Research Article
BibTex RIS Cite

Production of High Performance Eco-Composite Materials for Aerospace Applications

Year 2025, Volume: 8 Issue: 1, 82 - 90, 17.06.2025
https://doi.org/10.54565/jphcfum.1708165

Abstract

In today's aviation industry, the use of composite materials has reached 30%. Studies on composite materials continue intensively and these materials are seen as the only solution to meet the material requirements of developing technology. The features expected from composite materials produced for use in the defense industry are high strength, formability, corrosion resistance and vibration damping. In the wing and tail elements of military aircraft such as airplanes and helicopters, in aircraft armors and unmanned aerial vehicles, economical, easily produced and superior composite materials are preferred.

References

  • [1] Mustaţă, F., & Cascaval, C. N. (1997). Rheological and thermal behaviour of an epoxy resin modified with reactive diluents. Journal of polymer engineering, 17(6), 491-506.
  • [2] Mustata, F., Cascaval, CN. and Bicu, I. (1995). Viscosimetric investigation of plasticized epoxy resin. Polymer Plast Technol Eng, 34,461–73.
  • [3] Mustatâ, F., & Bicu, I. (1998). Plastified epoxy resins modified by hydrophilic and hydrophobic silica. Polymer–Plastics Technology and Engineering, 37(2), 127-140.
  • [4] Munz, M., Sturm, H., & Stark, W. (2005). Mechanical gradient interphase by interdiffusion and antiplasticisation effect—study of an epoxy/thermoplastic system. Polymer, 46(21), 9097-9112.
  • [5] Sánchez-Cabezudo, M., Prolongo, M., Salom, C., & Masegosa, R. (2006). Cure kinetics of epoxy resin and thermoplastic polymer. Journal of thermal analysis and calorimetry, 86(3), 699-705.
  • [6] Prolongo, MG., Arribas, C., Salom, C. and Masegosa, RM. (2007). Phase separation, cure kinetics, and morphology of epoxy/poly(vinyl acetate)blends. J Appl Polym Sci. 103, 1507–16.
  • [7] Nakamura, Y., Yamaguchi, M., Okubo, M.and Matsumoto, T. (1992). Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. J Appl Polym Sci. 45:1281–9.
  • [8] Francis, B., Thomas, S., Jose, J., Ramaswamy, R., Lakshmana Rao ,V. (2005). Hydroxyl terminated poly(ether ether ketone) with pendent methyl group toughened epoxy resin miscibility, morphology and mechanical properties. Polymer 46: s.12372–85.
  • [9] Iijima, T., Fujimoto, K-I. and Tomoi, M. (2002). Toughening of cycloaliphatic epoxy resins by poly(ethylene phthalate) and related copolyesters. J Appl Polym Sci 84: s.388–99.
  • [10] Sudhakara P, Kannan P. (2009). Diglycidylphenylphosphate based fire retard liquid crystalline thermosetts. Polym Degrad Stabil 94: s.1–7.
  • [11] Anwar, Z., Kausar, A., Rafique, I. ve Muhammad, B. (2015). Advances inepoxy/graphene nanoplatelet composite with enhanced physical properties: areview, Polymer-Plastics Technology and Engineering, 55, s.643-662.
  • [12] Kaw, A. K. ve Willenbring, G. (1997). A software tool for mechanics of composite materials,International Journal of Engineering Education, 13 (6), s. 433-441.
  • [13] Chou, T., and Kelly, A. (1980). "Mechanical properties of composites," Annu. Rev. Mater. Sci., 10 (1), s. 229-259.
  • [14] Boynard, C. A. ve Almeida, J. R. (2010). Morphological characterization and mechanical behavior of sponge gourd (luffa cylindrica) - polyester composite materials. Polymer-PlasticsTechnology and Engineering, 39 (3), s.489-499.
  • [15] Sinnott, E. W. ve Bloch, R. (1943). Development of the fibrous net in the fruit of various races of luffa cylindrica. Botanical Gazette, 105 (1), s.90-99.
  • [16] Oladoja, N. A., Aboluwoye, C. O., ve Akinkugbe, A. O. (2009). Evaluation of loofah as asorbent in the decolorization of basic dye contaminated aqueous system. Industrial &Engineering Chemistry Research, 48 (6), s.2786–2794.
  • [17] Bal, K.E., Bal, Y. and Lallam, A. (2004). Gross morphology and absorption capacity of cellfibers from the fibrous vascular system of Loofah (Luffa cylindrica). Textile Res J 74: s. 241-247.
  • [18] Ogbonna, J. C., Liu, Y. C., Liu, Y. K., and Tanaka, H., (1994). Loofa (Luffa cylindrica ) Sponge as a Carrier for Microbial Cell Immobilization, J. Ferment. Bioeng. 78(6), s. 437-442.
  • [19] Slokoska, L. S., and Angelova, M. B., (1998). Immobilization of Polymethylgalacturonase Producing Aspergillus niger on Luffa Sponge Material. Z. Naturforsc. 53c, s. 968-972.
  • [20] Boyard, C. A., and D’almeida, J. R. M., (1999).Water Absorption by Sponge Gourd (Luffa cylindrica )/Polyester Composite Materials, J. Mat. Sci. Lett. 18, s. 1789-1791.
  • [21] Italo, O. Mazali and Oswaldo l. Alves. (2005).Morphosynthesis: high fidelity inorganic replica of the fibrous network of loofa sponge (Luffa cylindrica), Anais da Academia Brasileira de Ciências (2005) 77(1): s. 25-31.
  • [22] Potluri, P. and Thammandra, V.S. (2007). Influence of uniaxial and biaxial tension on mesoscale geometry and strain fields in a woven composite.Composite Structures, 77(3), s.405-418.

Year 2025, Volume: 8 Issue: 1, 82 - 90, 17.06.2025
https://doi.org/10.54565/jphcfum.1708165

Abstract

References

  • [1] Mustaţă, F., & Cascaval, C. N. (1997). Rheological and thermal behaviour of an epoxy resin modified with reactive diluents. Journal of polymer engineering, 17(6), 491-506.
  • [2] Mustata, F., Cascaval, CN. and Bicu, I. (1995). Viscosimetric investigation of plasticized epoxy resin. Polymer Plast Technol Eng, 34,461–73.
  • [3] Mustatâ, F., & Bicu, I. (1998). Plastified epoxy resins modified by hydrophilic and hydrophobic silica. Polymer–Plastics Technology and Engineering, 37(2), 127-140.
  • [4] Munz, M., Sturm, H., & Stark, W. (2005). Mechanical gradient interphase by interdiffusion and antiplasticisation effect—study of an epoxy/thermoplastic system. Polymer, 46(21), 9097-9112.
  • [5] Sánchez-Cabezudo, M., Prolongo, M., Salom, C., & Masegosa, R. (2006). Cure kinetics of epoxy resin and thermoplastic polymer. Journal of thermal analysis and calorimetry, 86(3), 699-705.
  • [6] Prolongo, MG., Arribas, C., Salom, C. and Masegosa, RM. (2007). Phase separation, cure kinetics, and morphology of epoxy/poly(vinyl acetate)blends. J Appl Polym Sci. 103, 1507–16.
  • [7] Nakamura, Y., Yamaguchi, M., Okubo, M.and Matsumoto, T. (1992). Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. J Appl Polym Sci. 45:1281–9.
  • [8] Francis, B., Thomas, S., Jose, J., Ramaswamy, R., Lakshmana Rao ,V. (2005). Hydroxyl terminated poly(ether ether ketone) with pendent methyl group toughened epoxy resin miscibility, morphology and mechanical properties. Polymer 46: s.12372–85.
  • [9] Iijima, T., Fujimoto, K-I. and Tomoi, M. (2002). Toughening of cycloaliphatic epoxy resins by poly(ethylene phthalate) and related copolyesters. J Appl Polym Sci 84: s.388–99.
  • [10] Sudhakara P, Kannan P. (2009). Diglycidylphenylphosphate based fire retard liquid crystalline thermosetts. Polym Degrad Stabil 94: s.1–7.
  • [11] Anwar, Z., Kausar, A., Rafique, I. ve Muhammad, B. (2015). Advances inepoxy/graphene nanoplatelet composite with enhanced physical properties: areview, Polymer-Plastics Technology and Engineering, 55, s.643-662.
  • [12] Kaw, A. K. ve Willenbring, G. (1997). A software tool for mechanics of composite materials,International Journal of Engineering Education, 13 (6), s. 433-441.
  • [13] Chou, T., and Kelly, A. (1980). "Mechanical properties of composites," Annu. Rev. Mater. Sci., 10 (1), s. 229-259.
  • [14] Boynard, C. A. ve Almeida, J. R. (2010). Morphological characterization and mechanical behavior of sponge gourd (luffa cylindrica) - polyester composite materials. Polymer-PlasticsTechnology and Engineering, 39 (3), s.489-499.
  • [15] Sinnott, E. W. ve Bloch, R. (1943). Development of the fibrous net in the fruit of various races of luffa cylindrica. Botanical Gazette, 105 (1), s.90-99.
  • [16] Oladoja, N. A., Aboluwoye, C. O., ve Akinkugbe, A. O. (2009). Evaluation of loofah as asorbent in the decolorization of basic dye contaminated aqueous system. Industrial &Engineering Chemistry Research, 48 (6), s.2786–2794.
  • [17] Bal, K.E., Bal, Y. and Lallam, A. (2004). Gross morphology and absorption capacity of cellfibers from the fibrous vascular system of Loofah (Luffa cylindrica). Textile Res J 74: s. 241-247.
  • [18] Ogbonna, J. C., Liu, Y. C., Liu, Y. K., and Tanaka, H., (1994). Loofa (Luffa cylindrica ) Sponge as a Carrier for Microbial Cell Immobilization, J. Ferment. Bioeng. 78(6), s. 437-442.
  • [19] Slokoska, L. S., and Angelova, M. B., (1998). Immobilization of Polymethylgalacturonase Producing Aspergillus niger on Luffa Sponge Material. Z. Naturforsc. 53c, s. 968-972.
  • [20] Boyard, C. A., and D’almeida, J. R. M., (1999).Water Absorption by Sponge Gourd (Luffa cylindrica )/Polyester Composite Materials, J. Mat. Sci. Lett. 18, s. 1789-1791.
  • [21] Italo, O. Mazali and Oswaldo l. Alves. (2005).Morphosynthesis: high fidelity inorganic replica of the fibrous network of loofa sponge (Luffa cylindrica), Anais da Academia Brasileira de Ciências (2005) 77(1): s. 25-31.
  • [22] Potluri, P. and Thammandra, V.S. (2007). Influence of uniaxial and biaxial tension on mesoscale geometry and strain fields in a woven composite.Composite Structures, 77(3), s.405-418.
There are 22 citations in total.

Details

Primary Language English
Subjects Functional Materials
Journal Section Research Article
Authors

Cihat Aydın 0000-0001-9997-6326

Handan Aydın 0000-0002-0141-9773

Sinan Avcı 0000-0002-7566-1327

Submission Date May 28, 2025
Acceptance Date June 2, 2025
Publication Date June 17, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Aydın, C., Aydın, H., & Avcı, S. (2025). Production of High Performance Eco-Composite Materials for Aerospace Applications. Journal of Physical Chemistry and Functional Materials, 8(1), 82-90. https://doi.org/10.54565/jphcfum.1708165
AMA Aydın C, Aydın H, Avcı S. Production of High Performance Eco-Composite Materials for Aerospace Applications. Journal of Physical Chemistry and Functional Materials. June 2025;8(1):82-90. doi:10.54565/jphcfum.1708165
Chicago Aydın, Cihat, Handan Aydın, and Sinan Avcı. “Production of High Performance Eco-Composite Materials for Aerospace Applications”. Journal of Physical Chemistry and Functional Materials 8, no. 1 (June 2025): 82-90. https://doi.org/10.54565/jphcfum.1708165.
EndNote Aydın C, Aydın H, Avcı S (June 1, 2025) Production of High Performance Eco-Composite Materials for Aerospace Applications. Journal of Physical Chemistry and Functional Materials 8 1 82–90.
IEEE C. Aydın, H. Aydın, and S. Avcı, “Production of High Performance Eco-Composite Materials for Aerospace Applications”, Journal of Physical Chemistry and Functional Materials, vol. 8, no. 1, pp. 82–90, 2025, doi: 10.54565/jphcfum.1708165.
ISNAD Aydın, Cihat et al. “Production of High Performance Eco-Composite Materials for Aerospace Applications”. Journal of Physical Chemistry and Functional Materials 8/1 (June2025), 82-90. https://doi.org/10.54565/jphcfum.1708165.
JAMA Aydın C, Aydın H, Avcı S. Production of High Performance Eco-Composite Materials for Aerospace Applications. Journal of Physical Chemistry and Functional Materials. 2025;8:82–90.
MLA Aydın, Cihat et al. “Production of High Performance Eco-Composite Materials for Aerospace Applications”. Journal of Physical Chemistry and Functional Materials, vol. 8, no. 1, 2025, pp. 82-90, doi:10.54565/jphcfum.1708165.
Vancouver Aydın C, Aydın H, Avcı S. Production of High Performance Eco-Composite Materials for Aerospace Applications. Journal of Physical Chemistry and Functional Materials. 2025;8(1):82-90.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum