Araştırma Makalesi
BibTex RIS Kaynak Göster

pH-RESPONSIVE CARBOXYMETHYL CELLULOSE CONJUGATED SUPERPARAMAGNETIC IRON OXIDE NANOCARRIERS

Yıl 2019, Cilt: 3 Sayı: 2, 99 - 110, 30.04.2019
https://doi.org/10.26900/jsp.3.011

Öz

In the present study, polyethyleneimine (PEI) coated
superparamagnetic iron oxide nanoparticles (SPIONs) having the size of 15 nm in
diameter with high magnetic saturation (60 emu/g) have been prepared by
co-precipitation method. The synthesized PEI-Fe3O4 nanoparticles have been
fully characterized by transmission electron microscope (TEM), dynamic light
scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, X-ray
photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques. The
free amine groups on the PEI-Fe3O4 surface has been covalently functionalized
with carboxymethyl cellulose (CMC) by the catalysis of
N,N'-Dicyclohexylcarbodiimide (DCC) and N, N'-Dimethylpyridin-4-amine (DMAP)
coupling to produce CMC-Fe3O4 nanocarriers. The prepared CMC-Fe3O4 nanocarriers
have been loaded with a well-known anti-tumor drug doxorubicin (Dox) and
investigated its loading and releasing profiles from the nanocarrier. The CMC
acted as an excellent nanocarrier for Dox with a loading efficiency ≈ 86%. The
drug releasing profile has been studied at different pH values (3.5; 5.5; and
7.4). When the pH of the release medium (phosphate buffer solution) was changed
from 7.4 to 5.5 or 3.6, the drug release has been increased which indicates
that the drug releasing is pH dependent.

Destekleyen Kurum

TUBITAK-1002

Proje Numarası

(Project no. 116Z164)

Teşekkür

This work was funded by TUBITAK-1002 (Project no. 116Z164) and the authors are grateful to Prof. Meltem Asilturk for her support and laboratory facilities.

Kaynakça

  • [1] KAUR G., SINGH T., KUMAR A. 2012, Nanotechnology: A review, Int J. Edu. & Appl. Sci. 2, 50-54.
  • [2] BHATTACHARYYA, D., SINGH, S., SATNALIKA, N., KHANDELWAL, A., JEON, S.H., 2009, Nanotechnology, Big things from a tiny world: a review. Int. J. Service, Sci and Tech. 2, 29-39.
  • [3] JEEVANANDAM, J., BARHOUM, A., CHAN, Y.S., DUFRESNE, A., 2018, Danquah M.K. Review on nnaoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotech. 9, 1050-1074.
  • [4] VALLABANI, N.V.S., SINGH, S. 2018, Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech. 8, 279-302.
  • [5] STEPHEN, Z.R., KIEVIT, F.M., ZHANG, M. 2011, Magnetite nanoparticles for medical MR imaging. Mater. Today. 14, 330-338.
  • [6] ANSARI, M.O., AHMAD, F., PARVEEN, N., AHMAD, S., JAMEEL, S., SHADAB, G.G.H.A., 2017, Iron oxide nanoparticle-synthesis, surface modification, applications and toxicity: a review. Materials Focus, 6, 1-11.
  • [7] ZHU N., JI, H., YU P., NIU, J., FAROOQ, M.U., AKRAM, M.W. UDEGO, I.O., LI, H., NIU, X. 2018, Surface modification of magnetic iron oxide nanoparticles. Nanomaterials. 8, 810-837.
  • [8] NEDAL, A.S. H. M. and THABIT, N.Y. 2018, Stimuli responsive polymeric nanocarriers for drug delivery applications. Woodhead publishing; Elsevier, Chapter.2.
  • [9] KATO, Y. OZAWA, S., MIYAMOTO, C., MAEHATA, Y., SUZUKI, A,. MAEDA, T., BABA, Y., 2013, Acidic extracellular microenviroment and cancer. Cancer Cell. Int. 13, 89-98.
  • [10] YU, S. WU, G. GU, X. WANG, J. WANG, Y., GAO, H., MA, J. 2013, Magnetic and pH-sensitive nanoparticles for antitumor delivery. Coll. and Surf. B: Biointer. 103, 15-22.
  • [11] SEMKINA, A., ABAKUMOV, M., GRINENKO, N., ABAKUMOV, A., SKORIKOV, A., MIRONOVA, E., DAVYDOVA, G., MAJOUGA, A.G. NUKOLOVA, N., KABANOV, A., CHEKJONIN, V., 2015, Core-shell-corona doxorubicin loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics. Coll. and Surf. B: Biointer. 136, 1073-1080.
  • [12] PENG N., WU B., WANG, L, HE, W., AI, Z., ZHANG, X., WANG, Y., FAN, L., YE, Q. 2016, High drug loading and pH-responsive targeted nanocarriers from alginate- modified SPIONs for anti-tumor chemotherapy. Biomater. Sci. 4, 1802-1813.
  • [13] DAS, M., SOLANKI, A., JOSHI, A., DEVKAR, R., SESHADRI, S., THAKORE, S. 2019, β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery. Carbohydrate Polym. 206, 694-705.
  • [14] POORGHOLY, N., MASSOUMI, B., GHORBANI, M., JAYMAND, M., HAMISHEHKAR, H. 2018, Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels. Drug Dev. and Indust. Pharm. 44, 1254-1261.
  • [15] DUTTA, B., SHETAKE, N.G., GAWALI, S.L., BARICK, B.K., BARICK, K.C., BABU, P.D., PRİYADARSİNİ K.I., HASSAN P.A. 2018, PEF mediated shape-selective synthesis of cubic Fe3O4 nanoparticles for cancer therapeutics. J. Alloys and Comp. 737, 347-355.
  • [16] AVAL, N.A., ISLAMIAN, J.P., HATAMIAN, M., AEABFIROUZJAEI, M., JAVADPOUR J., RASHIDI, M.R. 2016, Doxorubucin loaded large-pore mesoporous hydroxyapatite coated superparamagnetic Fe3O4 nanoparticles for cancer treatment. Int. J. Pharm. 509, 159-167.
  • [17] JORFI, M., FOSTER, E.J., 2015, Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, 41719-4138.
  • [18] LIANG, H., HUANG, Q., ZHOU, B., HE, L., LIN, L., AN, Y., Lİ, Y., LİU, S., CHEN, Y., Lİ, B. 2015, Self-assembled sein-sodium carboxymethyl cellulose nanoparticles as an effective drug carrier and transporter. J. Mater. Chem. 3, 3243-3252.
  • [19] RASOULZADEH, M., NAMAZI, H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. 2017, Carbohyd. Poly. 168, 320-326.
  • [20] SINGH, V., JOSHI, S., MALVIYA, T. 2018, Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. Int. J. Bio. Macromol. 112, 390-398.
  • [21] SIVAKUMAR, B., ASWATHY, R.G., NAGAOKA, Y., SUZUKI, M., FUKUDA, T., YOSHIDA, Y., MAEKAWA, T., SAKTHIKUMAR D.N. 2013, Multifunctional carboxymethylcelluose based magnetic nanovectors as a theragnostic system for folate receptor targeted chemotherapy, imaging and hyperthermia against cancer. Langmuir. 29, 3453-3466.
  • [22] MOVAGHARNEZHAD, N., MOGHADAM, P.N. 2017, Hecamethylene diamine/ carboxymethyl cellulose grated on magnetic nanoparticles for controlled drug delivery. Polym. Bull. 74, 4645-4658.
  • [23] KANAGARAJAN, S.V. and THİYAGARAJAN D. 2019, Carboxymethyl cellulose-functionalised magnetic nanocarriers for pH responsive delivery of curcuminin cancer therapy. Mater. Res. Express, 6, 016105-11.
  • [24] DEMİREL TOPEL, S., TOPEL, O., BOSTANCİOGLU, R.B., KOPARAL, A. T. 2015, Synthesis and characterization of Bodipy functionalzed magnetic iron oxide nanoparticles for potential bioimaging applications. Coll. and Surf. B: Biointer. 128, 245-253.
  • [25] DEMİREL TOPEL, S., TURGUT CİN, G., AKKAYA, E.U. 2014, Near IR excitation of heavy atom free Bodipy photosensitizers through the intermediacy of upconverting nanoparticles. Chem. Commun. 50, 8896-8899.
  • [26] LU W., LİNG, M., HUANG, P., LI, C., YAN, B. 2014, Facile synthesis and characterization of PEI coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Mol. Med. Rep. 9 ,1080-1084.
Yıl 2019, Cilt: 3 Sayı: 2, 99 - 110, 30.04.2019
https://doi.org/10.26900/jsp.3.011

Öz

Proje Numarası

(Project no. 116Z164)

Kaynakça

  • [1] KAUR G., SINGH T., KUMAR A. 2012, Nanotechnology: A review, Int J. Edu. & Appl. Sci. 2, 50-54.
  • [2] BHATTACHARYYA, D., SINGH, S., SATNALIKA, N., KHANDELWAL, A., JEON, S.H., 2009, Nanotechnology, Big things from a tiny world: a review. Int. J. Service, Sci and Tech. 2, 29-39.
  • [3] JEEVANANDAM, J., BARHOUM, A., CHAN, Y.S., DUFRESNE, A., 2018, Danquah M.K. Review on nnaoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotech. 9, 1050-1074.
  • [4] VALLABANI, N.V.S., SINGH, S. 2018, Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech. 8, 279-302.
  • [5] STEPHEN, Z.R., KIEVIT, F.M., ZHANG, M. 2011, Magnetite nanoparticles for medical MR imaging. Mater. Today. 14, 330-338.
  • [6] ANSARI, M.O., AHMAD, F., PARVEEN, N., AHMAD, S., JAMEEL, S., SHADAB, G.G.H.A., 2017, Iron oxide nanoparticle-synthesis, surface modification, applications and toxicity: a review. Materials Focus, 6, 1-11.
  • [7] ZHU N., JI, H., YU P., NIU, J., FAROOQ, M.U., AKRAM, M.W. UDEGO, I.O., LI, H., NIU, X. 2018, Surface modification of magnetic iron oxide nanoparticles. Nanomaterials. 8, 810-837.
  • [8] NEDAL, A.S. H. M. and THABIT, N.Y. 2018, Stimuli responsive polymeric nanocarriers for drug delivery applications. Woodhead publishing; Elsevier, Chapter.2.
  • [9] KATO, Y. OZAWA, S., MIYAMOTO, C., MAEHATA, Y., SUZUKI, A,. MAEDA, T., BABA, Y., 2013, Acidic extracellular microenviroment and cancer. Cancer Cell. Int. 13, 89-98.
  • [10] YU, S. WU, G. GU, X. WANG, J. WANG, Y., GAO, H., MA, J. 2013, Magnetic and pH-sensitive nanoparticles for antitumor delivery. Coll. and Surf. B: Biointer. 103, 15-22.
  • [11] SEMKINA, A., ABAKUMOV, M., GRINENKO, N., ABAKUMOV, A., SKORIKOV, A., MIRONOVA, E., DAVYDOVA, G., MAJOUGA, A.G. NUKOLOVA, N., KABANOV, A., CHEKJONIN, V., 2015, Core-shell-corona doxorubicin loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics. Coll. and Surf. B: Biointer. 136, 1073-1080.
  • [12] PENG N., WU B., WANG, L, HE, W., AI, Z., ZHANG, X., WANG, Y., FAN, L., YE, Q. 2016, High drug loading and pH-responsive targeted nanocarriers from alginate- modified SPIONs for anti-tumor chemotherapy. Biomater. Sci. 4, 1802-1813.
  • [13] DAS, M., SOLANKI, A., JOSHI, A., DEVKAR, R., SESHADRI, S., THAKORE, S. 2019, β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery. Carbohydrate Polym. 206, 694-705.
  • [14] POORGHOLY, N., MASSOUMI, B., GHORBANI, M., JAYMAND, M., HAMISHEHKAR, H. 2018, Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels. Drug Dev. and Indust. Pharm. 44, 1254-1261.
  • [15] DUTTA, B., SHETAKE, N.G., GAWALI, S.L., BARICK, B.K., BARICK, K.C., BABU, P.D., PRİYADARSİNİ K.I., HASSAN P.A. 2018, PEF mediated shape-selective synthesis of cubic Fe3O4 nanoparticles for cancer therapeutics. J. Alloys and Comp. 737, 347-355.
  • [16] AVAL, N.A., ISLAMIAN, J.P., HATAMIAN, M., AEABFIROUZJAEI, M., JAVADPOUR J., RASHIDI, M.R. 2016, Doxorubucin loaded large-pore mesoporous hydroxyapatite coated superparamagnetic Fe3O4 nanoparticles for cancer treatment. Int. J. Pharm. 509, 159-167.
  • [17] JORFI, M., FOSTER, E.J., 2015, Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, 41719-4138.
  • [18] LIANG, H., HUANG, Q., ZHOU, B., HE, L., LIN, L., AN, Y., Lİ, Y., LİU, S., CHEN, Y., Lİ, B. 2015, Self-assembled sein-sodium carboxymethyl cellulose nanoparticles as an effective drug carrier and transporter. J. Mater. Chem. 3, 3243-3252.
  • [19] RASOULZADEH, M., NAMAZI, H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. 2017, Carbohyd. Poly. 168, 320-326.
  • [20] SINGH, V., JOSHI, S., MALVIYA, T. 2018, Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. Int. J. Bio. Macromol. 112, 390-398.
  • [21] SIVAKUMAR, B., ASWATHY, R.G., NAGAOKA, Y., SUZUKI, M., FUKUDA, T., YOSHIDA, Y., MAEKAWA, T., SAKTHIKUMAR D.N. 2013, Multifunctional carboxymethylcelluose based magnetic nanovectors as a theragnostic system for folate receptor targeted chemotherapy, imaging and hyperthermia against cancer. Langmuir. 29, 3453-3466.
  • [22] MOVAGHARNEZHAD, N., MOGHADAM, P.N. 2017, Hecamethylene diamine/ carboxymethyl cellulose grated on magnetic nanoparticles for controlled drug delivery. Polym. Bull. 74, 4645-4658.
  • [23] KANAGARAJAN, S.V. and THİYAGARAJAN D. 2019, Carboxymethyl cellulose-functionalised magnetic nanocarriers for pH responsive delivery of curcuminin cancer therapy. Mater. Res. Express, 6, 016105-11.
  • [24] DEMİREL TOPEL, S., TOPEL, O., BOSTANCİOGLU, R.B., KOPARAL, A. T. 2015, Synthesis and characterization of Bodipy functionalzed magnetic iron oxide nanoparticles for potential bioimaging applications. Coll. and Surf. B: Biointer. 128, 245-253.
  • [25] DEMİREL TOPEL, S., TURGUT CİN, G., AKKAYA, E.U. 2014, Near IR excitation of heavy atom free Bodipy photosensitizers through the intermediacy of upconverting nanoparticles. Chem. Commun. 50, 8896-8899.
  • [26] LU W., LİNG, M., HUANG, P., LI, C., YAN, B. 2014, Facile synthesis and characterization of PEI coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Mol. Med. Rep. 9 ,1080-1084.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Basic Sciences and Engineering
Yazarlar

Tülin Gürkan Polat Bu kişi benim 0000-0002-6545-0518

Seda Demirel Topel 0000-0002-0567-5627

Proje Numarası (Project no. 116Z164)
Yayımlanma Tarihi 30 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 3 Sayı: 2

Kaynak Göster

APA Gürkan Polat, T., & Demirel Topel, S. (2019). pH-RESPONSIVE CARBOXYMETHYL CELLULOSE CONJUGATED SUPERPARAMAGNETIC IRON OXIDE NANOCARRIERS. Journal of Scientific Perspectives, 3(2), 99-110. https://doi.org/10.26900/jsp.3.011