Derleme
BibTex RIS Kaynak Göster

EL REHABİLİTASYONUNDA KULLANILAN CİHAZLARIN GELİŞİMİ

Yıl 2022, Sayı: 003, 10 - 20, 31.12.2022

Öz

İnme vb. tıbbi durumlar veya kazalar insan vücudunda önemli nörolojik hasarlar oluşturabilir ve üst ekstremitede, hastanın ellerinde motor fonksiyon kaybına neden olabilir. İnsanlara rehabilitasyon sürecinde yardımcı olmak için dış iskelet gibi çeşitli robotik cihazlar tasarlanmıştır; ancak, bu cihazlar optimum performans elde etmeyen sınırlı özelliklere sahiptirler. Hastaların el rehabilitasyon tedavisi, kliniklerde ve çeşitli el rehabilitasyon cihazları kullanılarak bir uzman rehberliğinde gerçekleştirilir. Elin rehabilitasyonunda kullanılan cihazların görevi ele pasif, aktif veya aktif yardımlı rehabilitasyon tedavisi sağlamaktır. Ancak el rehabilitasyon cihazlarının herhangi bir standardı yoktur. Bu çalışmada, el rehabilitasyon cihazlarının mekanik tasarımları ve tahrik mekanizmaları tanımlanmakta ve karşılaştırılmaktadır.

Teşekkür

Bu çalışmada el rehabilitasyonu için tasarlanan, üretilen ve kullanılan cihazların değerlendirilmiştir. El rehabilitasyonu için geleneksel ve robotik cihazların üretimine ve geliştirilmesine katkı sağlayan araştırmacılara teşekkür ederim

Kaynakça

  • [1] Huamanchahua, D.,Yalli-Villa, D., Bello-Merlo, A. and MacuriVasquez, J., (2021), ”Ground Robots for Inspection and Monitoring: A State-of-theArt Review,” IEEE 12th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON), 2021, pp. 0768-0774, doi: 10.1109/UEMCON53757.2021.9666648.
  • [2] Huamanchahua, D, Ortiz-Zacarias, J., Asto-Evangelista J. and Quintanilla-Mosquera, I., (2021), ”Types of Lower-Limb Orthoses for Rehabilitation and Assistance: A Systematic Review,” IEEE 12th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON), 2021, pp. 0705-0711, doi: 10.1109/UEMCON53757.2021.9666710.
  • [3] Huamanchahua, D., Tadeo-Gabriel, A., Chavez-Raraz R. and Serrano- Guzman, K., (2021), ”Parallel Robots in Rehabilitation and Assistance: A Systematic ´ Review,” IEEE 12th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON), 2021, pp. 0692-0698, doi: 10.1109/UEMCON53757.2021.9666501.
  • [4] Sandison, M. et al.,(2020), “HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for at Home Stroke Rehabilitation”, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2020-July, pp. 4867–4872, , doi: 10.1109/EMBC44109.2020.9175332.
  • [5] Narvaez, V., Bolanos, B., Lopez, D.J., Guerrero, J.A., Mejıa J.E., and Ruiz, S.E., (2020), “Diseno de un prototipo de exoesqueleto para rehabilitaci ˜ on´ postquirurgica del s ´ ´ındrome del tunel del carpo”, IX International ´ Congress of Mechatronics Engineering and Automation (CIIMA), pp. 1–6, 2020.
  • [6] Li, M., et al., (2019), “An attention-controlled hand exoskeleton for the rehabilitation of finger extension and flexion using a rigid-soft combined mechanism”, Front. Neurorobot., vol. 13, no May, pp. 1–13, , doi: 10.3389/fnbot.2019.00034
  • [7] Huamanchahua, D., et al., (2021), ”A Robotic Prosthesis as a Functional UpperLimb Aid: An Innovative Review,” IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 2021, pp. 1-8, doi: 10.1109/IEMTRONICS52119.2021.9422648.
  • [8] Hand Rehabilitation Protocols; University of Kentucky Healthcare: Lexington, KY, USA. Available online: https://ukhealthcare .uky.edu/sites/default/files/m21-0609_ortho_protocols-final.pdf (accessed on 21 April 2022)
  • [9] Huang, Y.C.; Chen, P.C.; Tso, H.H.; Yang, Y.C.; Ho, T.L.; Leong, C.P. (2019) Effects of Kinesio Taping on Hemiplegic Hand in Patients with Upper Limb Post-Stroke Spasticity: A Randomized Controlled Pilot Study. Eur. J. Phys. Rehabil. Med., 55, 551–557.
  • [10] Villafañe, J.H.; Taveggia, G.; Galeri, S.; Bissolotti, L.; Mullè, C.; Imperio, G.; Valdes, K.; Borboni, A.; Negrini, S. (2018), Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients With Hand Paralysis After Stroke: A Randomized Clinical Trial. Hand, 13, 95–102.
  • [11] Molteni, F.; Gasperini, G.; Cannaviello, G.; Guanziroli, E. (2018), Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. PM&R, 10, S174–S188.
  • [12] Gull, M.A.; Bai, S.; Bak, T. A. (2020), Review on Design of Upper Limb Exoskeletons. Robotics, 9, 16.
  • [13] Sandoval-Gonzalez, O.; Jacinto-Villegas, J.; Herrera-Aguilar, I.; Portillo-Rodiguez, O.; Tripicchio, P.; Hernandez-Ramos, M.; Flores-Cuautle, A.; Avizzano, C. (2016), Design and Development of a Hand Exoskeleton Robot for Active and Passive Rehabilitation. Int. J. Adv. Robot. Syst., 13, 66.
  • [14] Lambercy, O.; Dovat, L.; Gassert, R.; Burdet, E.; Teo, C.L.; Milner, T. A. (2007), Haptic Knob for Rehabilitation of Hand Function. IEEE Trans. Neural Syst. Rehabil. Eng., 15, 356–366.
  • [15] Sirlantzis, K.; Larsen, L.B.; Kanumuru, L.K. (2018), Oprea, P. Robotics. Handbook of Electronic Assistive Technology; Academic Press: Cambridge, MA, USA,; pp. 311–345.
  • [16] Proulx, C.E.; Beaulac, M.; David, M.; Deguire, C.; Haché, C.; Klug, F.; Kupnik, M.; Higgins, J.; Gagnon, D.H. (2020), Review of the Effects of Soft Robotic Gloves for Activity-Based Rehabilitation in Individuals with Reduced Hand Function and Manual Dexterity Following a Neurological Event. J. Rehabil. Assist. Technol. Eng., 7, 205566832091813.
  • [17] Aubin, P.M.; Sallum, H.; Walsh, C.; Stirling, L.; Correia, A. A. (June 2013), Pediatric Robotic Thumb Exoskeleton for At-Home Rehabilitation: The Isolated Orthosis for Thumb Actuation (IOTA). In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Seattle, WA, USA, 24–26.
  • [18] Huang, X.; Naghdy, F.; Naghdy, G.; Du, H.; Todd, C. (2018), The Combined Effects of Adaptive Control and Virtual Reality on RobotAssisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study. J. Stroke Cerebrovasc. Dis., 27, 221–228.
  • [19] Yurkewich, A.; Kozak, I.J.; Ivanovic, A.; Rossos, D.; Wang, R.H.; Hebert, D.; Mihailidis, A. (2020), Myoelectric Untethered Robotic Glove Enhances Hand Function and Performance on Daily Living Tasks after Stroke. J. Rehabil. Assist. Technol. Eng., 7, 2055668320964050.
  • [20] Lee, H.C.; Kuo, F.L.; Lin, Y.N.; Liou, T.H.; Lin, J.C.; Huang, S.W. (2021), Effects of Robot-Assisted Rehabilitation on Hand Function of People With Stroke: A Randomized, Crossover-Controlled, Assessor-Blinded Study. Am. J. Occup. Ther., 75, 7501205020p1–7501205020p11.
  • [21] Godfrey, S.B.; Holley, R.J.; Lum, P.S. (2013), Clinical Effects of Using HEXORR (Hand Exoskeleton Rehabilitation Robot) for Movement Therapy in Stroke Rehabilitation. Am. J. Phys. Med. Rehabil., 92, 947–958.
  • [22] Thielbar, K.O.; Triandafilou, K.M.; Fischer, H.C.; O’Toole, J.M.; Corrigan, M.L.; Ochoa, J.M.; Stoykov, M.E.; Kamper, D.G. (2017), Benefits of Using a Voice and EMG-Driven Actuated Glove to Support Occupational Therapy for Stroke Survivors. IEEE Trans. Neural Syst. Rehabil. Eng., 25, 297–306.
  • [23] Connelly, L.; Jia, Y.; Toro, M.L.; Stoykov, M.E.; Kenyon, R.v.; Kamper, D.G. (2010), A Pneumatic Glove and Immersive Virtual Reality Environment for Hand Rehabilitative Training after Stroke. IEEE Trans. Neural Syst. Rehabil. Eng., 18, 551–559.24–26 June 2013.
  • [24] Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A. (2014), Leonhardt, S. A Survey on Robotic Devices for Upper Limb Rehabilitation. J. NeuroEng. Rehabil., 11, 3
  • [25] Choo, Y.J.; Boudier-Revéret, M.; Chang, M.C. (2020), 3D Printing Technology Applied to Orthosis Manufacturing: Narrative Review. Ann. Palliat. Med., 9, 4262–4270.
  • [26] Yurkewich, A.; Kozak, I.J.; Hebert, D.; Wang, R.H.; Mihailidis, A. (2020), Hand Extension Robot Orthosis (HERO) Grip Glove: Enabling Independence amongst Persons with Severe Hand Impairments after Stroke. J. NeuroEng. Rehabil., 17, 33.
  • [27] Ates, S.; Haarman, C.J.W.; Stienen, A.H.A. (2017), SCRIPT Passive Orthosis: Design of Interactive Hand and Wrist Exoskeleton for Rehabilitation at Home after Stroke. Auton. Robot., 41, 711–723.
  • [28] Farrell, J.F.; Hoffman, H.B.; Snyder, J.L.; Giuliani, C.A.; Bohannon, R.W. (2007), Orthotic Aided Training of the Paretic Upper Limb in Chronic Stroke: Results of a Phase 1 Trial. NeuroRehabilitation, 22, 99–103.
  • [29] Fischer, H.C.; Triandafilou, K.M.; Thielbar, K.O.; Ochoa, J.M.; Lazzaro, E.D.C.; Pacholski, K.A.; Kamper, D.G. (2016), Use of a Portable Assistive Glove to Facilitate Rehabilitation in Stroke Survivors with Severe Hand Impairment. IEEE Trans. Neural Syst. Rehabil. Eng., 24, 344–351.
  • [30] Haghshenas-Jaryani, M.; Nothnagle, C.; Patterson, R.M.; Bugnariu, N.; Wijesundara, M.B.J. (2017), Soft Robotic Rehabilitation Exoskeleton (REHAB Glove) for Hand Therapy. In Proceedings of the ASME Design Engineering Technical Conference, Cleveland, OH, USA, 6–9 August, Volume 3.
  • [31] Borboni, A.; Mor, M.; Faglia, R. (2016), Gloreha-Hand Robotic Rehabilitation: Design, Mechanical Model, and Experiments. J. Dyn. Syst. Meas. Control Trans. ASME, 138, 111003.
  • [32] Yap, H.K.; Lim, J.H.; Nasrallah, F.; Yeow, C.H. (2017), Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors. Front. Neurosci., 11, 547.
  • [33] du Plessis, T.; Djouani, K.; Oosthuizen, C. (2021), A Review of Active Hand Exoskeletons for Rehabilitation and Assistance. Robotics, 10, 40.
  • [34] Yue, Z.; Zhang, X.; Wang, J. (2017), Hand Rehabilitation Robotics on Poststroke Motor Recovery. Behav. Neurol., 3908135.
  • [35] Hussain, S.; Jamwal, P.K.; van Vliet, P.; Ghayesh, M.H. (2020), State-of-The-Art Robotic Devices for Wrist Rehabilitation: Design and Control Aspects. IEEE Trans. Hum.-Mach. Syst., 50, 361–372.
  • [36] CyberGrasp—CyberGlove Systems LLC. Available online: http://www.cyberglovesystems.com/cybergrasp (accessed on 21 April 2022)
  • [37] In, H.; Kang, B.B.; Sin, M.K.; Cho, K.J. Exo-Glove (2015), A Wearable Robot for the Hand with a Soft Tendon Routing System. IEEE Robot. Autom. Mag., 22, 97–105.
  • [38] Nilsson, M.; Ingvast, J.; Wikander, J.; von Holst, H. (2012), The Soft Extra Muscle System for Improving the Grasping Capability in Neurological Rehabilitation. In Proceedings of the 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES 2012), Langkawi, Malaysia, 17–19 December pp. 412–417.
  • [39] Zhou, Y.; Desplenter, T.; Chinchalkar, S.; Trejos, A.L. (2019), A Wearable Mechatronic Glove for Resistive Hand Therapy Exercises. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada,; pp. 1097–1102.
  • [40] Delph, M.A.; Fischer, S.A.; Gauthier, P.W.; Luna, C.H.M.; Clancy, E.A.; Fischer, G.S. (2013), A Soft Robotic Exomusculature Glove with Integrated SEMG Sensing for Hand Rehabilitation. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA,
  • [41] Suarez-Escobar, M.; Rendon-Velez, E. (2018), An Overview of Robotic/Mechanical Devices for Post-Stroke Thumb Rehabilitation. Disabil. Rehabil. Assist. Technol., 13, 683–703.
  • [42] Alamdari, A.; Krovi, V. (2015), Modeling and Control of a Novel Home-Based Cable-Driven Parallel Platform Robot: PACER. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany,; pp. 6330–6335.

DEVELOPMENT OF DEVICES USED IN HAND REHABILITATION

Yıl 2022, Sayı: 003, 10 - 20, 31.12.2022

Öz

Medical conditions or accidents, such as stroke, can cause significant neurological damage to the human body and cause loss of motor function in the upper extremity, the patient's hands. Various robotic devices such as exoskeletons have been designed to assist humans in the rehabilitation process; however, they have limited features that do not achieve optimum performance. Hand rehabilitation treatment of patients is carried out in clinics and under the guidance of an expert using various hand rehabilitation devices. The task of the devices used in the rehabilitation of the hand is to provide passive, active or active assisted rehabilitation therapy to the hand. However, hand rehabilitation devices do not have any standards. In this study, mechanical designs and drive mechanisms of hand rehabilitation devices are described and compared.

Kaynakça

  • [1] Huamanchahua, D.,Yalli-Villa, D., Bello-Merlo, A. and MacuriVasquez, J., (2021), ”Ground Robots for Inspection and Monitoring: A State-of-theArt Review,” IEEE 12th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON), 2021, pp. 0768-0774, doi: 10.1109/UEMCON53757.2021.9666648.
  • [2] Huamanchahua, D, Ortiz-Zacarias, J., Asto-Evangelista J. and Quintanilla-Mosquera, I., (2021), ”Types of Lower-Limb Orthoses for Rehabilitation and Assistance: A Systematic Review,” IEEE 12th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON), 2021, pp. 0705-0711, doi: 10.1109/UEMCON53757.2021.9666710.
  • [3] Huamanchahua, D., Tadeo-Gabriel, A., Chavez-Raraz R. and Serrano- Guzman, K., (2021), ”Parallel Robots in Rehabilitation and Assistance: A Systematic ´ Review,” IEEE 12th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON), 2021, pp. 0692-0698, doi: 10.1109/UEMCON53757.2021.9666501.
  • [4] Sandison, M. et al.,(2020), “HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for at Home Stroke Rehabilitation”, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2020-July, pp. 4867–4872, , doi: 10.1109/EMBC44109.2020.9175332.
  • [5] Narvaez, V., Bolanos, B., Lopez, D.J., Guerrero, J.A., Mejıa J.E., and Ruiz, S.E., (2020), “Diseno de un prototipo de exoesqueleto para rehabilitaci ˜ on´ postquirurgica del s ´ ´ındrome del tunel del carpo”, IX International ´ Congress of Mechatronics Engineering and Automation (CIIMA), pp. 1–6, 2020.
  • [6] Li, M., et al., (2019), “An attention-controlled hand exoskeleton for the rehabilitation of finger extension and flexion using a rigid-soft combined mechanism”, Front. Neurorobot., vol. 13, no May, pp. 1–13, , doi: 10.3389/fnbot.2019.00034
  • [7] Huamanchahua, D., et al., (2021), ”A Robotic Prosthesis as a Functional UpperLimb Aid: An Innovative Review,” IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 2021, pp. 1-8, doi: 10.1109/IEMTRONICS52119.2021.9422648.
  • [8] Hand Rehabilitation Protocols; University of Kentucky Healthcare: Lexington, KY, USA. Available online: https://ukhealthcare .uky.edu/sites/default/files/m21-0609_ortho_protocols-final.pdf (accessed on 21 April 2022)
  • [9] Huang, Y.C.; Chen, P.C.; Tso, H.H.; Yang, Y.C.; Ho, T.L.; Leong, C.P. (2019) Effects of Kinesio Taping on Hemiplegic Hand in Patients with Upper Limb Post-Stroke Spasticity: A Randomized Controlled Pilot Study. Eur. J. Phys. Rehabil. Med., 55, 551–557.
  • [10] Villafañe, J.H.; Taveggia, G.; Galeri, S.; Bissolotti, L.; Mullè, C.; Imperio, G.; Valdes, K.; Borboni, A.; Negrini, S. (2018), Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients With Hand Paralysis After Stroke: A Randomized Clinical Trial. Hand, 13, 95–102.
  • [11] Molteni, F.; Gasperini, G.; Cannaviello, G.; Guanziroli, E. (2018), Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. PM&R, 10, S174–S188.
  • [12] Gull, M.A.; Bai, S.; Bak, T. A. (2020), Review on Design of Upper Limb Exoskeletons. Robotics, 9, 16.
  • [13] Sandoval-Gonzalez, O.; Jacinto-Villegas, J.; Herrera-Aguilar, I.; Portillo-Rodiguez, O.; Tripicchio, P.; Hernandez-Ramos, M.; Flores-Cuautle, A.; Avizzano, C. (2016), Design and Development of a Hand Exoskeleton Robot for Active and Passive Rehabilitation. Int. J. Adv. Robot. Syst., 13, 66.
  • [14] Lambercy, O.; Dovat, L.; Gassert, R.; Burdet, E.; Teo, C.L.; Milner, T. A. (2007), Haptic Knob for Rehabilitation of Hand Function. IEEE Trans. Neural Syst. Rehabil. Eng., 15, 356–366.
  • [15] Sirlantzis, K.; Larsen, L.B.; Kanumuru, L.K. (2018), Oprea, P. Robotics. Handbook of Electronic Assistive Technology; Academic Press: Cambridge, MA, USA,; pp. 311–345.
  • [16] Proulx, C.E.; Beaulac, M.; David, M.; Deguire, C.; Haché, C.; Klug, F.; Kupnik, M.; Higgins, J.; Gagnon, D.H. (2020), Review of the Effects of Soft Robotic Gloves for Activity-Based Rehabilitation in Individuals with Reduced Hand Function and Manual Dexterity Following a Neurological Event. J. Rehabil. Assist. Technol. Eng., 7, 205566832091813.
  • [17] Aubin, P.M.; Sallum, H.; Walsh, C.; Stirling, L.; Correia, A. A. (June 2013), Pediatric Robotic Thumb Exoskeleton for At-Home Rehabilitation: The Isolated Orthosis for Thumb Actuation (IOTA). In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Seattle, WA, USA, 24–26.
  • [18] Huang, X.; Naghdy, F.; Naghdy, G.; Du, H.; Todd, C. (2018), The Combined Effects of Adaptive Control and Virtual Reality on RobotAssisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study. J. Stroke Cerebrovasc. Dis., 27, 221–228.
  • [19] Yurkewich, A.; Kozak, I.J.; Ivanovic, A.; Rossos, D.; Wang, R.H.; Hebert, D.; Mihailidis, A. (2020), Myoelectric Untethered Robotic Glove Enhances Hand Function and Performance on Daily Living Tasks after Stroke. J. Rehabil. Assist. Technol. Eng., 7, 2055668320964050.
  • [20] Lee, H.C.; Kuo, F.L.; Lin, Y.N.; Liou, T.H.; Lin, J.C.; Huang, S.W. (2021), Effects of Robot-Assisted Rehabilitation on Hand Function of People With Stroke: A Randomized, Crossover-Controlled, Assessor-Blinded Study. Am. J. Occup. Ther., 75, 7501205020p1–7501205020p11.
  • [21] Godfrey, S.B.; Holley, R.J.; Lum, P.S. (2013), Clinical Effects of Using HEXORR (Hand Exoskeleton Rehabilitation Robot) for Movement Therapy in Stroke Rehabilitation. Am. J. Phys. Med. Rehabil., 92, 947–958.
  • [22] Thielbar, K.O.; Triandafilou, K.M.; Fischer, H.C.; O’Toole, J.M.; Corrigan, M.L.; Ochoa, J.M.; Stoykov, M.E.; Kamper, D.G. (2017), Benefits of Using a Voice and EMG-Driven Actuated Glove to Support Occupational Therapy for Stroke Survivors. IEEE Trans. Neural Syst. Rehabil. Eng., 25, 297–306.
  • [23] Connelly, L.; Jia, Y.; Toro, M.L.; Stoykov, M.E.; Kenyon, R.v.; Kamper, D.G. (2010), A Pneumatic Glove and Immersive Virtual Reality Environment for Hand Rehabilitative Training after Stroke. IEEE Trans. Neural Syst. Rehabil. Eng., 18, 551–559.24–26 June 2013.
  • [24] Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A. (2014), Leonhardt, S. A Survey on Robotic Devices for Upper Limb Rehabilitation. J. NeuroEng. Rehabil., 11, 3
  • [25] Choo, Y.J.; Boudier-Revéret, M.; Chang, M.C. (2020), 3D Printing Technology Applied to Orthosis Manufacturing: Narrative Review. Ann. Palliat. Med., 9, 4262–4270.
  • [26] Yurkewich, A.; Kozak, I.J.; Hebert, D.; Wang, R.H.; Mihailidis, A. (2020), Hand Extension Robot Orthosis (HERO) Grip Glove: Enabling Independence amongst Persons with Severe Hand Impairments after Stroke. J. NeuroEng. Rehabil., 17, 33.
  • [27] Ates, S.; Haarman, C.J.W.; Stienen, A.H.A. (2017), SCRIPT Passive Orthosis: Design of Interactive Hand and Wrist Exoskeleton for Rehabilitation at Home after Stroke. Auton. Robot., 41, 711–723.
  • [28] Farrell, J.F.; Hoffman, H.B.; Snyder, J.L.; Giuliani, C.A.; Bohannon, R.W. (2007), Orthotic Aided Training of the Paretic Upper Limb in Chronic Stroke: Results of a Phase 1 Trial. NeuroRehabilitation, 22, 99–103.
  • [29] Fischer, H.C.; Triandafilou, K.M.; Thielbar, K.O.; Ochoa, J.M.; Lazzaro, E.D.C.; Pacholski, K.A.; Kamper, D.G. (2016), Use of a Portable Assistive Glove to Facilitate Rehabilitation in Stroke Survivors with Severe Hand Impairment. IEEE Trans. Neural Syst. Rehabil. Eng., 24, 344–351.
  • [30] Haghshenas-Jaryani, M.; Nothnagle, C.; Patterson, R.M.; Bugnariu, N.; Wijesundara, M.B.J. (2017), Soft Robotic Rehabilitation Exoskeleton (REHAB Glove) for Hand Therapy. In Proceedings of the ASME Design Engineering Technical Conference, Cleveland, OH, USA, 6–9 August, Volume 3.
  • [31] Borboni, A.; Mor, M.; Faglia, R. (2016), Gloreha-Hand Robotic Rehabilitation: Design, Mechanical Model, and Experiments. J. Dyn. Syst. Meas. Control Trans. ASME, 138, 111003.
  • [32] Yap, H.K.; Lim, J.H.; Nasrallah, F.; Yeow, C.H. (2017), Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors. Front. Neurosci., 11, 547.
  • [33] du Plessis, T.; Djouani, K.; Oosthuizen, C. (2021), A Review of Active Hand Exoskeletons for Rehabilitation and Assistance. Robotics, 10, 40.
  • [34] Yue, Z.; Zhang, X.; Wang, J. (2017), Hand Rehabilitation Robotics on Poststroke Motor Recovery. Behav. Neurol., 3908135.
  • [35] Hussain, S.; Jamwal, P.K.; van Vliet, P.; Ghayesh, M.H. (2020), State-of-The-Art Robotic Devices for Wrist Rehabilitation: Design and Control Aspects. IEEE Trans. Hum.-Mach. Syst., 50, 361–372.
  • [36] CyberGrasp—CyberGlove Systems LLC. Available online: http://www.cyberglovesystems.com/cybergrasp (accessed on 21 April 2022)
  • [37] In, H.; Kang, B.B.; Sin, M.K.; Cho, K.J. Exo-Glove (2015), A Wearable Robot for the Hand with a Soft Tendon Routing System. IEEE Robot. Autom. Mag., 22, 97–105.
  • [38] Nilsson, M.; Ingvast, J.; Wikander, J.; von Holst, H. (2012), The Soft Extra Muscle System for Improving the Grasping Capability in Neurological Rehabilitation. In Proceedings of the 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES 2012), Langkawi, Malaysia, 17–19 December pp. 412–417.
  • [39] Zhou, Y.; Desplenter, T.; Chinchalkar, S.; Trejos, A.L. (2019), A Wearable Mechatronic Glove for Resistive Hand Therapy Exercises. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada,; pp. 1097–1102.
  • [40] Delph, M.A.; Fischer, S.A.; Gauthier, P.W.; Luna, C.H.M.; Clancy, E.A.; Fischer, G.S. (2013), A Soft Robotic Exomusculature Glove with Integrated SEMG Sensing for Hand Rehabilitation. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA,
  • [41] Suarez-Escobar, M.; Rendon-Velez, E. (2018), An Overview of Robotic/Mechanical Devices for Post-Stroke Thumb Rehabilitation. Disabil. Rehabil. Assist. Technol., 13, 683–703.
  • [42] Alamdari, A.; Krovi, V. (2015), Modeling and Control of a Novel Home-Based Cable-Driven Parallel Platform Robot: PACER. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany,; pp. 6330–6335.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derlemeler
Yazarlar

Melih Canlıdinç 0000-0002-4011-9490

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 8 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 003

Kaynak Göster

APA Canlıdinç, M. (2022). EL REHABİLİTASYONUNDA KULLANILAN CİHAZLARIN GELİŞİMİ. Journal of Scientific Reports-C(003), 10-20.
AMA Canlıdinç M. EL REHABİLİTASYONUNDA KULLANILAN CİHAZLARIN GELİŞİMİ. Journal of Scientific Reports-C. Aralık 2022;(003):10-20.
Chicago Canlıdinç, Melih. “EL REHABİLİTASYONUNDA KULLANILAN CİHAZLARIN GELİŞİMİ”. Journal of Scientific Reports-C, sy. 003 (Aralık 2022): 10-20.
EndNote Canlıdinç M (01 Aralık 2022) EL REHABİLİTASYONUNDA KULLANILAN CİHAZLARIN GELİŞİMİ. Journal of Scientific Reports-C 003 10–20.
IEEE M. Canlıdinç, “EL REHABİLİTASYONUNDA KULLANILAN CİHAZLARIN GELİŞİMİ”, Journal of Scientific Reports-C, sy. 003, ss. 10–20, Aralık 2022.
ISNAD Canlıdinç, Melih. “EL REHABİLİTASYONUNDA KULLANILAN CİHAZLARIN GELİŞİMİ”. Journal of Scientific Reports-C 003 (Aralık 2022), 10-20.
JAMA Canlıdinç M. EL REHABİLİTASYONUNDA KULLANILAN CİHAZLARIN GELİŞİMİ. Journal of Scientific Reports-C. 2022;:10–20.
MLA Canlıdinç, Melih. “EL REHABİLİTASYONUNDA KULLANILAN CİHAZLARIN GELİŞİMİ”. Journal of Scientific Reports-C, sy. 003, 2022, ss. 10-20.
Vancouver Canlıdinç M. EL REHABİLİTASYONUNDA KULLANILAN CİHAZLARIN GELİŞİMİ. Journal of Scientific Reports-C. 2022(003):10-2.