Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 5 Sayı: 2, 127 - 144, 30.11.2022

Öz

Proje Numarası

107M487

Kaynakça

  • 1. Nelson JM, Griffin EG. Adsorption of invertase. J Am Chem Soc. 1916;38(5):1109–15.
  • 2. Matijošytė I, Arends IWCE, de Vries S, Sheldon RA. Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. J Mol Catal B Enzym. 2010;62(2):142–8.
  • 3. Cao L, Langen L Van, Sheldon RA. Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol. 2003;14(4):387–94.
  • 4. Liu T, Rao Y, Zhou W, Zhuang W, Ge L, Lin R, et al. Improved adenylate cyclase activity via affinity immobilization onto co-modified GO with bio-inspired adhesive and PEI. Colloids Surfaces B Biointerfaces. 2021;205(30):111888.
  • 5. Santos JCS dos, Barbosa O, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem. 2015;7(16):2413–32.
  • 6. Misson M, Jin B, Chen B, Zhang H. Enhancing enzyme stability and metabolic functional ability of β-galactosidase through functionalized polymer nanofiber immobilization. Bioprocess Biosyst Eng. 2015;38(10):1915–23.
  • 7. Cipolatti EP, Manoel EA, Fernandez-Lafuente R, Freire DMG. Support engineering: relation between development of new supports for immobilization of lipases and their applications. Biotechnol Res Innov. 2017;1(1):26–34.
  • 8. Cao YP, Xia YP, Gu XF, Han L, Chen Q, Zhi GY, et al. PEI-crosslinked lipase on the surface of magnetic microspheres and its characteristics. Colloids Surfaces B Biointerfaces. 2020;189:110874.
  • 9. Cao L. Immobilised enzymes: science or art? Curr Opin Chem Biol. 2005;9(2):217–26.
  • 10. Cheng HN, Gross RA. Polymer biocatalysis and biomaterials: Current trends and developments. In: Cheng HN, Gross RA, editors. Polymer Biocatalysis and Biomaterials II. Washington, DC: ACS Symposium Series; American Chemical Society; 2008. p. 1–20.
  • 11. Roessl U, Nahálka J, Nidetzky B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett. 2010;32(3):341–50.
  • 12. Würtz Christensen M, Andersen L, Husum TL, Kirk O. Industrial lipase immobilization. Eur J lipid Sci Technol. 2003;105(6):318–321.
  • 13. Parthasarathy R V, Martin CR. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature. 1994;369(6478):298–301.
  • 14. Cao L, van Rantwijk F, Sheldon RA. Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett. 2000;2(10):1361–4.
  • 15. Lopez-Serrano P, Cao L, Van Rantwijk F, Sheldon R. Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol Lett. 2002;24(16):1379–1383.
  • 16. Velasco-Lozano S, López-Gallego F, Vázquez-Duhalt R, Mateos-Díaz JC, Guisán JM, Favela-Torres E. Carrier-free immobilization of lipase from Candida rugosa with polyethyleneimines by carboxyl-activated cross-linking. Biomacromolecules. 2014;15(5):1896–903.
  • 17. He P, Greenway G, Haswell SJ. Development of a monolith based immobilized lipase micro-reactor for biocatalytic reactions in a biphasic mobile system. Process Biochem. 2010;45(4):593–7.
  • 18. Mateo C, Palomo JM, van Langen LM, van Rantwijk F, Sheldon RA. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng. 2004;86(3):273–6.
  • 19. Pchelintsev N a., Youshko MI, Švedas VK. Quantitative characteristic of the catalytic properties and microstructure of cross-linked enzyme aggregates of penicillin acylase. J Mol Catal B Enzym. 2009;56(4):202–7.
  • 20. Guerrero C, Vera C, Araya E, Conejeros R, Illanes A. Repeated-batch operation for the synthesis of lactulose with β-galactosidase immobilized by aggregation and crosslinking. Bioresour Technol. 2015;190:122–31.
  • 21. Albayrak N, Yang ST. Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnol Prog. 2002;18(2):240–251.
  • 22. Taleb MA, Gomaa SK, Wahba MI, Zaki RA, El-Fiky AF, El-Refai HA, et al. Bioscouring of wool fibres using immobilized thermophilic lipase. Int J Biol Macromol. 2022;194:800–10.
  • 23. Schmidt M, Bornscheuer UT. High-throughput assays for lipases and esterases. Biomol Eng. 2005;22(1–3):51–6.
  • 24. Schmidt-Dannert C, Sztajer H. Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochem Biophys Acta. 1994;1214:43–53.
  • 25. Bayramoglu G, Karagoz B, Altintas B, Arica MY, Bicak N. Poly(styrene-divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis. Bioprocess Biosyst Eng. 2011;34(6):735–46.
  • 26. Prlainović NZ, Knežević-Jugović ZD, Mijin DZ, Bezbradica DI. Immobilization of lipase from Candida rugosa on Sepabeads(®): the effect of lipase oxidation by periodates. Bioprocess Biosyst Eng. 2011;34(7):803–10.
  • 27. Gong MD, Pei XJ, Duan GX, Zhi GY, Liu ZQ, Zhang DH. Molecular cages encapsulating lipase and the effect of cage hydrophobicity and cage size. Mater Des. 2022;220:110865.
  • 28. Remonatto D, Miotti RH, Monti R, Bassan JC, de Paula AV. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem. 2022;114:1–20.
  • 29. Güleç HA, Gürdaş S, Albayrak N, Mutlu M. Immobilization of Aspergillus oryzae beta-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide. Biotechnol Bioprocess Eng. 2010;15(6):1006–1015.
  • 30. Güleç HA. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf B Biointerfaces. 2013;104:83–90.
  • 31. Ondul E, Dizge N, Albayrak N. Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine. Colloids Surfaces B Biointerfaces. 2012;95(0):109–14.
  • 32. Bi Y, Zhou H, Jia H, Wei P. A flow-through enzymatic microreactor immobilizing lipase based on layer-by-layer method for biosynthetic process: Catalyzing the transesterification of soybean oil for fatty acid methyl ester production. Process Biochem. 2017;54:73–80.
  • 33. Özarslaner E, Albayrak N. Stability of p-nitrophenyl propionate substrate for spectrophotometric measurement of lipase activity. GIDA. 2013;38(3):143–9.
  • 34. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
  • 35. Borkovec M, Koper GJM. Proton binding characteristics of branched polyelectrolytes. Macromolecules. 1997;30(7):2151–8.
  • 36. Bjurlin M, Bloomer S, Haas MJ. Composition and activity of commercial triacylglycerol acylhydrolase preparations. J Am Oil Chem Soc. 2001;78(2):153–60.
  • 37. de Fuentes IE, Viseras CA, Ubiali D, Terreni M, Alcántara AR. Different phyllosilicates as supports for lipase immobilisation. J Mol Catal B Enzym. 2001;11(4–6):657–663.
  • 38. Lindquist GM, Stratton RA. The role of polyelectrolyte charge density and molecular weight on the adsorption and flocculation of colloidal silica with polyethylenimine. J Colloid Interface Sci. 1976;55(1):45–59.
  • 39. Llerena-Suster CR, Briand LE, Morcelle SR. Analytical characterization and purification of a commercial extract of enzymes: A case study. Colloids Surfaces B Biointerfaces. 2014;121:11–20.
  • 40. Hernáiz MJ, Rua M, Celda B, Medina P, Sinisterra J V, Sánchez-Montero JM. Contribution to the study of the alteration of lipase activity of Candida rugosa by ions and buffers. Appl Biochem Biotechnol. 1994;44(3):213–29.
  • 41. Guauque Torres MDP, Foresti ML, Ferreira ML. Cross-linked enzyme aggregates (CLEAs) of selected lipases: a procedure for the proper calculation of their recovered activity. AMB Express. 2013;3(1):25.
  • 42. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37(5):790–802.
  • 43. Pan J, Kong X-D, Li C-X, Ye Q, Xu J-H, Imanaka T. Crosslinking of enzyme coaggregate with polyethyleneimine: A simple and promising method for preparing stable biocatalyst of Serratia marcescens lipase. J Mol Catal B Enzym. 2011;68(3–4):256–61.
  • 44. Andersson MM, Hatti-Kaul R. Protein stabilising effect of polyethyleneimine. J Biotechnol. 1999;72(1–2):21–31.
  • 45. Schwinté P, Ball V, Szalontai B, Haikel Y, Voegel J-C, Schaaf P. Secondary structure of proteins adsorbed onto or embedded in polyelectrolyte multilayers. Biomacromolecules. 2002;3(6):1135–43.
  • 46. Herrgård S, Gibas CJ, Subramaniam S. Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family. Biochemistry. 2000;39(11):2921–30.
  • 47. Bayramoglu G, Kaya B, Yakup Arıca M. Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres. Food Chem. 2005;92(2):261–8.
  • 48. Hormozi Jangi SR, Akhond M. Introducing a covalent thiol-based protected immobilized acetylcholinesterase with enhanced enzymatic performances for biosynthesis of esters. Process Biochem. 2022;120:138–55.
  • 49. Brzozowski AM, Savage H, Verma CS, Turkenburg JP, Lawson DM, Svendsen A, et al. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry. 2000;39(49):15071–82.
  • 50. Derewenda Z, Derewenda U, Dodson G. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. J Mol Biol. 1992;227(3):818–39.
  • 51. Peters GH, Olsen OH, Svendsen a, Wade RC. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Biophys J. 1996;71(1):119–29.
  • 52. Rehm S, Trodler P, Pleiss J. Solvent-induced lid opening in lipases: a molecular dynamics study. Protein Sci. 2010;19(11):2122–30.
  • 53. Zaitsev SY, Gorokhova I V, Kashtigo T V, Zintchenko A, Dautzenberg H. General approach for lipases immobilization in polyelectrolyte complexes. Colloids Surfaces A Physicochem Eng Asp. 2003;221(1–3):209–20.

Preparation and Characterization of Cross-Linked PEI-Lipase Aggregates with Improved Activity and Stability

Yıl 2022, Cilt: 5 Sayı: 2, 127 - 144, 30.11.2022

Öz

Using polyethyleneimine (PEI) as the sole precipitation and aggregation agent, PEI-enzyme complexation was investigated with lipases from Rhizomucor miehei, Thermomyces lanuginosus and Candida antarctica. The approach relied on rapid development of PEI-lipase aggregates in a solution and followed by glutaraldehyde cross-linking thus resulting in cross-linked PEI-lipase aggregates. PEI to enzyme mass ratio of a 1/ 20-40 range, alkaline pH and the absence of impurities produced higher coupling yields and activities. The pH affected the precipitatibility and/or relative activity of the aggregates. Impurities in some lipase preparations may prevent the formation or precipitation of the PEI-lipase aggregates. The aggregates attained higher stabilities especially at high pHs and enhanced thermostability with at least a 20-fold at ambient temperatures. By using p-nitrophenyl propionate as a soluble substrate, app. Vmax for the immobilized lipase increased by two-fold with only 25% increment in app. Km compared with the soluble lipase. Complexation with PEI may have produced favorable interface assisting for conformational change for the lipase activation. Thus, cross-linked PEI-lipase aggregates with ease of recovery and stability can be simple and inexpensive alternative for carrier-free immobilized lipases.

Destekleyen Kurum

Scientific and Technological Research Council of Turkey

Proje Numarası

107M487

Teşekkür

Appreciation is given to Mehmet Bora Kaydan and Nahit Aktaş for their valuable contributions.

Kaynakça

  • 1. Nelson JM, Griffin EG. Adsorption of invertase. J Am Chem Soc. 1916;38(5):1109–15.
  • 2. Matijošytė I, Arends IWCE, de Vries S, Sheldon RA. Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. J Mol Catal B Enzym. 2010;62(2):142–8.
  • 3. Cao L, Langen L Van, Sheldon RA. Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol. 2003;14(4):387–94.
  • 4. Liu T, Rao Y, Zhou W, Zhuang W, Ge L, Lin R, et al. Improved adenylate cyclase activity via affinity immobilization onto co-modified GO with bio-inspired adhesive and PEI. Colloids Surfaces B Biointerfaces. 2021;205(30):111888.
  • 5. Santos JCS dos, Barbosa O, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem. 2015;7(16):2413–32.
  • 6. Misson M, Jin B, Chen B, Zhang H. Enhancing enzyme stability and metabolic functional ability of β-galactosidase through functionalized polymer nanofiber immobilization. Bioprocess Biosyst Eng. 2015;38(10):1915–23.
  • 7. Cipolatti EP, Manoel EA, Fernandez-Lafuente R, Freire DMG. Support engineering: relation between development of new supports for immobilization of lipases and their applications. Biotechnol Res Innov. 2017;1(1):26–34.
  • 8. Cao YP, Xia YP, Gu XF, Han L, Chen Q, Zhi GY, et al. PEI-crosslinked lipase on the surface of magnetic microspheres and its characteristics. Colloids Surfaces B Biointerfaces. 2020;189:110874.
  • 9. Cao L. Immobilised enzymes: science or art? Curr Opin Chem Biol. 2005;9(2):217–26.
  • 10. Cheng HN, Gross RA. Polymer biocatalysis and biomaterials: Current trends and developments. In: Cheng HN, Gross RA, editors. Polymer Biocatalysis and Biomaterials II. Washington, DC: ACS Symposium Series; American Chemical Society; 2008. p. 1–20.
  • 11. Roessl U, Nahálka J, Nidetzky B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett. 2010;32(3):341–50.
  • 12. Würtz Christensen M, Andersen L, Husum TL, Kirk O. Industrial lipase immobilization. Eur J lipid Sci Technol. 2003;105(6):318–321.
  • 13. Parthasarathy R V, Martin CR. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature. 1994;369(6478):298–301.
  • 14. Cao L, van Rantwijk F, Sheldon RA. Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett. 2000;2(10):1361–4.
  • 15. Lopez-Serrano P, Cao L, Van Rantwijk F, Sheldon R. Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol Lett. 2002;24(16):1379–1383.
  • 16. Velasco-Lozano S, López-Gallego F, Vázquez-Duhalt R, Mateos-Díaz JC, Guisán JM, Favela-Torres E. Carrier-free immobilization of lipase from Candida rugosa with polyethyleneimines by carboxyl-activated cross-linking. Biomacromolecules. 2014;15(5):1896–903.
  • 17. He P, Greenway G, Haswell SJ. Development of a monolith based immobilized lipase micro-reactor for biocatalytic reactions in a biphasic mobile system. Process Biochem. 2010;45(4):593–7.
  • 18. Mateo C, Palomo JM, van Langen LM, van Rantwijk F, Sheldon RA. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng. 2004;86(3):273–6.
  • 19. Pchelintsev N a., Youshko MI, Švedas VK. Quantitative characteristic of the catalytic properties and microstructure of cross-linked enzyme aggregates of penicillin acylase. J Mol Catal B Enzym. 2009;56(4):202–7.
  • 20. Guerrero C, Vera C, Araya E, Conejeros R, Illanes A. Repeated-batch operation for the synthesis of lactulose with β-galactosidase immobilized by aggregation and crosslinking. Bioresour Technol. 2015;190:122–31.
  • 21. Albayrak N, Yang ST. Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnol Prog. 2002;18(2):240–251.
  • 22. Taleb MA, Gomaa SK, Wahba MI, Zaki RA, El-Fiky AF, El-Refai HA, et al. Bioscouring of wool fibres using immobilized thermophilic lipase. Int J Biol Macromol. 2022;194:800–10.
  • 23. Schmidt M, Bornscheuer UT. High-throughput assays for lipases and esterases. Biomol Eng. 2005;22(1–3):51–6.
  • 24. Schmidt-Dannert C, Sztajer H. Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochem Biophys Acta. 1994;1214:43–53.
  • 25. Bayramoglu G, Karagoz B, Altintas B, Arica MY, Bicak N. Poly(styrene-divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis. Bioprocess Biosyst Eng. 2011;34(6):735–46.
  • 26. Prlainović NZ, Knežević-Jugović ZD, Mijin DZ, Bezbradica DI. Immobilization of lipase from Candida rugosa on Sepabeads(®): the effect of lipase oxidation by periodates. Bioprocess Biosyst Eng. 2011;34(7):803–10.
  • 27. Gong MD, Pei XJ, Duan GX, Zhi GY, Liu ZQ, Zhang DH. Molecular cages encapsulating lipase and the effect of cage hydrophobicity and cage size. Mater Des. 2022;220:110865.
  • 28. Remonatto D, Miotti RH, Monti R, Bassan JC, de Paula AV. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem. 2022;114:1–20.
  • 29. Güleç HA, Gürdaş S, Albayrak N, Mutlu M. Immobilization of Aspergillus oryzae beta-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide. Biotechnol Bioprocess Eng. 2010;15(6):1006–1015.
  • 30. Güleç HA. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf B Biointerfaces. 2013;104:83–90.
  • 31. Ondul E, Dizge N, Albayrak N. Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine. Colloids Surfaces B Biointerfaces. 2012;95(0):109–14.
  • 32. Bi Y, Zhou H, Jia H, Wei P. A flow-through enzymatic microreactor immobilizing lipase based on layer-by-layer method for biosynthetic process: Catalyzing the transesterification of soybean oil for fatty acid methyl ester production. Process Biochem. 2017;54:73–80.
  • 33. Özarslaner E, Albayrak N. Stability of p-nitrophenyl propionate substrate for spectrophotometric measurement of lipase activity. GIDA. 2013;38(3):143–9.
  • 34. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
  • 35. Borkovec M, Koper GJM. Proton binding characteristics of branched polyelectrolytes. Macromolecules. 1997;30(7):2151–8.
  • 36. Bjurlin M, Bloomer S, Haas MJ. Composition and activity of commercial triacylglycerol acylhydrolase preparations. J Am Oil Chem Soc. 2001;78(2):153–60.
  • 37. de Fuentes IE, Viseras CA, Ubiali D, Terreni M, Alcántara AR. Different phyllosilicates as supports for lipase immobilisation. J Mol Catal B Enzym. 2001;11(4–6):657–663.
  • 38. Lindquist GM, Stratton RA. The role of polyelectrolyte charge density and molecular weight on the adsorption and flocculation of colloidal silica with polyethylenimine. J Colloid Interface Sci. 1976;55(1):45–59.
  • 39. Llerena-Suster CR, Briand LE, Morcelle SR. Analytical characterization and purification of a commercial extract of enzymes: A case study. Colloids Surfaces B Biointerfaces. 2014;121:11–20.
  • 40. Hernáiz MJ, Rua M, Celda B, Medina P, Sinisterra J V, Sánchez-Montero JM. Contribution to the study of the alteration of lipase activity of Candida rugosa by ions and buffers. Appl Biochem Biotechnol. 1994;44(3):213–29.
  • 41. Guauque Torres MDP, Foresti ML, Ferreira ML. Cross-linked enzyme aggregates (CLEAs) of selected lipases: a procedure for the proper calculation of their recovered activity. AMB Express. 2013;3(1):25.
  • 42. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37(5):790–802.
  • 43. Pan J, Kong X-D, Li C-X, Ye Q, Xu J-H, Imanaka T. Crosslinking of enzyme coaggregate with polyethyleneimine: A simple and promising method for preparing stable biocatalyst of Serratia marcescens lipase. J Mol Catal B Enzym. 2011;68(3–4):256–61.
  • 44. Andersson MM, Hatti-Kaul R. Protein stabilising effect of polyethyleneimine. J Biotechnol. 1999;72(1–2):21–31.
  • 45. Schwinté P, Ball V, Szalontai B, Haikel Y, Voegel J-C, Schaaf P. Secondary structure of proteins adsorbed onto or embedded in polyelectrolyte multilayers. Biomacromolecules. 2002;3(6):1135–43.
  • 46. Herrgård S, Gibas CJ, Subramaniam S. Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family. Biochemistry. 2000;39(11):2921–30.
  • 47. Bayramoglu G, Kaya B, Yakup Arıca M. Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres. Food Chem. 2005;92(2):261–8.
  • 48. Hormozi Jangi SR, Akhond M. Introducing a covalent thiol-based protected immobilized acetylcholinesterase with enhanced enzymatic performances for biosynthesis of esters. Process Biochem. 2022;120:138–55.
  • 49. Brzozowski AM, Savage H, Verma CS, Turkenburg JP, Lawson DM, Svendsen A, et al. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry. 2000;39(49):15071–82.
  • 50. Derewenda Z, Derewenda U, Dodson G. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. J Mol Biol. 1992;227(3):818–39.
  • 51. Peters GH, Olsen OH, Svendsen a, Wade RC. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Biophys J. 1996;71(1):119–29.
  • 52. Rehm S, Trodler P, Pleiss J. Solvent-induced lid opening in lipases: a molecular dynamics study. Protein Sci. 2010;19(11):2122–30.
  • 53. Zaitsev SY, Gorokhova I V, Kashtigo T V, Zintchenko A, Dautzenberg H. General approach for lipases immobilization in polyelectrolyte complexes. Colloids Surfaces A Physicochem Eng Asp. 2003;221(1–3):209–20.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller, Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Nedim Albayrak 0000-0002-6356-5805

Erhan Kanışlı 0000-0002-0768-9336

Proje Numarası 107M487
Yayımlanma Tarihi 30 Kasım 2022
Gönderilme Tarihi 26 Ağustos 2022
Kabul Tarihi 6 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Albayrak, N., & Kanışlı, E. (2022). Preparation and Characterization of Cross-Linked PEI-Lipase Aggregates with Improved Activity and Stability. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 5(2), 127-144.

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)