Araştırma Makalesi
BibTex RIS Kaynak Göster

DRY-SLIDING WEAR BEHAVIOR OF EXTRA-HARD WEAR-RESISTANT HARDOX 600 STEEL

Yıl 2024, Cilt: 7 Sayı: 2, 70 - 76, 31.12.2024
https://doi.org/10.55930/jonas.1572920

Öz

Hardox steels have high strength and wear resistance. So, they are widely used in the automotive, mining, construction, agricultural, and ore processing industries. For this reason, the wear mechanisms on the machine parts, equipment, and machine tools exposed to harsh working conditions are performed as primarily abrasive and adhesive phenomena. In this study, the dry-sliding wear behavior of extra-hard wear-resistant Hardox 600 steel with chemical composition (% 0.4 C, % 0.56 Si, % 1 Mn, % 1.2 Cr, % 1.5 Ni, % 0.60 Mo, % 0.015 P, % 0.010 S) was investigated. The experiments were carried out in a ball-on-disk type tribometer device using reciprocating mode. The samples were abraded at sliding speeds of 6, 7.5, and 9 mm/s and under loads of 3, 5, and 7 N. A WC ball with a diameter of 6 mm was used as an abrasive. 3D profilometer images were used in the calculation of sample volume losses. SEM micrographs were used to examine wear surfaces. As a result of the experimental studies, it was observed that volume losses increased depending on the increasing load and sliding speed. However, it was determined that the friction coefficient values decreased with the increase in load, and it was evaluated that the main reason for this was the oxide layer caused by the temperature increase caused by friction in the contact area. It was determined that oxidation on the contact surface increased especially at low load and high sliding speed. In addition, the normal and tangential shear stresses that increased with the increasing load increased the plastic deformation, and the surface became flatter and less rough, reducing the friction coefficient. In addition, it was observed that the wear mechanisms occurring on the sample surfaces differed depending on the changing load and sliding speed. With the increase in load, first delamination, then adhesion and plastic deformation type wear mechanisms were detected.

Kaynakça

  • Bhakat, A. K., Mishra, A. K. & Mishra, N. S. (2007). Characterization of wear and metallurgical properties for development of agricultural grade steel suitable in specific soil conditions. Wear, 263(1-6), 228-233.
  • Białobrzeska, B. & Konat, Ł. (2017). Comparative analysis of abrasive-wear resistance of brinar and hardox steels. Tribologia- Finnish Journal of Tribology, 272, 7–16.
  • Deng, X. -T., Wang, Z. -D., Han, Y., Zhao, H. & Wang, G. -D. (2014). Microstructure and Abrasive Wear Behavior of Medium Carbon Low Alloy Martensitic Abrasion Resistant Steel. J. Iron Steel Res. Int., 21, 98–103.
  • Günen, A., Küçük, Y., Er, Y., Çay, V. V., Öge, M. & Gök, M. S. (2015). Effect of the powder particle size on the wear behavior of boronized AISI 304 stainless steel. Materials Testing, 57(5), 468-473.
  • Huang, L., Hua, X., Wu, D., Jiang, Z. & Ye, Y. (2019). A study on the metallurgical and mechanical properties of a GMAW-welded al-mg alloy with different plate thicknesses, Journal of Manufacturing Processes, 37, 438-445.
  • Konat, Ł. & Napiórkowski, J. (2019). The Effect of the Method And Parameters of the Heat Treatment on Abrasive Wear Resistance of 38GSA Steel. Tribologia- Finnish Journal of Tribology, 285, 61–69.
  • Kucuk, Y., Oge, M., Gok, M. S. & Karaoglanli, A. C. (2018). Ferrochromium slag as a protective coating material against oxidation for caster rolls. International Journal of Applied Ceramic Technology, 15, 1240-1247.
  • Kucuk, Y. (2012). Investigation of Abrasiveness Property of Blast Furnace Slag on Ceramic Coatings via the Abrasive Slurry Wear Method. Tribology Transactions, 55(6), 762–771.
  • Küçük, Y., Erdoğan, A., Kurşuncu, B. & Gök, M. S. (2023a) Effects of surface roughness and counter body variables on the dry sliding wear behavior of AISI 4140 steel based on the elastoplastic flattening model. Surf. Topogr.: Metrol. Prop. 11(2), 025002.
  • Küçük, Y., Altaş, E. & Topcu, M. E. (2023b). A comparative analysis of the effect of laser surface treatment on the dry sliding wear behavior of ductile cast irons with different microstructures. Optik, 274, 170540.
  • Küçük, Y. (2020a). Effect of counterbody on the dry sliding wear performance of plasma sprayed calcia-stabilized zirconia coating. International Journal of Refractory Metals and Hard Materials, 92, 105284.
  • Küçük, Y. (2020b). Effect of counter body on wear behavior of plasma-sprayed TiO2-45Cr2O3 coating. Journal of Asian Ceramic Societies, 9(1), 237–252.
  • Küçük, Y. & Öge, M. (2022). Elevated Temperature Wear Behavior of FeCr Slag Coating as an Alternative Coating Material for Caster Rolls. Prot. Met. Phys. Chem. Surf., 58, 119–128.
  • Ligier, K., Zemlik, M., Lemecha, M., Konat, Ł. & Napiórkowski, J. (2022). Analysis of Wear Properties of Hardox Steels in Different Soil Conditions. Materials, 15, 7622.
  • Ojala, N., Valtonen, K., Heino, V., Kallio, M., Aaltonen, J., Siitonen, P. & Kuokkala, V.-T. (2014). Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels. Wear, 317, 225–232.
  • Öge, M., Küçük, Y., Öge, T. Ö., Günen, A., Kanca, Y. & Gök, M. S. (2023). Effect of boriding on high temperature tribological behavior of CoCrMo alloy. Tribology International, 187, 108697.
  • Öge, M., Kucuk, Y., Gok, M. S. & Karaoglanli, A. C. (2019). Comparison of dry sliding wear behavior of plasma sprayed FeCr slag coating with Cr2O3 and Al2O3-13TiO2 coatings. International Journal of Applied Ceramic Technology, 16, 2283-2298.
  • Rendón, J. & Olsson, M. (2009). Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods. Wear, 267(11), 2055-2061.
  • Rojacz, H., Katsich, C., Kirchgaßner, M., Kirchmayer, R. & Badisch, E. (2022). Impact-abrasive wear of martensitic steels and complex iron-based hardfacing alloys. Wear, 492–493, 204183.
  • Tchoumi, T., Peyraut, F. & Bolot, R. (2016). Influence of the welding speed on the distortion of thin stainless steel plates - numerical and experimental investigations in the framework of the food industry machines, J Mater Process Technol., 229, 216-229.
  • Valtonen, K., Ojala, N., Haiko, O. & Kuokkala, V. -T. (2019). Comparison of various high-stress wear conditions and wear performance of martensitic steels. Wear, 426–427, 3–13.
  • Xu, C., Guo, N., Zhang, X., Jiang, H., Tan, Y. & Zhou, L. (2020). Influence of welding speed on weld pool dynamics and welding quality in underwater wet FCAW, Journal of Manufacturing Processes, 55, 381-388.
  • Zemlik, M., Konat, Ł. & Białobrzeska, B. (2025). Analysis of the possibilities to increase abrasion resistance of welded joints of Hardox Extreme steel. Tribology International, 201, 110271.

EKSTRA SERT AŞINMA DİRENÇLİ HARDOX 600 ÇELİĞİNİN KURU-KAYMA AŞINMA DAVRANIŞI

Yıl 2024, Cilt: 7 Sayı: 2, 70 - 76, 31.12.2024
https://doi.org/10.55930/jonas.1572920

Öz

Bu çalışmada, ekstra sert aşınma dirençli Hardox 600 çeliğinin kuru-kayma aşınma davranışı incelenmiştir. Deneyler ball-on-disk aşınma aparatında ileri-geri doğrusal hareket modunda gerçekleştirilmiştir. Numuneler 6, 7.5 ve 9 mm/s kayma hızlarında ve 3, 5 ve 7 N luk yükler altında aşındırılmıştır. Aşındırıcı olarak 6 mm çapında WC bilya kullanılmıştır. Numune hacim kayıplarının hesaplanmasında 3B profilometre görüntüleri kullanılmıştır. Aşınma yüzeylerinin incelenmesinde SEM mikrograflarından yararlanılmıştır. Yapılan deneysel çalışmalar sonucunda artan yük ve kayma hızına bağlı olarak hacim kayıplarının arttığı, ancak bunun yanı sıra artan yükle birlikte numune sürtünme katsayı değerinin düştüğü görülmüştür. Bununla birlikte değişen yük ve kayma hızına bağlı olarak numune yüzeylerinde meydana gelen aşınma mekanizmalarının farklılık gösterdiği gözlenmiştir.

Kaynakça

  • Bhakat, A. K., Mishra, A. K. & Mishra, N. S. (2007). Characterization of wear and metallurgical properties for development of agricultural grade steel suitable in specific soil conditions. Wear, 263(1-6), 228-233.
  • Białobrzeska, B. & Konat, Ł. (2017). Comparative analysis of abrasive-wear resistance of brinar and hardox steels. Tribologia- Finnish Journal of Tribology, 272, 7–16.
  • Deng, X. -T., Wang, Z. -D., Han, Y., Zhao, H. & Wang, G. -D. (2014). Microstructure and Abrasive Wear Behavior of Medium Carbon Low Alloy Martensitic Abrasion Resistant Steel. J. Iron Steel Res. Int., 21, 98–103.
  • Günen, A., Küçük, Y., Er, Y., Çay, V. V., Öge, M. & Gök, M. S. (2015). Effect of the powder particle size on the wear behavior of boronized AISI 304 stainless steel. Materials Testing, 57(5), 468-473.
  • Huang, L., Hua, X., Wu, D., Jiang, Z. & Ye, Y. (2019). A study on the metallurgical and mechanical properties of a GMAW-welded al-mg alloy with different plate thicknesses, Journal of Manufacturing Processes, 37, 438-445.
  • Konat, Ł. & Napiórkowski, J. (2019). The Effect of the Method And Parameters of the Heat Treatment on Abrasive Wear Resistance of 38GSA Steel. Tribologia- Finnish Journal of Tribology, 285, 61–69.
  • Kucuk, Y., Oge, M., Gok, M. S. & Karaoglanli, A. C. (2018). Ferrochromium slag as a protective coating material against oxidation for caster rolls. International Journal of Applied Ceramic Technology, 15, 1240-1247.
  • Kucuk, Y. (2012). Investigation of Abrasiveness Property of Blast Furnace Slag on Ceramic Coatings via the Abrasive Slurry Wear Method. Tribology Transactions, 55(6), 762–771.
  • Küçük, Y., Erdoğan, A., Kurşuncu, B. & Gök, M. S. (2023a) Effects of surface roughness and counter body variables on the dry sliding wear behavior of AISI 4140 steel based on the elastoplastic flattening model. Surf. Topogr.: Metrol. Prop. 11(2), 025002.
  • Küçük, Y., Altaş, E. & Topcu, M. E. (2023b). A comparative analysis of the effect of laser surface treatment on the dry sliding wear behavior of ductile cast irons with different microstructures. Optik, 274, 170540.
  • Küçük, Y. (2020a). Effect of counterbody on the dry sliding wear performance of plasma sprayed calcia-stabilized zirconia coating. International Journal of Refractory Metals and Hard Materials, 92, 105284.
  • Küçük, Y. (2020b). Effect of counter body on wear behavior of plasma-sprayed TiO2-45Cr2O3 coating. Journal of Asian Ceramic Societies, 9(1), 237–252.
  • Küçük, Y. & Öge, M. (2022). Elevated Temperature Wear Behavior of FeCr Slag Coating as an Alternative Coating Material for Caster Rolls. Prot. Met. Phys. Chem. Surf., 58, 119–128.
  • Ligier, K., Zemlik, M., Lemecha, M., Konat, Ł. & Napiórkowski, J. (2022). Analysis of Wear Properties of Hardox Steels in Different Soil Conditions. Materials, 15, 7622.
  • Ojala, N., Valtonen, K., Heino, V., Kallio, M., Aaltonen, J., Siitonen, P. & Kuokkala, V.-T. (2014). Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels. Wear, 317, 225–232.
  • Öge, M., Küçük, Y., Öge, T. Ö., Günen, A., Kanca, Y. & Gök, M. S. (2023). Effect of boriding on high temperature tribological behavior of CoCrMo alloy. Tribology International, 187, 108697.
  • Öge, M., Kucuk, Y., Gok, M. S. & Karaoglanli, A. C. (2019). Comparison of dry sliding wear behavior of plasma sprayed FeCr slag coating with Cr2O3 and Al2O3-13TiO2 coatings. International Journal of Applied Ceramic Technology, 16, 2283-2298.
  • Rendón, J. & Olsson, M. (2009). Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods. Wear, 267(11), 2055-2061.
  • Rojacz, H., Katsich, C., Kirchgaßner, M., Kirchmayer, R. & Badisch, E. (2022). Impact-abrasive wear of martensitic steels and complex iron-based hardfacing alloys. Wear, 492–493, 204183.
  • Tchoumi, T., Peyraut, F. & Bolot, R. (2016). Influence of the welding speed on the distortion of thin stainless steel plates - numerical and experimental investigations in the framework of the food industry machines, J Mater Process Technol., 229, 216-229.
  • Valtonen, K., Ojala, N., Haiko, O. & Kuokkala, V. -T. (2019). Comparison of various high-stress wear conditions and wear performance of martensitic steels. Wear, 426–427, 3–13.
  • Xu, C., Guo, N., Zhang, X., Jiang, H., Tan, Y. & Zhou, L. (2020). Influence of welding speed on weld pool dynamics and welding quality in underwater wet FCAW, Journal of Manufacturing Processes, 55, 381-388.
  • Zemlik, M., Konat, Ł. & Białobrzeska, B. (2025). Analysis of the possibilities to increase abrasion resistance of welded joints of Hardox Extreme steel. Tribology International, 201, 110271.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Yılmaz Küçük 0000-0002-7559-8794

Mustafa Gök 0000-0002-8214-2250

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 24 Ekim 2024
Kabul Tarihi 12 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Küçük, Y., & Gök, M. (2024). EKSTRA SERT AŞINMA DİRENÇLİ HARDOX 600 ÇELİĞİNİN KURU-KAYMA AŞINMA DAVRANIŞI. Bartın University International Journal of Natural and Applied Sciences, 7(2), 70-76. https://doi.org/10.55930/jonas.1572920
AMA Küçük Y, Gök M. EKSTRA SERT AŞINMA DİRENÇLİ HARDOX 600 ÇELİĞİNİN KURU-KAYMA AŞINMA DAVRANIŞI. JONAS. Aralık 2024;7(2):70-76. doi:10.55930/jonas.1572920
Chicago Küçük, Yılmaz, ve Mustafa Gök. “EKSTRA SERT AŞINMA DİRENÇLİ HARDOX 600 ÇELİĞİNİN KURU-KAYMA AŞINMA DAVRANIŞI”. Bartın University International Journal of Natural and Applied Sciences 7, sy. 2 (Aralık 2024): 70-76. https://doi.org/10.55930/jonas.1572920.
EndNote Küçük Y, Gök M (01 Aralık 2024) EKSTRA SERT AŞINMA DİRENÇLİ HARDOX 600 ÇELİĞİNİN KURU-KAYMA AŞINMA DAVRANIŞI. Bartın University International Journal of Natural and Applied Sciences 7 2 70–76.
IEEE Y. Küçük ve M. Gök, “EKSTRA SERT AŞINMA DİRENÇLİ HARDOX 600 ÇELİĞİNİN KURU-KAYMA AŞINMA DAVRANIŞI”, JONAS, c. 7, sy. 2, ss. 70–76, 2024, doi: 10.55930/jonas.1572920.
ISNAD Küçük, Yılmaz - Gök, Mustafa. “EKSTRA SERT AŞINMA DİRENÇLİ HARDOX 600 ÇELİĞİNİN KURU-KAYMA AŞINMA DAVRANIŞI”. Bartın University International Journal of Natural and Applied Sciences 7/2 (Aralık 2024), 70-76. https://doi.org/10.55930/jonas.1572920.
JAMA Küçük Y, Gök M. EKSTRA SERT AŞINMA DİRENÇLİ HARDOX 600 ÇELİĞİNİN KURU-KAYMA AŞINMA DAVRANIŞI. JONAS. 2024;7:70–76.
MLA Küçük, Yılmaz ve Mustafa Gök. “EKSTRA SERT AŞINMA DİRENÇLİ HARDOX 600 ÇELİĞİNİN KURU-KAYMA AŞINMA DAVRANIŞI”. Bartın University International Journal of Natural and Applied Sciences, c. 7, sy. 2, 2024, ss. 70-76, doi:10.55930/jonas.1572920.
Vancouver Küçük Y, Gök M. EKSTRA SERT AŞINMA DİRENÇLİ HARDOX 600 ÇELİĞİNİN KURU-KAYMA AŞINMA DAVRANIŞI. JONAS. 2024;7(2):70-6.