2014). Effect of urea and certain NPK fertilizers on the cereal cyst nematode (Heterodera avenae) on wheat. Saudi Journal of Biological Sciences, 21 (2): 191–196.
  • 5. Arslan N., Aksu G. & Altay H. (2020). Potasyumun domateste kök-ur nematodu (Meloidogyne incognita) üzerine etkisi. Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 21(2), 95-102.
  • 6. Barbosa K.A.G., Garcia R.A., Santos L.C., Teixeira R.A., Araújo F.G., Rocha M.R. & Lima F.S.O. (2010). Avaliação da adubação potássica sobre populações de Heterodera glycines em cultivares de soja resistente e suscetível. Nematologia Brasileira, 34 (3): 150-157.
  • 7. Barker A.V. & Pilbeam D.J. (2007). Handbook of Plant Nutrition. London: Taylor & Francis Group. P. 613.
  • 8. Bolat İ. & Kara Ö. (2017). Bitki Besin elementleri: kaynakları, işlevleri, eksik ve fazlalıkları. Bartın Orman Fakültesi Dergisi, 19 (1): 218-228.
  • 9. Bybordi A. & Mamedov G. (2010). Evaluation of application methods efficiency of zinc and iron for canola (Brassica napus L.). Notulae Scientia Biologicae, 2(1): 94-103.
  • 10. Cadet P. & Spaull V. (2005). Nematode parasites of sugarcane. In: Luc M, Sikora RA, Bridge J (eds) Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. Wallingford: CAB International, pp. 645-674.
  • 11. Carling D.E., Roncadori R.W. & Hussey R.S. (1996). Interactions of arbuscular mycorrhizae, Meloidogyne arenaria, and phosphorus fertilization on peanut. Mycorrhiza, 6 (1): 9–13.
  • 12. Charegani H.A., Bideh A.K. & Hamzehzarghani H. (2010). Effect of chemical fertilizers on root-knot nematode (Meloidogyne incognita) in greenhouse cucumber cultivation. Iran Journal of Plant Pathology, 46 (3): 71-73.
  • 13. Collins R.J. & Rodríguez-Kábana R. (1971). Relationships of fertilizer treatments and crop sequence to populations of lesion nematode. Journal of Nematology, 3 (4): 306-307.
  • 14. Coyne D.L., Sahrawat K.L. & Plowright R.A. (2004). The influence of mineral fertilizer application and plant nutrition on plant-parasitic nematodes in upland and lowland rice in cote d’lvoire and its implications in long term agricultural research trials. Experimental Agriculture, 40: 245–256.
  • 15. Derks W. & Creasy L.L. (1989). Influence of fosetyl-Al on phytoalexin accumulation in the Plasmopara viticola grapevine interaction. Physiological and Molecular Plant Pathology, 3: 203-213.
  • 16. Dias-Arieira C.R., Cunha T.P.L., Chiamolera F.M., Puerari H.H., Biela F. & Santana S. M. (2012a). Reaction of vegetables and aromatic plants to Meloidogyne javanica and M. incognita. Horticultura Brasileira, 30: 322-326.
  • 17. Dias-Arieira C.R., Marini P.M., Fontana L.F., Roldi M. & Silva T.R.B. (2012b). Effect of Azospirillum brasilense, Stimulate® and potassium phosphite to control Pratylenchus brachyurus in soybean and maize. Nematropica, 42 (1): 170-175.
  • 18. Dutra M.R, Garcia A.I.A., Paiva B.R.T.L., Rocha F.S. & Campos V.P. (2004). Efeito do silício aplicado na semeadura do feijoeiro no controle de nematoides das galhas. Fitopatologia Brasileira, 29: 172.
  • 19. Epstein E. & Bloom A. (2004). Mineral Nutrition of Plants. Sunderland: Sinauer Associates. P. 380.
  • 20. Fageria N.K. (2009). The Use of Nutrients in Crop Plants. CRC Pres, Boca Raton, Florida, New York.
  • 21. Fageria N.K., Baligar V.C. & Jones C.A. (2011). Growth and Mineral Nutrition of Field Crops. 3rd Edition, CRC Pres, Boca Raton, FL, USA.
  • 22. Fancelli A.L. (2008). Influência da nutrição na ocorrência de doenças de plantas. Informaçoes Agronomicas, 122: 23-24.
  • 23. Farahat A.A., Alsayed A.A., El-Beltagi H.S. & Mahfoud N.M. (2012). Impact of organic and inorganic fertilizers on nematode reproduction and biochemical alterations on tomato. Notulae Scientia Biologicae, 4(1): 48-55.
  • 24. Ferraz S., Freitas L.G., Lopes E.A. & Dias-Arieira C.R. (2010). Manejo Sustentável De Fitonematoides. Viçosa: Editora UFV. P. 306.
  • 25. Gad S.B. (2013). Role of mineral nutrition on controlling Meloidogyne incognita infecting okra Plant under greenhouse conditions. Journal of Plant Protection and Pathology, 4(8), 731-738.
  • 26. Gardiner D.T ve Miller R.W. (2008). Soils in Our Environment. 11th Edition, Pearson/Prentice Hall, Upper Saddle Hill, Ne Jersey, USA.
  • 27. Guest D. & Grant B. (1991). The complex action of phosphonates as antifungal agents. Biological Reviews, 66 (2): 159-187.
  • 28. Güneş A., & Sönmez O. (2019). Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler. Journal of the Institute of Science and Technology, 9(2), 1186-1192.
  • 29. Hamida A.O., Hoda A.H., Mohamed M.M.M. & Alkelany U.S. (2015). Effect of integrating inorganic fertilizer with either micronema, compost, or oxamyl on suppressing plant parasitic nematode Meloidogyne incognita infecting tomato plants under field conditions. Middle East Journal of Agriculture Research, 4 (4): 707-711.
  • 30. Hanson P.M., Nickell C.D., Gray L.E. & Sebastian S.A. (1988). Identification of two dominant genes conditioning brown stem rot resistance in soybean. Crop Science, 28: 41–43.
  • 31. Hemmatia S. & Saeedizadehb A. (2020). Root-knot nematode, Meloidogyne javanica, in response to soil fertilization. Brazilian Journal of Biology, 80: 621-630.
  • 32. Huebner R.A., Rodríguez-Kábana R. & Patterson R.M. (1983). Hemicellulosic waste and urea for control of plant parasitic nematodes: Effect on soil enzyme activities. Nematropica, 13 (1): 37-54.
  • 33. Hurchanik D., Schmitt D.P., Hue N.V. & Sipes B.S. (2003). Relationship of Meloidogyne konaensis population densities to nutritional status of coffee roots and leaves. Nematropica 33 (1): 55-64.
  • 34. Hurchanik D., Schmitt D.P., Hue N.V. & Sipes B.S. (2004). Plant nutrient partitioning in coffee infected with Meloidogyne konaensis. Journal of Nematology, 36 (1): 76-84.
  • 35. Hussey R.S. & Roncadori R.N. (1982). Vesicular arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Disease, 66 (1): 9-14.
  • 36. Ingle A.P. Duran N. & Rai M. (2014). Bioactivity, Mechanism of Action, and Cytotoxicity of Copper-Based Nanoparticles: A Review. Applied Microbiology Biotechnology, 98:1001–1009.
  • 37. Irshad L., Dawar S., Zaki M.J. & Ghaffar A. (2006). Effect of nursery fertilizers on plant growth and the control of Meloidogyne javanica root knot nematode on mung bean and okra plants. Pakistan Journal of Botany, 38 (4): 1301-1304.
  • 38. Kacar B. & Katkat V. (2010). Bitki Besleme. 5. Baskı, Nobel Yayın Dağıtım Tic. Ltd. Şti, Kızılay-Ankara.
  • 39. Ketabchi S., Charehgani H. & Majzoob S. (2016). Impact of rhizosphere antagonistic bacteria and urea fertilizer on root knot nematode (Meloidogyne incognita) under green house condition. The Journal of Animal & Plant Sciences, 26 (6):1780-1786.
  • 40. Khan A.U., Khan M., Khan A.A., Parveen A., Ansari S., & Alam M. (2022a). Effect of Phyto-Assisted Synthesis of Magnesium Oxide Nanoparticles (MgO-NPs) on Bacteria and the Root-Knot Nematode. Bioinorganic Chemistry and Applications, 11 pp.
  • 41. Khan A., Bani Mfarrej M.F., Danish M., Shariq M., Khan M.F., Ansari M.S. & Ahmad F. (2022b). Synthesized copper oxide nanoparticles via the green route act as antagonists to pathogenic root-knot nematode, Meloidogyne incognita. Green Chemistry Letters and Reviews, 15(3), 491-507.
  • 42. Kheir A.M., Al-Sayed A.A. & Saeed M.R. (2009). Suppressive effects of inorganic fertilizers on M. incognita infecting soybean. Egypt J. Agronematol., 7(1):9-19.
  • 43. Marschner H. (1997). Mineral nutrition of higher plants. London: Academic Press. P. 889.
  • 44. McCauley A., Jones C. & Jacobsen J. (2009). Nutrient management. Montana State University Extension Service. Publication, 4449-9, p.1–16. 45. Minton E.B. & Ebelhar M.W. (1991). Potassium and aldicarb-disulfoton effects on Verticillium wilt, yield and quality of cotton. Crop Science, 31: 209-212.
  • 46. Mohamed M.M. & Youssef M.M.A. (2009). Efficacy of calcium carbide for managing Meloidogyne incognita infesting squash in Egypt. International Journal of Nematology, 19: 229-231.
  • 47. Oborn I., Edwards A.C., Witter E., Oenema O., Ivarsson K., Withers P.J.A., Nilsson S.I.R. & Stinzing A. (2003). Element balances as a toll for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. European Journal of Agronomy, 20: 211–225.
  • 48. Oteifa B.A. & El-Gindi D.M. (1962). Influence of parasitic duration of Meloidogyne javanica on host nutrient uptake. Journal of Nematology, 8: 200-216.
  • 49. Oteifa B.A. & Elgindi A.Y. (1976). Potassium nutrition of cotton, Gossypium barbadense, in relation to nematode infection by Meloidogyne incognita and Rotylenchulus reniformis. Proc. 12th Colloq. Int. Potash Inst. Bern. pp. 301-306.
  • 50. Pant V., Hakim S. & Saxena S.K. (1983). Effect of different levels of N, P, K on the growth of tomato Marglobe and on the morphometrics of root-knot nematode Meloidogyne incognita. Indian Journal of Nematology, 13 (1): 110-113.
  • 51. Perrenoud S. (1990). Potassium and plant health. Bern: International Potash Institute, 2. ed. P. 363.
  • 52. Pettigrew W.T., Meredith W.R. & Young L.D. (2005). Potassium fertilization effects on cotton lint yield, yield components, and reniform nematode populations. Agronomy Journal, 97: 1245-1251.
  • 53. Rice R.W. (2007). The physiological role of minerals in the plant. In: Datnoff LE, Elmer WH, Huber DM (eds.) Mineral nutrition and plant disease, St. Paul, Minnesota: The American Phytopathological Society, pp 9–29.
  • 54. Rocha M.R., Carvalho I., Corrêa G.C., Cattini G.P. & Paolini G. (2006). Efeito de doses crescentes de calcário sobre a população de Heterodera glycines em soja. Pesq. Agropec. Trop. 36: 89-94.
  • 55. Rodríguez-Kábana R. & Robertson D.G. (2000a). Nematicidal and herbicidal properties of liquid formulation of potassium azide. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. November 6-9, 2000. Orlando, FL Page 8-1.
  • 56. Rodríguez-Kábana R. & Robertson D.G. (2000b). Nematicidal and herbicidal properties of potassium azide. Nematropica, 30: 146-147.
  • 57. Rodriguez-Kábana R. (1986). Organic and inorganic nitrogen amendments to soil as nematode suppressants. Journal of Nematology, 18 (2): 129-135.
  • 58. Rumiani M., Karegar A., Hamzehzarghani H., & Banihashemi Z. (2016). Effect of elemental sulfur on the root-knot nematode, Meloidogyne incognita, activities in cucumber plants. Iranian journal of plant pathology, 52(1).
  • 59. Salgado S.M.L, Resende M.L.V. & Campos V.P. (2007). Efeito de indutores de resistência sobre Meloidogyne exigua do cafeeiro. Ciênc. Agrotecnology, 31: 1007-1013.
  • 60. Seifi S. & Bide A.K. (2013). Effect of mineral fertilizers on cereal cyst nematode Heterodera filipjevi population and evaluation of wheat. World Applied Programming, 3 (4): 137–141.
  • 61. Shaukat S.S. & Siddiqui I.A. (2003). Zinc improves biocontrol of Meloidogyne javanica by the antagonistic rhizobia. Pakistan Journal of Biological Sciences, 6 (6): 575-579.
  • 62. Shoja T., Majıdıan M., & Rabıee M. (2018). Effects of zinc, boron and sulfur on grain yield, activity of some antioxidant enzymes and fatty acid composition of rapeseed (Brassica napus L.). Acta Agriculturae Slovenica, 111(1), 73-84.
  • 63. Siddiqui I.A., Shaukat S.S. & Hamid M. (2002). Role of zinc in rhizobacteriamediated suppression of root-infecting fungi and root-knot nematode. Journal of Phytopathology, 150 (10): 569-575.
  • 64. Siddiqui I.A. & Shaukat S.S. (2002). Zinc and glycerol enhance the production of nematicidal compounds in vitro and improve the biocontrol of Meloidogyne javanica in tomato by fluorescent pseudomonads. Letters in Applied Microbiology, 35: 212-217.
  • 65. Sinha A.K. & Neog P.P. (2003). Effect of different levels of NPK fertilizers against citrus nematode Tylenchulus semipenetrans on khasi mandarin. Indian Journal of Nematology, 33 (1): 61- 62.
  • 66. Spiegel Y., Cohn E., Kafkafi U., & Sulami M. (1982). Influence of potassium and nitrogen fertilization on parasitism by the root-knot nematode Meloidogyne javanica. Journal of Nematology, 14(4): 530.
  • 67. Streeter T.C., Rengel Z., Neate S.M. & Graham R.D. (2001). Zinc fertilization increases tolerance to Rhizoctonia solani (AG 8) in Medicago truncatula. Plant Soil, 228: 233-242.
  • 68. Thompson J.P. & Clewett T.G. (2021). Impacts of root-lesion nematode (Pratylenchus thornei) on plant nutrition, biomass, grain yield and yield components of susceptible/intolerant wheat cultivars determined by nematicide applications. Agronomy, 11(2), 296.
  • 69. Van-Viet P., Nguyen H.N., Cao T.M. & Van hieu L. (2016). Fusarium Antifungal Activities of Copper Nanoparticles Synthesised by a Chemical Reduction Method. Nanomat Article ID 1957612.
  • 70. Viaene N., Coyne D.L. & Davies K.G. (2013). Biological and Cultural Management. In: Perry R. N. and Moens, M. (Eds.). Plant Nematology, 2nd edition. CABI Wallingford, UK. pp: 383-410.
  • 71. Zambolim L. Costa H. & Vale F.X.R. (2001). Efeito da nutrição mineral sobre doenças de plantas causadas por patógenos de solo. In: Zambolim L (ed) Manejo integrado fitossanidade: cultivo protegido, pivô central e plantio direto. Viçosa: Editora UFV. 347-408.
  • 72. Zenda T., Liu S., Yao D., Liu Y., Duan H. (2017). Effects of sulphur and chlorine on photosynthetic parameters, antioxidant enzyme activities and yield in fresh corn grown under field conditions. International Journal of Agronomy and Agricultural Research, 11(6): 32-45.

BAZI BİTKİ BESİN ELEMENTLERİNİN BİTKİ PARAZİTİ NEMATODLAR ÜZERİNE ETKİSİ

Yıl 2022, Cilt: 5 Sayı: 2, 114 - 121, 31.12.2022
https://doi.org/10.55930/jonas.1185112

Öz

Bitki paraziti nematodlar dünya genelinde birçok bitki türünde zarar oluşturan ve önemli ekonomik kayba neden olan obligat tarımsal organizmalardır. Bitki paraziti nematodların çoğunluğu konukçularının köklerinde, çok az bir kısmı ise yaprak, çiçek ya da tohum gibi bitkilerin toprak üstü aksamlarında zarar yapabilmektedir. Bitki paraziti nematodların köklerde beslenmesi sonucu bitkinin su ve besinleri alma yeteneği azalmaktadır. Beslenme sırasında kullandıkları stilet ile bitki köklerinde yaralara ve bazı mikrobiyal hastalıklara neden olarak, kökte kahverengi lekeler oluşturarak ve bitkinin toprak üstü kısımlarında yumruların şişmesi veya çürümesiyle konukçu bitkiye zarar vermektedirler. Bitki paraziti nematodların zararını tolere edebilmede bitki besin elementleri önemli bir yer tutmaktadır. Besin elementleri nematod popülasyonlarını artırabilir ya da azaltabilmektedirler. Bu etki besin elementine ve kullanılan besin kaynağına bağlı olarak değişebilir. Bitki besleme ile bitki paraziti nematodlar arasındaki etkileşim üzerine yapılan çalışmaların genellikle azot, fosfor ve potasyum elementleri ile ilgili olduğu görülmüştür. Makro ve mikro besin maddelerinin toprağa dengeli bir şekilde uygulanması, bitkinin nematodların neden olduğu zararları tolere edebilmesini sağlamanın en iyi yoludur. Bu çalışmada gübrelemede bazı bitki besin elementlerinin kullanımının bitki paraziti nematodlara karşı etkileri hakkında elde edilen bilgiler derlenmiştir.

Proje Numarası

x

Kaynakça

  • 1. Abbas H., Nazir Javed, M. K. & Khan S. A. (2022). Impact of Integrative Management Strategies on the Reproduction of Root Knot Nematode, Meloidogyne incognita. Pakistan Journal of Zoology, 1-7.
  • 2. Agrios G.N. (2005). Plant Pathology. 5ª ed. London: Elsevier Academic Press. P. 922.
  • 3. Akhtar M.F. & Malik A. (2000). Role of organic soil amendments and soil organisms in the biological control of plant parasitic nematodes: A review. Bioresource Technology, 74 (1): 35- 47.
  • 4. Al-Hazmi A.S. & Dawabah A.A.M. (2014). Effect of urea and certain NPK fertilizers on the cereal cyst nematode (Heterodera avenae) on wheat. Saudi Journal of Biological Sciences, 21 (2): 191–196.
  • 5. Arslan N., Aksu G. & Altay H. (2020). Potasyumun domateste kök-ur nematodu (Meloidogyne incognita) üzerine etkisi. Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 21(2), 95-102.
  • 6. Barbosa K.A.G., Garcia R.A., Santos L.C., Teixeira R.A., Araújo F.G., Rocha M.R. & Lima F.S.O. (2010). Avaliação da adubação potássica sobre populações de Heterodera glycines em cultivares de soja resistente e suscetível. Nematologia Brasileira, 34 (3): 150-157.
  • 7. Barker A.V. & Pilbeam D.J. (2007). Handbook of Plant Nutrition. London: Taylor & Francis Group. P. 613.
  • 8. Bolat İ. & Kara Ö. (2017). Bitki Besin elementleri: kaynakları, işlevleri, eksik ve fazlalıkları. Bartın Orman Fakültesi Dergisi, 19 (1): 218-228.
  • 9. Bybordi A. & Mamedov G. (2010). Evaluation of application methods efficiency of zinc and iron for canola (Brassica napus L.). Notulae Scientia Biologicae, 2(1): 94-103.
  • 10. Cadet P. & Spaull V. (2005). Nematode parasites of sugarcane. In: Luc M, Sikora RA, Bridge J (eds) Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. Wallingford: CAB International, pp. 645-674.
  • 11. Carling D.E., Roncadori R.W. & Hussey R.S. (1996). Interactions of arbuscular mycorrhizae, Meloidogyne arenaria, and phosphorus fertilization on peanut. Mycorrhiza, 6 (1): 9–13.
  • 12. Charegani H.A., Bideh A.K. & Hamzehzarghani H. (2010). Effect of chemical fertilizers on root-knot nematode (Meloidogyne incognita) in greenhouse cucumber cultivation. Iran Journal of Plant Pathology, 46 (3): 71-73.
  • 13. Collins R.J. & Rodríguez-Kábana R. (1971). Relationships of fertilizer treatments and crop sequence to populations of lesion nematode. Journal of Nematology, 3 (4): 306-307.
  • 14. Coyne D.L., Sahrawat K.L. & Plowright R.A. (2004). The influence of mineral fertilizer application and plant nutrition on plant-parasitic nematodes in upland and lowland rice in cote d’lvoire and its implications in long term agricultural research trials. Experimental Agriculture, 40: 245–256.
  • 15. Derks W. & Creasy L.L. (1989). Influence of fosetyl-Al on phytoalexin accumulation in the Plasmopara viticola grapevine interaction. Physiological and Molecular Plant Pathology, 3: 203-213.
  • 16. Dias-Arieira C.R., Cunha T.P.L., Chiamolera F.M., Puerari H.H., Biela F. & Santana S. M. (2012a). Reaction of vegetables and aromatic plants to Meloidogyne javanica and M. incognita. Horticultura Brasileira, 30: 322-326.
  • 17. Dias-Arieira C.R., Marini P.M., Fontana L.F., Roldi M. & Silva T.R.B. (2012b). Effect of Azospirillum brasilense, Stimulate® and potassium phosphite to control Pratylenchus brachyurus in soybean and maize. Nematropica, 42 (1): 170-175.
  • 18. Dutra M.R, Garcia A.I.A., Paiva B.R.T.L., Rocha F.S. & Campos V.P. (2004). Efeito do silício aplicado na semeadura do feijoeiro no controle de nematoides das galhas. Fitopatologia Brasileira, 29: 172.
  • 19. Epstein E. & Bloom A. (2004). Mineral Nutrition of Plants. Sunderland: Sinauer Associates. P. 380.
  • 20. Fageria N.K. (2009). The Use of Nutrients in Crop Plants. CRC Pres, Boca Raton, Florida, New York.
  • 21. Fageria N.K., Baligar V.C. & Jones C.A. (2011). Growth and Mineral Nutrition of Field Crops. 3rd Edition, CRC Pres, Boca Raton, FL, USA.
  • 22. Fancelli A.L. (2008). Influência da nutrição na ocorrência de doenças de plantas. Informaçoes Agronomicas, 122: 23-24.
  • 23. Farahat A.A., Alsayed A.A., El-Beltagi H.S. & Mahfoud N.M. (2012). Impact of organic and inorganic fertilizers on nematode reproduction and biochemical alterations on tomato. Notulae Scientia Biologicae, 4(1): 48-55.
  • 24. Ferraz S., Freitas L.G., Lopes E.A. & Dias-Arieira C.R. (2010). Manejo Sustentável De Fitonematoides. Viçosa: Editora UFV. P. 306.
  • 25. Gad S.B. (2013). Role of mineral nutrition on controlling Meloidogyne incognita infecting okra Plant under greenhouse conditions. Journal of Plant Protection and Pathology, 4(8), 731-738.
  • 26. Gardiner D.T ve Miller R.W. (2008). Soils in Our Environment. 11th Edition, Pearson/Prentice Hall, Upper Saddle Hill, Ne Jersey, USA.
  • 27. Guest D. & Grant B. (1991). The complex action of phosphonates as antifungal agents. Biological Reviews, 66 (2): 159-187.
  • 28. Güneş A., & Sönmez O. (2019). Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler. Journal of the Institute of Science and Technology, 9(2), 1186-1192.
  • 29. Hamida A.O., Hoda A.H., Mohamed M.M.M. & Alkelany U.S. (2015). Effect of integrating inorganic fertilizer with either micronema, compost, or oxamyl on suppressing plant parasitic nematode Meloidogyne incognita infecting tomato plants under field conditions. Middle East Journal of Agriculture Research, 4 (4): 707-711.
  • 30. Hanson P.M., Nickell C.D., Gray L.E. & Sebastian S.A. (1988). Identification of two dominant genes conditioning brown stem rot resistance in soybean. Crop Science, 28: 41–43.
  • 31. Hemmatia S. & Saeedizadehb A. (2020). Root-knot nematode, Meloidogyne javanica, in response to soil fertilization. Brazilian Journal of Biology, 80: 621-630.
  • 32. Huebner R.A., Rodríguez-Kábana R. & Patterson R.M. (1983). Hemicellulosic waste and urea for control of plant parasitic nematodes: Effect on soil enzyme activities. Nematropica, 13 (1): 37-54.
  • 33. Hurchanik D., Schmitt D.P., Hue N.V. & Sipes B.S. (2003). Relationship of Meloidogyne konaensis population densities to nutritional status of coffee roots and leaves. Nematropica 33 (1): 55-64.
  • 34. Hurchanik D., Schmitt D.P., Hue N.V. & Sipes B.S. (2004). Plant nutrient partitioning in coffee infected with Meloidogyne konaensis. Journal of Nematology, 36 (1): 76-84.
  • 35. Hussey R.S. & Roncadori R.N. (1982). Vesicular arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Disease, 66 (1): 9-14.
  • 36. Ingle A.P. Duran N. & Rai M. (2014). Bioactivity, Mechanism of Action, and Cytotoxicity of Copper-Based Nanoparticles: A Review. Applied Microbiology Biotechnology, 98:1001–1009.
  • 37. Irshad L., Dawar S., Zaki M.J. & Ghaffar A. (2006). Effect of nursery fertilizers on plant growth and the control of Meloidogyne javanica root knot nematode on mung bean and okra plants. Pakistan Journal of Botany, 38 (4): 1301-1304.
  • 38. Kacar B. & Katkat V. (2010). Bitki Besleme. 5. Baskı, Nobel Yayın Dağıtım Tic. Ltd. Şti, Kızılay-Ankara.
  • 39. Ketabchi S., Charehgani H. & Majzoob S. (2016). Impact of rhizosphere antagonistic bacteria and urea fertilizer on root knot nematode (Meloidogyne incognita) under green house condition. The Journal of Animal & Plant Sciences, 26 (6):1780-1786.
  • 40. Khan A.U., Khan M., Khan A.A., Parveen A., Ansari S., & Alam M. (2022a). Effect of Phyto-Assisted Synthesis of Magnesium Oxide Nanoparticles (MgO-NPs) on Bacteria and the Root-Knot Nematode. Bioinorganic Chemistry and Applications, 11 pp.
  • 41. Khan A., Bani Mfarrej M.F., Danish M., Shariq M., Khan M.F., Ansari M.S. & Ahmad F. (2022b). Synthesized copper oxide nanoparticles via the green route act as antagonists to pathogenic root-knot nematode, Meloidogyne incognita. Green Chemistry Letters and Reviews, 15(3), 491-507.
  • 42. Kheir A.M., Al-Sayed A.A. & Saeed M.R. (2009). Suppressive effects of inorganic fertilizers on M. incognita infecting soybean. Egypt J. Agronematol., 7(1):9-19.
  • 43. Marschner H. (1997). Mineral nutrition of higher plants. London: Academic Press. P. 889.
  • 44. McCauley A., Jones C. & Jacobsen J. (2009). Nutrient management. Montana State University Extension Service. Publication, 4449-9, p.1–16. 45. Minton E.B. & Ebelhar M.W. (1991). Potassium and aldicarb-disulfoton effects on Verticillium wilt, yield and quality of cotton. Crop Science, 31: 209-212.
  • 46. Mohamed M.M. & Youssef M.M.A. (2009). Efficacy of calcium carbide for managing Meloidogyne incognita infesting squash in Egypt. International Journal of Nematology, 19: 229-231.
  • 47. Oborn I., Edwards A.C., Witter E., Oenema O., Ivarsson K., Withers P.J.A., Nilsson S.I.R. & Stinzing A. (2003). Element balances as a toll for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. European Journal of Agronomy, 20: 211–225.
  • 48. Oteifa B.A. & El-Gindi D.M. (1962). Influence of parasitic duration of Meloidogyne javanica on host nutrient uptake. Journal of Nematology, 8: 200-216.
  • 49. Oteifa B.A. & Elgindi A.Y. (1976). Potassium nutrition of cotton, Gossypium barbadense, in relation to nematode infection by Meloidogyne incognita and Rotylenchulus reniformis. Proc. 12th Colloq. Int. Potash Inst. Bern. pp. 301-306.
  • 50. Pant V., Hakim S. & Saxena S.K. (1983). Effect of different levels of N, P, K on the growth of tomato Marglobe and on the morphometrics of root-knot nematode Meloidogyne incognita. Indian Journal of Nematology, 13 (1): 110-113.
  • 51. Perrenoud S. (1990). Potassium and plant health. Bern: International Potash Institute, 2. ed. P. 363.
  • 52. Pettigrew W.T., Meredith W.R. & Young L.D. (2005). Potassium fertilization effects on cotton lint yield, yield components, and reniform nematode populations. Agronomy Journal, 97: 1245-1251.
  • 53. Rice R.W. (2007). The physiological role of minerals in the plant. In: Datnoff LE, Elmer WH, Huber DM (eds.) Mineral nutrition and plant disease, St. Paul, Minnesota: The American Phytopathological Society, pp 9–29.
  • 54. Rocha M.R., Carvalho I., Corrêa G.C., Cattini G.P. & Paolini G. (2006). Efeito de doses crescentes de calcário sobre a população de Heterodera glycines em soja. Pesq. Agropec. Trop. 36: 89-94.
  • 55. Rodríguez-Kábana R. & Robertson D.G. (2000a). Nematicidal and herbicidal properties of liquid formulation of potassium azide. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. November 6-9, 2000. Orlando, FL Page 8-1.
  • 56. Rodríguez-Kábana R. & Robertson D.G. (2000b). Nematicidal and herbicidal properties of potassium azide. Nematropica, 30: 146-147.
  • 57. Rodriguez-Kábana R. (1986). Organic and inorganic nitrogen amendments to soil as nematode suppressants. Journal of Nematology, 18 (2): 129-135.
  • 58. Rumiani M., Karegar A., Hamzehzarghani H., & Banihashemi Z. (2016). Effect of elemental sulfur on the root-knot nematode, Meloidogyne incognita, activities in cucumber plants. Iranian journal of plant pathology, 52(1).
  • 59. Salgado S.M.L, Resende M.L.V. & Campos V.P. (2007). Efeito de indutores de resistência sobre Meloidogyne exigua do cafeeiro. Ciênc. Agrotecnology, 31: 1007-1013.
  • 60. Seifi S. & Bide A.K. (2013). Effect of mineral fertilizers on cereal cyst nematode Heterodera filipjevi population and evaluation of wheat. World Applied Programming, 3 (4): 137–141.
  • 61. Shaukat S.S. & Siddiqui I.A. (2003). Zinc improves biocontrol of Meloidogyne javanica by the antagonistic rhizobia. Pakistan Journal of Biological Sciences, 6 (6): 575-579.
  • 62. Shoja T., Majıdıan M., & Rabıee M. (2018). Effects of zinc, boron and sulfur on grain yield, activity of some antioxidant enzymes and fatty acid composition of rapeseed (Brassica napus L.). Acta Agriculturae Slovenica, 111(1), 73-84.
  • 63. Siddiqui I.A., Shaukat S.S. & Hamid M. (2002). Role of zinc in rhizobacteriamediated suppression of root-infecting fungi and root-knot nematode. Journal of Phytopathology, 150 (10): 569-575.
  • 64. Siddiqui I.A. & Shaukat S.S. (2002). Zinc and glycerol enhance the production of nematicidal compounds in vitro and improve the biocontrol of Meloidogyne javanica in tomato by fluorescent pseudomonads. Letters in Applied Microbiology, 35: 212-217.
  • 65. Sinha A.K. & Neog P.P. (2003). Effect of different levels of NPK fertilizers against citrus nematode Tylenchulus semipenetrans on khasi mandarin. Indian Journal of Nematology, 33 (1): 61- 62.
  • 66. Spiegel Y., Cohn E., Kafkafi U., & Sulami M. (1982). Influence of potassium and nitrogen fertilization on parasitism by the root-knot nematode Meloidogyne javanica. Journal of Nematology, 14(4): 530.
  • 67. Streeter T.C., Rengel Z., Neate S.M. & Graham R.D. (2001). Zinc fertilization increases tolerance to Rhizoctonia solani (AG 8) in Medicago truncatula. Plant Soil, 228: 233-242.
  • 68. Thompson J.P. & Clewett T.G. (2021). Impacts of root-lesion nematode (Pratylenchus thornei) on plant nutrition, biomass, grain yield and yield components of susceptible/intolerant wheat cultivars determined by nematicide applications. Agronomy, 11(2), 296.
  • 69. Van-Viet P., Nguyen H.N., Cao T.M. & Van hieu L. (2016). Fusarium Antifungal Activities of Copper Nanoparticles Synthesised by a Chemical Reduction Method. Nanomat Article ID 1957612.
  • 70. Viaene N., Coyne D.L. & Davies K.G. (2013). Biological and Cultural Management. In: Perry R. N. and Moens, M. (Eds.). Plant Nematology, 2nd edition. CABI Wallingford, UK. pp: 383-410.
  • 71. Zambolim L. Costa H. & Vale F.X.R. (2001). Efeito da nutrição mineral sobre doenças de plantas causadas por patógenos de solo. In: Zambolim L (ed) Manejo integrado fitossanidade: cultivo protegido, pivô central e plantio direto. Viçosa: Editora UFV. 347-408.
  • 72. Zenda T., Liu S., Yao D., Liu Y., Duan H. (2017). Effects of sulphur and chlorine on photosynthetic parameters, antioxidant enzyme activities and yield in fresh corn grown under field conditions. International Journal of Agronomy and Agricultural Research, 11(6): 32-45.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Fatma Gül Göze Özdemir 0000-0003-1969-4041

Proje Numarası x
Yayımlanma Tarihi 31 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Göze Özdemir, F. G. (2022). BAZI BİTKİ BESİN ELEMENTLERİNİN BİTKİ PARAZİTİ NEMATODLAR ÜZERİNE ETKİSİ. Bartın University International Journal of Natural and Applied Sciences, 5(2), 114-121. https://doi.org/10.55930/jonas.1185112
AMA Göze Özdemir FG. BAZI BİTKİ BESİN ELEMENTLERİNİN BİTKİ PARAZİTİ NEMATODLAR ÜZERİNE ETKİSİ. JONAS. Aralık 2022;5(2):114-121. doi:10.55930/jonas.1185112
Chicago Göze Özdemir, Fatma Gül. “BAZI BİTKİ BESİN ELEMENTLERİNİN BİTKİ PARAZİTİ NEMATODLAR ÜZERİNE ETKİSİ”. Bartın University International Journal of Natural and Applied Sciences 5, sy. 2 (Aralık 2022): 114-21. https://doi.org/10.55930/jonas.1185112.
EndNote Göze Özdemir FG (01 Aralık 2022) BAZI BİTKİ BESİN ELEMENTLERİNİN BİTKİ PARAZİTİ NEMATODLAR ÜZERİNE ETKİSİ. Bartın University International Journal of Natural and Applied Sciences 5 2 114–121.
IEEE F. G. Göze Özdemir, “BAZI BİTKİ BESİN ELEMENTLERİNİN BİTKİ PARAZİTİ NEMATODLAR ÜZERİNE ETKİSİ”, JONAS, c. 5, sy. 2, ss. 114–121, 2022, doi: 10.55930/jonas.1185112.
ISNAD Göze Özdemir, Fatma Gül. “BAZI BİTKİ BESİN ELEMENTLERİNİN BİTKİ PARAZİTİ NEMATODLAR ÜZERİNE ETKİSİ”. Bartın University International Journal of Natural and Applied Sciences 5/2 (Aralık 2022), 114-121. https://doi.org/10.55930/jonas.1185112.
JAMA Göze Özdemir FG. BAZI BİTKİ BESİN ELEMENTLERİNİN BİTKİ PARAZİTİ NEMATODLAR ÜZERİNE ETKİSİ. JONAS. 2022;5:114–121.
MLA Göze Özdemir, Fatma Gül. “BAZI BİTKİ BESİN ELEMENTLERİNİN BİTKİ PARAZİTİ NEMATODLAR ÜZERİNE ETKİSİ”. Bartın University International Journal of Natural and Applied Sciences, c. 5, sy. 2, 2022, ss. 114-21, doi:10.55930/jonas.1185112.
Vancouver Göze Özdemir FG. BAZI BİTKİ BESİN ELEMENTLERİNİN BİTKİ PARAZİTİ NEMATODLAR ÜZERİNE ETKİSİ. JONAS. 2022;5(2):114-21.