pH-RESPONSIVE CARBOXYMETHYL CELLULOSE CONJUGATED SUPERPARAMAGNETIC IRON OXIDE NANOCARRIERS
Yıl 2019,
Cilt: 3 Sayı: 2, 99 - 110, 30.04.2019
Tülin Gürkan Polat
Seda Demirel Topel
Destekleyen Kurum
TUBITAK-1002
Proje Numarası
(Project no. 116Z164)
Teşekkür
This work was funded by TUBITAK-1002 (Project no. 116Z164) and the authors are grateful to Prof. Meltem Asilturk for her support and laboratory facilities.
Kaynakça
- [1] KAUR G., SINGH T., KUMAR A. 2012, Nanotechnology: A review, Int J. Edu. & Appl. Sci. 2, 50-54.
- [2] BHATTACHARYYA, D., SINGH, S., SATNALIKA, N., KHANDELWAL, A., JEON, S.H., 2009, Nanotechnology, Big things from a tiny world: a review. Int. J. Service, Sci and Tech. 2, 29-39.
- [3] JEEVANANDAM, J., BARHOUM, A., CHAN, Y.S., DUFRESNE, A., 2018, Danquah M.K. Review on nnaoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotech. 9, 1050-1074.
- [4] VALLABANI, N.V.S., SINGH, S. 2018, Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech. 8, 279-302.
- [5] STEPHEN, Z.R., KIEVIT, F.M., ZHANG, M. 2011, Magnetite nanoparticles for medical MR imaging. Mater. Today. 14, 330-338.
- [6] ANSARI, M.O., AHMAD, F., PARVEEN, N., AHMAD, S., JAMEEL, S., SHADAB, G.G.H.A., 2017, Iron oxide nanoparticle-synthesis, surface modification, applications and toxicity: a review. Materials Focus, 6, 1-11.
- [7] ZHU N., JI, H., YU P., NIU, J., FAROOQ, M.U., AKRAM, M.W. UDEGO, I.O., LI, H., NIU, X. 2018, Surface modification of magnetic iron oxide nanoparticles. Nanomaterials. 8, 810-837.
- [8] NEDAL, A.S. H. M. and THABIT, N.Y. 2018, Stimuli responsive polymeric nanocarriers for drug delivery applications. Woodhead publishing; Elsevier, Chapter.2.
- [9] KATO, Y. OZAWA, S., MIYAMOTO, C., MAEHATA, Y., SUZUKI, A,. MAEDA, T., BABA, Y., 2013, Acidic extracellular microenviroment and cancer. Cancer Cell. Int. 13, 89-98.
- [10] YU, S. WU, G. GU, X. WANG, J. WANG, Y., GAO, H., MA, J. 2013, Magnetic and pH-sensitive nanoparticles for antitumor delivery. Coll. and Surf. B: Biointer. 103, 15-22.
- [11] SEMKINA, A., ABAKUMOV, M., GRINENKO, N., ABAKUMOV, A., SKORIKOV, A., MIRONOVA, E., DAVYDOVA, G., MAJOUGA, A.G. NUKOLOVA, N., KABANOV, A., CHEKJONIN, V., 2015, Core-shell-corona doxorubicin loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics. Coll. and Surf. B: Biointer. 136, 1073-1080.
- [12] PENG N., WU B., WANG, L, HE, W., AI, Z., ZHANG, X., WANG, Y., FAN, L., YE, Q. 2016, High drug loading and pH-responsive targeted nanocarriers from alginate- modified SPIONs for anti-tumor chemotherapy. Biomater. Sci. 4, 1802-1813.
- [13] DAS, M., SOLANKI, A., JOSHI, A., DEVKAR, R., SESHADRI, S., THAKORE, S. 2019, β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery. Carbohydrate Polym. 206, 694-705.
- [14] POORGHOLY, N., MASSOUMI, B., GHORBANI, M., JAYMAND, M., HAMISHEHKAR, H. 2018, Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels. Drug Dev. and Indust. Pharm. 44, 1254-1261.
- [15] DUTTA, B., SHETAKE, N.G., GAWALI, S.L., BARICK, B.K., BARICK, K.C., BABU, P.D., PRİYADARSİNİ K.I., HASSAN P.A. 2018, PEF mediated shape-selective synthesis of cubic Fe3O4 nanoparticles for cancer therapeutics. J. Alloys and Comp. 737, 347-355.
- [16] AVAL, N.A., ISLAMIAN, J.P., HATAMIAN, M., AEABFIROUZJAEI, M., JAVADPOUR J., RASHIDI, M.R. 2016, Doxorubucin loaded large-pore mesoporous hydroxyapatite coated superparamagnetic Fe3O4 nanoparticles for cancer treatment. Int. J. Pharm. 509, 159-167.
- [17] JORFI, M., FOSTER, E.J., 2015, Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, 41719-4138.
- [18] LIANG, H., HUANG, Q., ZHOU, B., HE, L., LIN, L., AN, Y., Lİ, Y., LİU, S., CHEN, Y., Lİ, B. 2015, Self-assembled sein-sodium carboxymethyl cellulose nanoparticles as an effective drug carrier and transporter. J. Mater. Chem. 3, 3243-3252.
- [19] RASOULZADEH, M., NAMAZI, H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. 2017, Carbohyd. Poly. 168, 320-326.
- [20] SINGH, V., JOSHI, S., MALVIYA, T. 2018, Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. Int. J. Bio. Macromol. 112, 390-398.
- [21] SIVAKUMAR, B., ASWATHY, R.G., NAGAOKA, Y., SUZUKI, M., FUKUDA, T., YOSHIDA, Y., MAEKAWA, T., SAKTHIKUMAR D.N. 2013, Multifunctional carboxymethylcelluose based magnetic nanovectors as a theragnostic system for folate receptor targeted chemotherapy, imaging and hyperthermia against cancer. Langmuir. 29, 3453-3466.
- [22] MOVAGHARNEZHAD, N., MOGHADAM, P.N. 2017, Hecamethylene diamine/ carboxymethyl cellulose grated on magnetic nanoparticles for controlled drug delivery. Polym. Bull. 74, 4645-4658.
- [23] KANAGARAJAN, S.V. and THİYAGARAJAN D. 2019, Carboxymethyl cellulose-functionalised magnetic nanocarriers for pH responsive delivery of curcuminin cancer therapy. Mater. Res. Express, 6, 016105-11.
- [24] DEMİREL TOPEL, S., TOPEL, O., BOSTANCİOGLU, R.B., KOPARAL, A. T. 2015, Synthesis and characterization of Bodipy functionalzed magnetic iron oxide nanoparticles for potential bioimaging applications. Coll. and Surf. B: Biointer. 128, 245-253.
- [25] DEMİREL TOPEL, S., TURGUT CİN, G., AKKAYA, E.U. 2014, Near IR excitation of heavy atom free Bodipy photosensitizers through the intermediacy of upconverting nanoparticles. Chem. Commun. 50, 8896-8899.
- [26] LU W., LİNG, M., HUANG, P., LI, C., YAN, B. 2014, Facile synthesis and characterization of PEI coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Mol. Med. Rep. 9 ,1080-1084.
Yıl 2019,
Cilt: 3 Sayı: 2, 99 - 110, 30.04.2019
Tülin Gürkan Polat
Seda Demirel Topel
Proje Numarası
(Project no. 116Z164)
Kaynakça
- [1] KAUR G., SINGH T., KUMAR A. 2012, Nanotechnology: A review, Int J. Edu. & Appl. Sci. 2, 50-54.
- [2] BHATTACHARYYA, D., SINGH, S., SATNALIKA, N., KHANDELWAL, A., JEON, S.H., 2009, Nanotechnology, Big things from a tiny world: a review. Int. J. Service, Sci and Tech. 2, 29-39.
- [3] JEEVANANDAM, J., BARHOUM, A., CHAN, Y.S., DUFRESNE, A., 2018, Danquah M.K. Review on nnaoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotech. 9, 1050-1074.
- [4] VALLABANI, N.V.S., SINGH, S. 2018, Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech. 8, 279-302.
- [5] STEPHEN, Z.R., KIEVIT, F.M., ZHANG, M. 2011, Magnetite nanoparticles for medical MR imaging. Mater. Today. 14, 330-338.
- [6] ANSARI, M.O., AHMAD, F., PARVEEN, N., AHMAD, S., JAMEEL, S., SHADAB, G.G.H.A., 2017, Iron oxide nanoparticle-synthesis, surface modification, applications and toxicity: a review. Materials Focus, 6, 1-11.
- [7] ZHU N., JI, H., YU P., NIU, J., FAROOQ, M.U., AKRAM, M.W. UDEGO, I.O., LI, H., NIU, X. 2018, Surface modification of magnetic iron oxide nanoparticles. Nanomaterials. 8, 810-837.
- [8] NEDAL, A.S. H. M. and THABIT, N.Y. 2018, Stimuli responsive polymeric nanocarriers for drug delivery applications. Woodhead publishing; Elsevier, Chapter.2.
- [9] KATO, Y. OZAWA, S., MIYAMOTO, C., MAEHATA, Y., SUZUKI, A,. MAEDA, T., BABA, Y., 2013, Acidic extracellular microenviroment and cancer. Cancer Cell. Int. 13, 89-98.
- [10] YU, S. WU, G. GU, X. WANG, J. WANG, Y., GAO, H., MA, J. 2013, Magnetic and pH-sensitive nanoparticles for antitumor delivery. Coll. and Surf. B: Biointer. 103, 15-22.
- [11] SEMKINA, A., ABAKUMOV, M., GRINENKO, N., ABAKUMOV, A., SKORIKOV, A., MIRONOVA, E., DAVYDOVA, G., MAJOUGA, A.G. NUKOLOVA, N., KABANOV, A., CHEKJONIN, V., 2015, Core-shell-corona doxorubicin loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics. Coll. and Surf. B: Biointer. 136, 1073-1080.
- [12] PENG N., WU B., WANG, L, HE, W., AI, Z., ZHANG, X., WANG, Y., FAN, L., YE, Q. 2016, High drug loading and pH-responsive targeted nanocarriers from alginate- modified SPIONs for anti-tumor chemotherapy. Biomater. Sci. 4, 1802-1813.
- [13] DAS, M., SOLANKI, A., JOSHI, A., DEVKAR, R., SESHADRI, S., THAKORE, S. 2019, β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery. Carbohydrate Polym. 206, 694-705.
- [14] POORGHOLY, N., MASSOUMI, B., GHORBANI, M., JAYMAND, M., HAMISHEHKAR, H. 2018, Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels. Drug Dev. and Indust. Pharm. 44, 1254-1261.
- [15] DUTTA, B., SHETAKE, N.G., GAWALI, S.L., BARICK, B.K., BARICK, K.C., BABU, P.D., PRİYADARSİNİ K.I., HASSAN P.A. 2018, PEF mediated shape-selective synthesis of cubic Fe3O4 nanoparticles for cancer therapeutics. J. Alloys and Comp. 737, 347-355.
- [16] AVAL, N.A., ISLAMIAN, J.P., HATAMIAN, M., AEABFIROUZJAEI, M., JAVADPOUR J., RASHIDI, M.R. 2016, Doxorubucin loaded large-pore mesoporous hydroxyapatite coated superparamagnetic Fe3O4 nanoparticles for cancer treatment. Int. J. Pharm. 509, 159-167.
- [17] JORFI, M., FOSTER, E.J., 2015, Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, 41719-4138.
- [18] LIANG, H., HUANG, Q., ZHOU, B., HE, L., LIN, L., AN, Y., Lİ, Y., LİU, S., CHEN, Y., Lİ, B. 2015, Self-assembled sein-sodium carboxymethyl cellulose nanoparticles as an effective drug carrier and transporter. J. Mater. Chem. 3, 3243-3252.
- [19] RASOULZADEH, M., NAMAZI, H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. 2017, Carbohyd. Poly. 168, 320-326.
- [20] SINGH, V., JOSHI, S., MALVIYA, T. 2018, Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. Int. J. Bio. Macromol. 112, 390-398.
- [21] SIVAKUMAR, B., ASWATHY, R.G., NAGAOKA, Y., SUZUKI, M., FUKUDA, T., YOSHIDA, Y., MAEKAWA, T., SAKTHIKUMAR D.N. 2013, Multifunctional carboxymethylcelluose based magnetic nanovectors as a theragnostic system for folate receptor targeted chemotherapy, imaging and hyperthermia against cancer. Langmuir. 29, 3453-3466.
- [22] MOVAGHARNEZHAD, N., MOGHADAM, P.N. 2017, Hecamethylene diamine/ carboxymethyl cellulose grated on magnetic nanoparticles for controlled drug delivery. Polym. Bull. 74, 4645-4658.
- [23] KANAGARAJAN, S.V. and THİYAGARAJAN D. 2019, Carboxymethyl cellulose-functionalised magnetic nanocarriers for pH responsive delivery of curcuminin cancer therapy. Mater. Res. Express, 6, 016105-11.
- [24] DEMİREL TOPEL, S., TOPEL, O., BOSTANCİOGLU, R.B., KOPARAL, A. T. 2015, Synthesis and characterization of Bodipy functionalzed magnetic iron oxide nanoparticles for potential bioimaging applications. Coll. and Surf. B: Biointer. 128, 245-253.
- [25] DEMİREL TOPEL, S., TURGUT CİN, G., AKKAYA, E.U. 2014, Near IR excitation of heavy atom free Bodipy photosensitizers through the intermediacy of upconverting nanoparticles. Chem. Commun. 50, 8896-8899.
- [26] LU W., LİNG, M., HUANG, P., LI, C., YAN, B. 2014, Facile synthesis and characterization of PEI coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Mol. Med. Rep. 9 ,1080-1084.