Klinik Araştırma
BibTex RIS Kaynak Göster

Nöro-enterik Şelalenin Şarj Edici Etkisinin Azalmasıyla Gelişen Zayıflamış Subtalamik Çekirdek Elektromanyetik Alan Şiddetinin Parkinson Hastalığındaki Nöro Fiziksel Rolü: Öncü Deneysel Çalışma

Yıl 2022, Cilt: 1 Sayı: 3, 80 - 88, 30.12.2022

Öz

Amaç: Subtalamik çekirdek stimülasyonunun (STN) nörofiziksel mekanizması hala belirsiz olsa da, azalan elektrik alan gücü ile STN pil ile yeniden şarj edilebilir. Einstein'ın tanımladığı yasaya göre, elektrik yüklü Auerbach gangliyonlarının bağırsak hareketleriyle birlikte titreşerek oluşturduğu birleşik elektromanyetik alan (UF) enerjisi, afferent sinirler tarafından pil gibi beyni şarj etmek üzere taşınabilir. Bu çalışma, mevcut teorinin rasyonelliğini incelemektedir. Gereç ve Yöntem: Bu çalışmada 360±20 gr ağırlığındaki 18 rat, intestinal pulsasyon aralıklarına göre 10±3/GI; 7±2/GII ve 3±1/GIII olmak üzere 3 grubua bölündü. Çıkan kolon orta hattından 5 farklı mesafeden 10 mm aralıklarla 0,5 mm kesitler alınarak Auerbach ganglion yoğunluğu (n/AG/mm3), Auerbach ganglion nöron yoğunluğu (n/AGN/mm3) hesaplandı ve STN nöron yoğunlukları (n/STN/mm3) tahmin edildi. Titreşen parçacıklar olarak kabul edilen Auerbach ganglia nöronlarının sayıları (VPN/mm3), VPN=nAxnAG; Auerbach ganglionlarının oluşturduğu birleşik alan kuvveti (UFS) değerleri, UFS=fxVPN denklemi ile olacak şekilde tahmin edildi. UFS ve n/STN değerleri Mann Witney U testi ile karşılaştırıldı.
Bulgular: VPN/UFS/nSTN değerleri: (13.345±2.143)/(11.146±1.689)/132.863±12.654 GI'de; (11.762±1.843)/(8.434±1.119)/121.371±9.872 GII'de ve (8.659±903)/(7.109±768) /118.127±6942 GIII'de) UFS/nSTN arasındaki istatistiksel sonuçlar: p<0.005 of GI/GII; p<0,0005 GII/GIII ve p<0,00001 GI/GIII).
Sonuç: Auerbach ganglionları tarafından oluşturulan bağırsak UF'lerinden yayılan elektromanyetik enerji, pil gibi mekanizmalarla STN ömrü üzerinde belirleyici bir role sahiptir.

Kaynakça

  • 1. Massey LA, Yousry TA. Anatomy of the substantia nigra and subthalamic nucleus on MR imaging. Neuroimaging Clin N Am. 2010 Feb;20(1):7–27.
  • 2. Sato M, Miki S, Sakakibara R. (Parkinson’s Disease, Dementia with Lewy Bodies and Brain-Gut Interactions). Brain Nerve. 2021 Aug;73(8):863–70.
  • 3. Dong S, Sun M, He C, Cheng H. Brain-gut-microbiota axis in Parkinson’s disease: A historical review and future perspective. Brain Res Bull. 2022 Jun;183:84–93.
  • 4. Singh A, Dawson TM, Kulkarni S. Neurodegenerative disorders and gut-brain interactions. J Clin Invest. 2021 Jul;131(13).
  • 5. de Hollander G, Keuken MC, van der Zwaag W, Forstmann BU, Trampel R. Comparing functional MRI protocols for small, iron-rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T. Hum Brain Mapp. 2017 Jun;38(6):3226–48.
  • 6. Goenner HFM. On the History of Unified Field Theories. Living Rev Relativ. 2004;7(1):2.
  • 7. Thomson AB, Valberg LS. Passage of iron out of the intestinal mucosa of the rat. Can J Physiol Pharmacol. 1980 Feb;58(2):129–33.
  • 8. Hudson DM, Curtis SB, Smith VC, Griffiths TAM, Wong AYK, Scudamore CH, et al. Human hephaestin expression is not limited to enterocytes of the gastrointestinal tract but is also found in the antrum, the enteric nervous system, and pancreatic {beta}-cells. Am J Physiol Gastrointest Liver Physiol. 2010 Mar;298(3):G425-32. 9. Garzón B, Sitnikov R, Bäckman L, Kalpouzos G. Automated segmentation of midbrain structures with high iron content. Neuroimage. 2018 Apr;170:199–209.
  • 10. Cogswell PM, Wiste HJ, Senjem ML, Gunter JL, Weigand SD, Schwarz CG, et al. Associations of quantitative susceptibility mapping with Alzheimer’s disease clinical and imaging markers. Neuroimage. 2021 Jan;224:117433.
  • 11. Mazzucchi S, Frosini D, Costagli M, Del Prete E, Donatelli G, Cecchi P, et al. Quantitative susceptibility mapping in atypical Parkinsonisms. NeuroImage Clin. 2019;24:101999.
  • 12. Thomsen MS, Andersen MV, Christoffersen PR, Jensen MD, Lichota J, Moos T. Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol Dis. 2015 Sep;81:108–18.
  • 13. Yoshida A, Ye FQ, Yu DK, Leopold DA, Hikosaka O. Visualization of iron-rich subcortical structures in non-human primates in vivo by quantitative susceptibility mapping at 3T MRI. Neuroimage. 2021 Nov;241:118429.
  • 14. Wienner N VM, Unified Field Theory of Electricity and Gravitation. No Title. Nature. 1929;123:317–8.
  • 15. Youdim MB, Ben-Shachar D, Riederer P. Iron in brain function and dysfunction with emphasis on Parkinson’s disease. Eur Neurol. 1991;31 Suppl 1:34–40.
  • 16. Asowata EO, Olusanya O, Abaakil K, Chichger H, Srai SKS, Unwin RJ, et al. Diet-induced iron deficiency in rats impacts small intestinal calcium and phosphate absorption. Acta Physiol (Oxf). 2021 Jun;232(2):e13650.
  • 17. Nakajima K-I, Zhu K, Sun Y-H, Hegyi B, Zeng Q, Murphy CJ, et al. KCNJ15/Kir4.2 couples with polyamines to sense weak extracellular electric fields in galvanotaxis. Nat Commun. 2015 Oct;6:8532.
  • 18. Bókkon I, Salari V. Information storing by biomagnetites. J Biol Phys. 2010 Jan;36(1):109–20.
  • 19. Qin Y, Zhu W, Zhan C, Zhao L, Wang J, Tian Q, et al. Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2’ mapping. J Huazhong Univ Sci Technol Med Sci = Hua zhong ke ji da xue xue bao Yi xue Ying wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 2011 Aug;31(4):578.
  • 20. Beyhum W, Hautot D, Dobson J PQM biomineralisation in H disease transgenic mice. No Title. J Phys Conf Ser. 2015;17:50–3.
  • 21. de Hollander G, Keuken MC, Bazin P-L, Weiss M, Neumann J, Reimann K, et al. A gradual increase of iron toward the medial-inferior tip of the subthalamic nucleus. Hum Brain Mapp. 2014 Sep;35(9):4440–9.
  • 22. Ge M, Zhang K, Ma Y, Meng F, Hu W, Yang A, et al. Bilateral subthalamic nucleus stimulation in the treatment of neurodegeneration with brain iron accumulation type 1. Stereotact Funct Neurosurg. 2011;89(3):162–6.
  • 23. Rutledge JN, Hilal SK, Silver AJ, Defendini R, Fahn S. Study of movement disorders and brain iron by MR. AJR Am J Roentgenol. 1987 Aug;149(2):365–79.
  • 24. Dormont D, Ricciardi KG, Tandé D, Parain K, Menuel C, Galanaud D, et al. Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol. 2004 Oct;25(9):1516–23.
  • 25. Brown G, Du G, Farace E, Lewis MM, Eslinger PJ, McInerney J, et al. Subcortical Iron Accumulation Pattern May Predict Neuropsychological Outcomes After Subthalamic Nucleus Deep Brain Stimulation: A Pilot Study. J Parkinsons Dis. 2022;12(3):851–63.
  • 26. Levenson CW, Tassabehji NM. Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev. 2004 Jul;3(3):251–63.
  • 27. Aydin MD, Aydin A, Aydin A, Ahiskalioglu EO, Ahiskalioglu A, Ozmen S, et al. New Histophatological Finding About Data Destroying Amyloid Black Holes in Hippocampus Following Olfactory Bulb Lesion Like as the Universe. Arch Neurosci. 2022;9(4).
  • 28. Igal Galili, Dov Kaplan YL, Teaching Faraday’s law of electromagnetic induction in an introductory physics. No Title. Am J Phys. 2006;74:337.
  • 29. F Behroozi. Electromagnetic Induction and Lenz’s Law Revisited. No Title. Phys Teach. 2019;57(2):102–4.
  • 30. An L, Tao Q, Wu Y, Wang N, Liu Y, Wang F, et al. Synthesis of SPIO Nanoparticles and the Subsequent Applications in Stem Cell Labeling for Parkinson’s Disease. Nanoscale Res Lett. 2021 Jun;16(1):107.

Neuro Physical Mechanism Of Parkinson Disease Linked With Weak Electromagnetic Field of Subthalamic Nucleus Induced By Decreased Charging Effect Of Neurenteric Coil: Preliminary Experimental Study

Yıl 2022, Cilt: 1 Sayı: 3, 80 - 88, 30.12.2022

Öz

Objective: Although the neurophysical mechanism of subthalamic nucleus (STN) stimulation is still unclear, STN with decreasing electric field strength may be re-charged by battery. According to the law defined by Einstein, the unified electromagnetic field (UF) energy formed by the electrically charged Auerbach ganglia co-oscillating with bowel movements, can be transported by afferent nerves to charge the brain, like as battery. This study examines the rationality of the current theory.
Methods: In this study, 18 rats with 360±20 gr weighted were divided into 3 groups according to their intestinal pulsation ranges as: 10±3/GI; 7±2/GII and 3±1/GIII. Auerbach's ganglia density (n/AG/mm3), Auerbach ganglia neuron density (n/AGN/mm3) were estimated by taking 0.5 mm sections at 10 mm intervals from 5 different distances from the midline of the ascending colon; and STN neuron densities (n/STN/mm3) were estimated. The Auerbach ganglia neurons -accepted as vibrating particles- numbers (VPN/mm3) estimated with: VPN=nAxnAG; the unified field strength (UFS) values formed by Auerbach's ganglia was estimated by UFS=fxVPN equation. UFS and n/STN values were compared Mann Witney U test.
Results: VPN/UFS/nSTN values were: (13.345±2.143)/(11.146±1.689)/132.863±12.654 in GI; (11.762±1.843)/(8.434±1.119)/121.371±9.872 in GII and (8.659±903)/(7.109±768) /118.127±6942 in GIII) Statistical results between UFS/nSTN were found as: p<0.005 of GI/GII; p<0.0005 of GII/GIII and p<0.00001 of GI/GIII).
Conclusion: Electromagnetic energy emitted from the intestinal UFs which created by the Auerbach's ganglia have predestinative role on STN life with mechanisms such as batteries.

Kaynakça

  • 1. Massey LA, Yousry TA. Anatomy of the substantia nigra and subthalamic nucleus on MR imaging. Neuroimaging Clin N Am. 2010 Feb;20(1):7–27.
  • 2. Sato M, Miki S, Sakakibara R. (Parkinson’s Disease, Dementia with Lewy Bodies and Brain-Gut Interactions). Brain Nerve. 2021 Aug;73(8):863–70.
  • 3. Dong S, Sun M, He C, Cheng H. Brain-gut-microbiota axis in Parkinson’s disease: A historical review and future perspective. Brain Res Bull. 2022 Jun;183:84–93.
  • 4. Singh A, Dawson TM, Kulkarni S. Neurodegenerative disorders and gut-brain interactions. J Clin Invest. 2021 Jul;131(13).
  • 5. de Hollander G, Keuken MC, van der Zwaag W, Forstmann BU, Trampel R. Comparing functional MRI protocols for small, iron-rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T. Hum Brain Mapp. 2017 Jun;38(6):3226–48.
  • 6. Goenner HFM. On the History of Unified Field Theories. Living Rev Relativ. 2004;7(1):2.
  • 7. Thomson AB, Valberg LS. Passage of iron out of the intestinal mucosa of the rat. Can J Physiol Pharmacol. 1980 Feb;58(2):129–33.
  • 8. Hudson DM, Curtis SB, Smith VC, Griffiths TAM, Wong AYK, Scudamore CH, et al. Human hephaestin expression is not limited to enterocytes of the gastrointestinal tract but is also found in the antrum, the enteric nervous system, and pancreatic {beta}-cells. Am J Physiol Gastrointest Liver Physiol. 2010 Mar;298(3):G425-32. 9. Garzón B, Sitnikov R, Bäckman L, Kalpouzos G. Automated segmentation of midbrain structures with high iron content. Neuroimage. 2018 Apr;170:199–209.
  • 10. Cogswell PM, Wiste HJ, Senjem ML, Gunter JL, Weigand SD, Schwarz CG, et al. Associations of quantitative susceptibility mapping with Alzheimer’s disease clinical and imaging markers. Neuroimage. 2021 Jan;224:117433.
  • 11. Mazzucchi S, Frosini D, Costagli M, Del Prete E, Donatelli G, Cecchi P, et al. Quantitative susceptibility mapping in atypical Parkinsonisms. NeuroImage Clin. 2019;24:101999.
  • 12. Thomsen MS, Andersen MV, Christoffersen PR, Jensen MD, Lichota J, Moos T. Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol Dis. 2015 Sep;81:108–18.
  • 13. Yoshida A, Ye FQ, Yu DK, Leopold DA, Hikosaka O. Visualization of iron-rich subcortical structures in non-human primates in vivo by quantitative susceptibility mapping at 3T MRI. Neuroimage. 2021 Nov;241:118429.
  • 14. Wienner N VM, Unified Field Theory of Electricity and Gravitation. No Title. Nature. 1929;123:317–8.
  • 15. Youdim MB, Ben-Shachar D, Riederer P. Iron in brain function and dysfunction with emphasis on Parkinson’s disease. Eur Neurol. 1991;31 Suppl 1:34–40.
  • 16. Asowata EO, Olusanya O, Abaakil K, Chichger H, Srai SKS, Unwin RJ, et al. Diet-induced iron deficiency in rats impacts small intestinal calcium and phosphate absorption. Acta Physiol (Oxf). 2021 Jun;232(2):e13650.
  • 17. Nakajima K-I, Zhu K, Sun Y-H, Hegyi B, Zeng Q, Murphy CJ, et al. KCNJ15/Kir4.2 couples with polyamines to sense weak extracellular electric fields in galvanotaxis. Nat Commun. 2015 Oct;6:8532.
  • 18. Bókkon I, Salari V. Information storing by biomagnetites. J Biol Phys. 2010 Jan;36(1):109–20.
  • 19. Qin Y, Zhu W, Zhan C, Zhao L, Wang J, Tian Q, et al. Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2’ mapping. J Huazhong Univ Sci Technol Med Sci = Hua zhong ke ji da xue xue bao Yi xue Ying wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 2011 Aug;31(4):578.
  • 20. Beyhum W, Hautot D, Dobson J PQM biomineralisation in H disease transgenic mice. No Title. J Phys Conf Ser. 2015;17:50–3.
  • 21. de Hollander G, Keuken MC, Bazin P-L, Weiss M, Neumann J, Reimann K, et al. A gradual increase of iron toward the medial-inferior tip of the subthalamic nucleus. Hum Brain Mapp. 2014 Sep;35(9):4440–9.
  • 22. Ge M, Zhang K, Ma Y, Meng F, Hu W, Yang A, et al. Bilateral subthalamic nucleus stimulation in the treatment of neurodegeneration with brain iron accumulation type 1. Stereotact Funct Neurosurg. 2011;89(3):162–6.
  • 23. Rutledge JN, Hilal SK, Silver AJ, Defendini R, Fahn S. Study of movement disorders and brain iron by MR. AJR Am J Roentgenol. 1987 Aug;149(2):365–79.
  • 24. Dormont D, Ricciardi KG, Tandé D, Parain K, Menuel C, Galanaud D, et al. Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol. 2004 Oct;25(9):1516–23.
  • 25. Brown G, Du G, Farace E, Lewis MM, Eslinger PJ, McInerney J, et al. Subcortical Iron Accumulation Pattern May Predict Neuropsychological Outcomes After Subthalamic Nucleus Deep Brain Stimulation: A Pilot Study. J Parkinsons Dis. 2022;12(3):851–63.
  • 26. Levenson CW, Tassabehji NM. Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev. 2004 Jul;3(3):251–63.
  • 27. Aydin MD, Aydin A, Aydin A, Ahiskalioglu EO, Ahiskalioglu A, Ozmen S, et al. New Histophatological Finding About Data Destroying Amyloid Black Holes in Hippocampus Following Olfactory Bulb Lesion Like as the Universe. Arch Neurosci. 2022;9(4).
  • 28. Igal Galili, Dov Kaplan YL, Teaching Faraday’s law of electromagnetic induction in an introductory physics. No Title. Am J Phys. 2006;74:337.
  • 29. F Behroozi. Electromagnetic Induction and Lenz’s Law Revisited. No Title. Phys Teach. 2019;57(2):102–4.
  • 30. An L, Tao Q, Wu Y, Wang N, Liu Y, Wang F, et al. Synthesis of SPIO Nanoparticles and the Subsequent Applications in Stem Cell Labeling for Parkinson’s Disease. Nanoscale Res Lett. 2021 Jun;16(1):107.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cerrahi
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Aydin 0000-0002-0383-9739

Mehmet Kürşat Karadağ 0000-0001-9123-0597

Mehmet Hakan Şahin 0000-0002-5309-4165

Mete Zeynal 0000-0002-7398-443X

Ali Ahıskalıoğlu 0000-0002-8467-8171

Osman Nuri Keleş 0000-0001-7740-8248

Sevilay Özmen 0000-0002-1973-6101

Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 19 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 1 Sayı: 3

Kaynak Göster

AMA Aydin M, Karadağ MK, Şahin MH, Zeynal M, Ahıskalıoğlu A, Keleş ON, Özmen S. Neuro Physical Mechanism Of Parkinson Disease Linked With Weak Electromagnetic Field of Subthalamic Nucleus Induced By Decreased Charging Effect Of Neurenteric Coil: Preliminary Experimental Study. Atatürk Univ Fac Med J Surg Med Sci. Aralık 2022;1(3):80-88.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

30040