Araştırma Makalesi
BibTex RIS Kaynak Göster

OLEİK ASİTTEN BİYODİZEL ÜRETİMİNİN KESİKLİ REAKTÖR VE MEMBRAN REAKTÖRDE KARŞILAŞTIRILMASI

Yıl 2024, Cilt: 7 Sayı: 2, 62 - 69, 31.12.2024
https://doi.org/10.55930/jonas.1475141

Öz

Son yıllarda biyodizel, fosil yakıtlara sürdürülebilir bir alternatif olarak daha fazla ilgi görmektedir. Biyodizel, petrol dizel yakıtına kıyasla daha düşük egzoz emisyonlarına ve toksisiteye sahiptir. Bu çalışmada oleik asit ve etanol arasında esterleşme reaksiyonu ile biyodizel üretimi kesikli reaktör ve membran reaktörde gerçekleştirilmiştir. Kesikli reaktörde ve membrane reaktördeki dönüşümler karşılaştırılmıştır. Membran reaktörlerin geleneksel reaktörlere göre avantajı gösterilmiştir. Katalizör olarak homojen katalizör olan sülfürik asit kullanılmıştır. Membran reaktörde kullanılmak üzere hidrofilik olan PVA membranı sentezlenmiştir. Katalizör
konsantrasyonunun (ağırlıkça %2, %4, %6), etanol/oleik asit molar oranının (3, 6, 9) ve sıcaklığın (45°C, 55°C, 65°C arası) oleik asit dönüşümüne etkisi kesikli reaktörde incelenmiştir. Optimizasyon ile belirlenen noktada aynı reaksiyon membran reaktörde de gerçekleştirilmiştir. Reaksiyonlar dört saat sürdürülmüştür. Hem parametrik hem de optimizasyon sonuçlarına göre kütlece katalizör konsantrasyonunun dönüşüme etkisinin düşük olduğu, sıcaklık ve molar besleme oranının ise asit dönüşümüne etkisinin yüksek olduğu görülmüştür. Kesikli reaktörde En yüksek dönüşüm değeri % 85,5 ile 65 °C sıcaklıkta, alkol: asit molar besleme oranı 6:1 iken, %4 katalizör konsantrasyonu ile elde edilmiştir. Etanol/oleik asit molar oranı 3, sıcaklık 55 °C ve katalizör oranı ağırlıkça %4 olduğunda kesikli reaktörde %50 oranında dönüşüm elde edilirken, membran reaktörde %75 oranında elde edilmiştir. Bu sonuçlara dayanarak aynı çalışma koşullarında, membran reaktörde elde edilen asit dönüşüm sonuçları kesikli reaktörlerden %26 oranında arttığı görülmüştür.

Destekleyen Kurum

Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon

Proje Numarası

FBA-2022-4177

Teşekkür

Bu çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimince desteklenmiştir. Proje Numarası: FLÖAP-2023-4334

Kaynakça

  • Ali, S. H. (2009). Kinetics of catalytic esterification of propionic acid with different alcohols over Amberlyst 15. International Journal of Chemical Kinetics, 41(6), 432-448.
  • Aranda, D. A., Santos, R. T., Tapanes, N. C., Ramos, A. L. D. & Antunes, O. A. C. (2008). Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catalysis letters, 122, 20-25.
  • Banchero, M. & Gozzelino, G. (2018). A simple pseudo-homogeneous reversible kinetic model for the esterification of different fatty acids with methanol in the presence of Amberlyst-15. Energies, 11(7), 1843.
  • Banković–Ilić, I. B., Miladinović, M. R., Stamenković, O. S. & Veljković, V. B. (2017). Application of nano CaO–based catalysts in biodiesel synthesis. Renewable and Sustainable Energy Reviews, 72, 746-760.
  • Cannilla, C., Bonura, G., Costa, F. & Frusteri, F. (2018). Biofuels production by esterification of oleic acid with ethanol using a membrane assisted reactor in vapour permeation configuration. Applied Catalysis A: General, 566, 121-129.
  • Corro, G., Tellez, N., Jimenez, T., Tapia, A., Banuelos, F. & Vazquez-Cuchillo, O. (2011). Biodiesel from waste frying oil. Two step process using acidified SiO2 for esterification step. Catalysis today, 166(1), 116-122.
  • Dubé, M. A., Tremblay, A. Y. & Liu, J. (2007). Biodiesel production using a membrane reactor. Bioresource technology, 98(3), 639-647.
  • Fukuda, H., Kondo, A. & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of bioscience and bioengineering, 92(5), 405-416.
  • Han, Y., Lv, E., Ma, L., Lu, J., Chen, K. & Ding, J. (2015). Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol. Energy Conversion and Management, 106, 1379-1386.
  • Hasanoğlu, A. M. (2008). Etil Asetat Üretimine Yönelik Esterleşme Reaksiyonunun Değişik Katalizörler Varlığında Pervaporasyon Membran Reaktörde İncelenmesi. Doktora Tezi, Yıldız Teknik Üniversitesi, İstanbul.
  • Hosseini, S. A. (2022). Nanocatalysts for biodiesel production. Arabian Journal of Chemistry, 15(10), 104152.
  • Li, H., Niu, S. L., Lu, C. M. & Cheng, S. Q. (2015). The stability evaluation of lime mud as transesterification catalyst in resisting CO2 and H2O for biodiesel production. Energy Conversion and management, 103, 57-65.
  • Ma, L., Han, Y., Sun, K., Lu, J. & Ding, J. (2015). Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology. Energy conversion and management, 98, 46-53.
  • Nigiz, F. U. (2021). Comparative study on use of pervaporation membrane reactor for lauric acid–Methanol esterification. Separation and Purification Technology, 264, 118443.
  • Nigiz, F. U., Bayazıtlı, E., Türkmen, İ. D. & Hilmioğlu, N. D. (2011). Pervaporasyon Membran Reaktörler ile Kimyasal Proseslerde Enerji Verimliliği, IV. Enerji Verimliliği ve Kalitesi Sempozyumu, 12-13.
  • Rafiee, E. & Mirnezami, F. (2017). Temperature regulated Brønsted acidic ionic liquid-catalyze esterification of oleic acid for biodiesel application. Journal of Molecular Structure, 1130, 296-302.

COMPARISON OF BIODIESEL PRODUCTION FROM OLEIC ACID IN BATCH REACTOR AND MEMBRANE REACTOR

Yıl 2024, Cilt: 7 Sayı: 2, 62 - 69, 31.12.2024
https://doi.org/10.55930/jonas.1475141

Öz

In recent years, biodiesel has gained more attention as a sustainable alternative to fossil fuels. Compared to petroleum diesel, biodiesel has lower exhaust emissions and toxicity. In this study, the esterification reaction between oleic acid and ethanol was carried out in the presence of sulfuric acid, which is a homogeneous acid catalyst, to produce biodiesel. Experiments were carried out in both a batch reactor and a membrane reactor. The conversions in the batch reactor and the membrane reactor were compared. The advantages of membrane reactors over traditional reactors were demonstrated. A hydrophilic PVA membrane was synthesized to use in the membrane reactor. A parametric study has been done in a batch reactor. The effect of catalyst concentration (2%, 4%, 6% by weight), ethanol/oleic acid molar ratio (3:1, 6:1, 9:1), and temperature (ranging from 45°C to 65°C) on the conversion of oleic acid was investigated in a batch reactor. The study explored how varying these parameters influenced the efficiency of the esterification reaction. Following the optimization process, the reaction was also carried out under the same conditions in a membrane reactor to compare the results. This approach allowed for a detailed analysis of how each variable impacted oleic acid conversion, enabling an optimal set of reaction parameters to be determined for both reactor types. The reactions were conducted for four hours. According to both parametric and optimization results, it was observed that the effect of catalyst concentration (by weight) on the conversion was low, while temperature and molar feed ratio had a significant effect on acid conversion. In the batch reactor, the highest conversion of 85.5% was obtained at 65°C, with an alcohol-to-acid molar feed ratio of 6:1 and a catalyst concentration of 4%. When the ethanol/oleic acid molar ratio was 3, the temperature was 55°C, and the catalyst concentration was 4% by weight, a 50% conversion was achieved in the batch reactor, while a 75% conversion was achieved in the membrane reactor. Based on these results, it was observed that the acid conversion results obtained in the membrane reactor under the same operating conditions were 26% higher than those obtained in the batch reactors.

Destekleyen Kurum

Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon

Proje Numarası

FBA-2022-4177

Teşekkür

Bu çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimince desteklenmiştir. Proje Numarası: FLÖAP-2023-4334

Kaynakça

  • Ali, S. H. (2009). Kinetics of catalytic esterification of propionic acid with different alcohols over Amberlyst 15. International Journal of Chemical Kinetics, 41(6), 432-448.
  • Aranda, D. A., Santos, R. T., Tapanes, N. C., Ramos, A. L. D. & Antunes, O. A. C. (2008). Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catalysis letters, 122, 20-25.
  • Banchero, M. & Gozzelino, G. (2018). A simple pseudo-homogeneous reversible kinetic model for the esterification of different fatty acids with methanol in the presence of Amberlyst-15. Energies, 11(7), 1843.
  • Banković–Ilić, I. B., Miladinović, M. R., Stamenković, O. S. & Veljković, V. B. (2017). Application of nano CaO–based catalysts in biodiesel synthesis. Renewable and Sustainable Energy Reviews, 72, 746-760.
  • Cannilla, C., Bonura, G., Costa, F. & Frusteri, F. (2018). Biofuels production by esterification of oleic acid with ethanol using a membrane assisted reactor in vapour permeation configuration. Applied Catalysis A: General, 566, 121-129.
  • Corro, G., Tellez, N., Jimenez, T., Tapia, A., Banuelos, F. & Vazquez-Cuchillo, O. (2011). Biodiesel from waste frying oil. Two step process using acidified SiO2 for esterification step. Catalysis today, 166(1), 116-122.
  • Dubé, M. A., Tremblay, A. Y. & Liu, J. (2007). Biodiesel production using a membrane reactor. Bioresource technology, 98(3), 639-647.
  • Fukuda, H., Kondo, A. & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of bioscience and bioengineering, 92(5), 405-416.
  • Han, Y., Lv, E., Ma, L., Lu, J., Chen, K. & Ding, J. (2015). Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol. Energy Conversion and Management, 106, 1379-1386.
  • Hasanoğlu, A. M. (2008). Etil Asetat Üretimine Yönelik Esterleşme Reaksiyonunun Değişik Katalizörler Varlığında Pervaporasyon Membran Reaktörde İncelenmesi. Doktora Tezi, Yıldız Teknik Üniversitesi, İstanbul.
  • Hosseini, S. A. (2022). Nanocatalysts for biodiesel production. Arabian Journal of Chemistry, 15(10), 104152.
  • Li, H., Niu, S. L., Lu, C. M. & Cheng, S. Q. (2015). The stability evaluation of lime mud as transesterification catalyst in resisting CO2 and H2O for biodiesel production. Energy Conversion and management, 103, 57-65.
  • Ma, L., Han, Y., Sun, K., Lu, J. & Ding, J. (2015). Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology. Energy conversion and management, 98, 46-53.
  • Nigiz, F. U. (2021). Comparative study on use of pervaporation membrane reactor for lauric acid–Methanol esterification. Separation and Purification Technology, 264, 118443.
  • Nigiz, F. U., Bayazıtlı, E., Türkmen, İ. D. & Hilmioğlu, N. D. (2011). Pervaporasyon Membran Reaktörler ile Kimyasal Proseslerde Enerji Verimliliği, IV. Enerji Verimliliği ve Kalitesi Sempozyumu, 12-13.
  • Rafiee, E. & Mirnezami, F. (2017). Temperature regulated Brønsted acidic ionic liquid-catalyze esterification of oleic acid for biodiesel application. Journal of Molecular Structure, 1130, 296-302.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Hanife Erden

Filiz Uğur Nigiz 0000-0003-0509-8425

Seniyecan Kahraman

Proje Numarası FBA-2022-4177
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 29 Nisan 2024
Kabul Tarihi 14 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Erden, H., Uğur Nigiz, F., & Kahraman, S. (2024). COMPARISON OF BIODIESEL PRODUCTION FROM OLEIC ACID IN BATCH REACTOR AND MEMBRANE REACTOR. Bartın University International Journal of Natural and Applied Sciences, 7(2), 62-69. https://doi.org/10.55930/jonas.1475141
AMA Erden H, Uğur Nigiz F, Kahraman S. COMPARISON OF BIODIESEL PRODUCTION FROM OLEIC ACID IN BATCH REACTOR AND MEMBRANE REACTOR. JONAS. Aralık 2024;7(2):62-69. doi:10.55930/jonas.1475141
Chicago Erden, Hanife, Filiz Uğur Nigiz, ve Seniyecan Kahraman. “COMPARISON OF BIODIESEL PRODUCTION FROM OLEIC ACID IN BATCH REACTOR AND MEMBRANE REACTOR”. Bartın University International Journal of Natural and Applied Sciences 7, sy. 2 (Aralık 2024): 62-69. https://doi.org/10.55930/jonas.1475141.
EndNote Erden H, Uğur Nigiz F, Kahraman S (01 Aralık 2024) COMPARISON OF BIODIESEL PRODUCTION FROM OLEIC ACID IN BATCH REACTOR AND MEMBRANE REACTOR. Bartın University International Journal of Natural and Applied Sciences 7 2 62–69.
IEEE H. Erden, F. Uğur Nigiz, ve S. Kahraman, “COMPARISON OF BIODIESEL PRODUCTION FROM OLEIC ACID IN BATCH REACTOR AND MEMBRANE REACTOR”, JONAS, c. 7, sy. 2, ss. 62–69, 2024, doi: 10.55930/jonas.1475141.
ISNAD Erden, Hanife vd. “COMPARISON OF BIODIESEL PRODUCTION FROM OLEIC ACID IN BATCH REACTOR AND MEMBRANE REACTOR”. Bartın University International Journal of Natural and Applied Sciences 7/2 (Aralık 2024), 62-69. https://doi.org/10.55930/jonas.1475141.
JAMA Erden H, Uğur Nigiz F, Kahraman S. COMPARISON OF BIODIESEL PRODUCTION FROM OLEIC ACID IN BATCH REACTOR AND MEMBRANE REACTOR. JONAS. 2024;7:62–69.
MLA Erden, Hanife vd. “COMPARISON OF BIODIESEL PRODUCTION FROM OLEIC ACID IN BATCH REACTOR AND MEMBRANE REACTOR”. Bartın University International Journal of Natural and Applied Sciences, c. 7, sy. 2, 2024, ss. 62-69, doi:10.55930/jonas.1475141.
Vancouver Erden H, Uğur Nigiz F, Kahraman S. COMPARISON OF BIODIESEL PRODUCTION FROM OLEIC ACID IN BATCH REACTOR AND MEMBRANE REACTOR. JONAS. 2024;7(2):62-9.